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Abstract— Distributed camera systems are typically used to
simultaneously track multiple targets. Communication between
cameras enables the ability to monitor targets in a complex
environment where occlusion happens. Asynchronicity and time
delay are among the most important factors that affect tracking
error. We provide a feedback law controlling the pan and tilt of
each camera to track the centroid of a cluster of point targets
in the field of view. Assuming that the estimates for target
motion are available only infrequently and asynchronously
when occlusion happens, we compute a worst-case lower bound
on the frequency for exchanging estimates between cameras.
Our results may help camera system designers to determine
the response time and tracking ability for distributed camera
systems.

I. INTRODUCTION

Recent advancements in technology have dramatically
reduced the cost of manufacturing and installing distributed
camera systems. Research in image processing and computer
vision has enabled using cameras to track moving targets
with high accuracy in real time. Distributed camera systems
have the advantage of cooperatively tracking targets even
when occlusion happens in the field of view of some of
the cameras in the network. Cameras with occlusion may
request estimates of the blocked targets from other cam-
eras monitoring the targets from different viewing angles.
Communication delays and asynchronicity exist in most such
distributed systems [1]. Controller design under time-delay
has been a long lasting focus in the control literature c.f. [2]–
[5]. The problem of asynchronicity has gained much recent
interest due to the research thrusts in cooperative control and
sensor networks [6]–[8].

There have been ongoing efforts to generalize Lyapunov
stability theory to systems with hybrid nature [9]–[13]. In this
paper, we develop methods based on input to state stability
(ISS) for discrete-time systems [14]–[17] and apply them
to a simplified perspective dynamic model [18]–[20] of the
distributed camera systems to establish relationship between
tracking error, delay, and asynchronicity. By explicitly deter-
mining an ISS Lyapunov function for the camera tracking
system, one can estimate the size of a neighborhood to
which the state will converge. This gives a measure of the
system performance for different possible values of com-
munication/computation delays and different control gains.
Such a metric is highly desirable in applications involving
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control/scheduler co-design; if a certain level of tracking
performance is required, the state estimation/computation of
the control law can be scheduled so that the control interval
never exceeds a deadline, which we choose together with
control gain and inter-measurement interval in such a way
that the performance requirements are met.

In section II, we briefly review the perspective dynamics
that model the motion of a point target in the image plane of
a camera. We then introduce tracking controllers for a single
camera to track one or a cluster of point targets in section
III. In section IV, we consider the effect of time delay and
asynchronicity on the tracking performance for two cameras
tracking multiple targets. Simulation results will be presented
in section V.

II. THE PERSPECTIVE DYNAMICAL SYSTEM

We consider cameras with controllable pan and tilt. We
first introduce a model that describes the motion of a point
target in the image plane of a camera.

Consider a single camera which observes targets moving
in the space R3. We may establish the camera coordinate
frame using three orthogonal unit vectors i, j, k to define the
three axes. The origin is located at the lens of the camera,
and i and j span a plane that is parallel to the camera’s image
plane. Hence k is perpendicular to the image plane. Rotation
around i is the tilt motion and rotation around j is the pan
motion. We also define an inertial, or “lab”, frame whose
origin coincides with that of the camera frame, and whose
axes are initially aligned with the camera frame’s axes. When
the pan and tilt motion are performed, the body, or “camera”,
coordinate frame rotates with the camera. The orientation of
the camera in the inertial frame can be described by a matrix
g ∈ SO(3) (that is, ggT = I).

Fig. 1. Schematic of the perspective system

Let rI represent a point in R3 (see fig. 1). The position
of the point in the camera’s coordinate frame is r = g−1rI .
Multiplying both sides by g and taking time derivatives, we
obtain ṙ = g(Ω × r + ṙ), where Ω = ui + vj + 0k is the
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angular velocity of the camera, and u and v stand for the pan
and tilt controls, respectively. If we define a velocity vector
b = g−1ṙI , we can write ṙ = −Ω× r + b.

The vectors r and b may be decomposed as: r = r1i +
r2j + r3k and b = b1i + b2j + b3k. Consider the projection
of r on the image plane of the camera; the projected position
can be described by x = x1i + x2j, defined as follows:

x1 =
r1
r3

and x2 =
r2
r3

(1)

We now derive the first-order perspective dynamics of the
system. First, ṙ = −Ω× r + b implies that:

ṙ1 = b1 − r3v
ṙ2 = b2 + r3u

ṙ3 = b3 − r2u+ r1v. (2)

Let us define Bi = bi/r3 for i = 1, 2, 3. Taking the time
derivatives of x1 and x2, we have:

ẋ1 = −r1ṙ3
r23

+
ṙ1
r3

= x1x2u− (x2
1 + 1)v +B1 −B3x1

(3)

ẋ2 = −r2ṙ3
r23

+
ṙ2
r3

= (x2
2 + 1)u− x1x2v +B2 −B3x2.

(4)

Note that x1, x2, B1, and B2 may be estimated from
measurements taken by the camera, since they represent the
position and velocity of the point in the image plane, but B3

cannot be estimated by any direct method.
In the target tracking problem, we want to control the value

of x1 and x2 so that the target is always in the field of view.
If the camera is far away from the target, it is reasonable to
assume that B3 is negligible. We can confine ourselves to
the study of the following subsystem:

ẋ1 = x1x2u− (x2
1 + 1)v +B1

ẋ2 = (x2
2 + 1)u− x1x2v +B2. (5)

In the following sections, we design controllers for the
simplified perspective dynamics (5).

III. CONTROLLER DESIGN FOR SINGLE CAMERA

In this section, we study the problem of controlling a
single camera to track multiple targets in continuous time.
The control objective is to keep the centroid of the targets at
the center of the camera’s field of view (FOV). In the special
case of single target tracking, the target is kept at the center
of the FOV.

A. Tracking multiple targets with single camera

Suppose there are N targets. Their positions are given by
xi, i = 1, ..., N . The centroid is given by xc = 1

N

∑N
i=1 xi;

the motion of the centroid is given by:

ẋc=
[
ẋc1
ẋc2

]
=
[

1
N

∑
i xi1xi2u−

1
N

∑
i(x

2
i1 + 1)v+ 1

N

∑
iBi1

1
N

∑
i(x

2
i2 + 1)u− 1

N

∑
i xi1xi2v+ 1

N

∑
iBi2

]
(6)

where all sums are taken over i = 1 to N .

We now define the matrix

Gc =
1
N

[ ∑N
i=1 xi1xi2

∑N
i=1(x2

i1 + 1)∑N
i=1(x2

i2 + 1)
∑N
i=1 xi1xi2

]
(7)

Using induction over i, one can verify that det(Gc) > 0.
Therefore, a linearizing control can be obtained by taking:[

u
v

]
= G−1

c

(
A

[
xc1
xc2

]
− 1
N

[ ∑N
i=1Bi1∑N
i=1Bi2

])
(8)

where A ∈ R2 is an arbitrary Hurwitz matrix. In the idealized
case that all the states are known exactly, the equilibrium
state (which corresponds to the centroid being at the center
of the FOV) is globally asymptotically stable.

IV. DISTRIBUTED CAMERAS AND DISCRETE
CONTROLLERS

Occlusion happens when one or more targets are blocked
by obstacles in the FOV of one camera. In this case,
the camera may request updates of the blocked targets’
positions from other nearby cameras. This direct commu-
nication is possible using cameras like those developed in
[1]. The estimates so obtained, however, suffer time-delay
and asynchronicity. We investigate how these factors affect
the tracking error.

A typical pan and tilt camera has embedded computers that
compute the control actions. Therefore, control commands
are sent at discrete instants. We discretize the perspective
dynamical system (5) under the assumption that the control
for pan and tilt happens accurately at time instants tk where
k = 0, 1, 2, ..., and T = tk+1 − tk is constant for all k. Let
Gc,k = Gc(tk) and define

Fk =

[ ∑N
i=1Bi,1(tk)∑N
i=1Bi,2(tk)

]
, uk =

[
u(tk)
v(tk)

]
(9)

Then the discrete perspective dynamics for one camera are
given by:

xc(tk+1) = xc(tk) +Gc,kukT + Fc,kT (10)

Consider the following setup. Camera C1 is tracking a
set of N targets, some of which may be occluded; the
goal is to maintain the centroid of the targets as close as
possible to the center of the camera’s FOV. The linearizing
pan/tilt control u (eq. (8)) for the camera is calculated
with an interval of T seconds. Simultaneously with the
release of each control command, the camera accepts a
measurement of the image-plane position x and velocity F
of the target. Camera C1 communicates with other cameras
in order to obtain measurements of position and velocity
of the occluded obstacles. In order to reduce networking
traffic, we assume that the communication between cameras
happens infrequently, so that not all estimates made by
these other cameras will be sent to C1. For example, if a
camera has estimates available every 10ms, it may choose to
send the estimates every 50ms. Therefore, at C1, estimates
for occluded targets will be available less frequently than
estimates for targets which have clear line of sight; we will
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assume that the updates are available with period mT , where
m is a positive integer, m > 1. In practical situations, both
m and T may vary; we assume here that both are constant
and known, and represent the worst-case delay.

Fig. 2. Two-target tracking system with one occluded target

We analyze the simple case N = 2, with one target (say,
target 1) occluded (see fig. 2). On the interval [tk, tk+m),
then, measurements of x and F for the unblocked target (tar-
get 2) are updated m times and those for the occluded target
(target 1) are updated only once. This causes asynchronicity
in the discretized system described by (10).

Note that due to computational and communication delays
in the system, our control effort calculations at time tj must
rely on estimates of xc(tj) based on measurements made at
some previous time, tk, k < j. A simple estimator can be
constructed to obtain the estimates (here denoted by hatted
values) recursively as follows:

uj = Ĝ−1
c,j (Ax̂(tj)− F̂c,j)

x̂c(tj+1) = xc(tj) +Gc,jujT + Fc,jT

F̂c,j+1 = F̂c,j

(11)

where xc(tk) and Fc,k are the measured values of the target’s
position and velocity, respectively, and are assumed to be
known exactly. If at time tj a measurement of the state is not
available, the x̂c(tj) and F̂c,j are taken as the exact values, so
that xc(tj) = x̂(tj) and Fc,j = F̂c,j in the above equations.

We write x̂c(tk) as x̂c(tk) = xc(tk) + ξk, and F̂c,k =
Fc,k + ξFk , where ξk and ξFk are the position estimation
error and velocity estimation error, respectively. These errors
usually grow with the length of the inter-measurement time
mT . In this paper, we assume that for each target i, the
position estimation error ‖ ξi,k ‖ is bounded by L(∆t)q ,
while

∥∥∥ ξFi,k ∥∥∥ is bounded by L(∆t)q−1. Here L ∈ R+ and
q ∈ Z+ are known constants, and ∆t is the time since the
last available measurement.

We pick A in (11) to be a diagonal matrix, A = −KkI ,
where I is the 2 × 2 identity matrix, and Kk is a positive
scalar which may be interpreted as an adjustable control gain.
Minimizing ‖ x̂c(tk+1) ‖ with respect to Kk in eq. (11),
we derive the optimal gain: Kk = 1

T . In fact, neglecting
estimation errors, this control gain would bring xc to xc =
0 in a single discrete-time step. However, since T is by
assumption small, a control gain of 1

T may be physically
impossible to implement. We therefore set Kk = 1

αT , where
α > 1, so that the control uk = −KkIx̂c(tk) will be less
likely to exceed actuator limits.

We will now show that the tracking system described by
(11), with A defined as above, is discrete-time input to state
stable (ISS) (see [14] for definition); that is, the state xc
converges to a small neighborhood of the center of C1’s
FOV.

Lemma 4.1: Consider a single-target camera tracking sys-
tem with dynamics described by eq. (10), with N = 2, inter-
control input interval T , and inter-measurement intervals mT
for target 1 and T for target 2. Matrix A and bounds on
‖ ξ ‖ and

∥∥ ξF ∥∥ are defined as above. Then the system
is discrete-time input to state stable (ISS) and admits a
quadratic Lyapunov function.

Proof: For ‖ ξ ‖ ≤ LT q , we assume that error due to
imperfect knowledge of the state xc(tk) in calculating matrix
Ĝ may be absorbed into the estimation error of xc(tk+1).
Then (11) can be rewritten as a set of perturbed equations:

xc(tk+1) = (I +AT )xc(tk) + ũk
ũk = ATξk + ξFk T

(12)

For any finite fixed T , this can be interpreted as a
discrete-time plant with open-loop dynamics described by
xc(tk+1) = (I+AT )xc(tk), and a bounded stochastic input
ũ = ATξk + ξFk T .

With A defined as A = 1
αT I , I + AT is a Schur matrix.

Therefore, similar to Example 3.4 in [14], we can always find
a quadratic discrete Lyapunov function for (12). Since our
system admits an ISS Lyapunov function, it is necessarily
ISS according to Lemma (3.5) in [14].

The size h of the neighborhood to which V will converge
depends on the magnitudes of estimation errors ξ and ξF .
To find the value of h, we need the following two simple
lemmas:

Lemma 4.2: Given a quadratic polynomial

p(x) = −ax2 + bx+ c

with a, b, c ∈ R+, a 6= 0, and a non-zero affine function

q(x) = dx+ f

with d, f ∈ R+, there exists some C > 0 such that

(p+ q)(x) < 0 for all x > C

.
Proof: Let

C =
(b+ d) +

√
(b+ d)2 + 4a(c+ f)

2a
> 0

Then, (p + q)(C) = 0, and d
dx (p + q) = (−2ax + (b + d))

is strictly negative for all x ≥ C. Therefore for x > C,
(p+ q)(x) < 0.

Lemma 4.3: Given an inequality r(x) ≤ s(x) for all x >
0, with

s(x) = ax2 + bx+ c

where a, b, c ∈ R+, a 6= 0, and s(x = φ) = Φ for some
φ > 0, it follows that r(x) ≤ Φ for all 0 < x ≤ φ.
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Proof: For all x > 0, d
dxs(x) = 2ax+b > 0. Therefore,

s(x) is a strictly increasing function of x for all x > 0, and
it follows that (x) ≤ s(x) ≤ Φ for all 0 < x ≤ φ.

We now turn to our tracking system. We explicitly define
a Lyapunov function as follows:

Vk =
1
2
xc(tk)Txc(tk) (13)

We will analyze the behavior of this function over a time
interval (tk, tk+m], where we assume that measurements of
the state of target 1 are available at times tk and tk+m, while
measurements for target 2 are available at tk, tk+1, ..., tk+m.
Note that Vk+m − Vk can be written as:

Vk+m − Vk = Vk+m +
k+m−1∑
j=k+1

(−Vj + Vj)− Vk (14)

Thus, to guarantee Vk+m − Vk < 0, it is sufficient to have
Vj+1 − Vj < 0 for all j ∈ { k, k + 1, ..., k +m− 1 }.

Lemma 4.4: Suppose we have a system defined by (10)
and (8), with discrete ISS Lyapunov function given by (13).
Then Vj+1 − Vj < 0, ∀j ∈ { k, k + 1, ..., k +m− 1 }
whenever ‖xc(tj) ‖ > h1, where

h1 =
α2LT q

(
2− 1

α −
1
α2 +

√
4 + 7

α2 − 2
α3

)
2(2α− 1)

(15)

Proof: Since no new measurements for target 1 are
available over (tk+1, tk+m−1), the error in the state estimate
of target 1 is assumed to be 0. Therefore, at these times,
the only error contribution in estimates of xc is error in the
state estimates for target 2: ξk = 1

2ξ2,k and ξFk = 1
2ξ
F
2,k,

where ‖ ξ2 ‖ ≤ LT q and ‖ ξ2 ‖ ≤ LT q−1. We therefore write
Vj+1 − Vj (j ∈ { k, k + 1, ..., k +m− 1 }) as:

Vj+1 − Vj = Vj+1 − V̂j+1 + V̂j+1 − Vj (16)

and analyze Vj+1 − V̂j+1 and V̂j+1 − Vj separately.
First, we consider V̂j+1 − Vj . Note that for any i, j we

can write:

Vj − Vi =
1
2
xc(tj)′xc(tj)−

1
2
xc(ti)′xc(ti)

= xc(ti)′(∆xc) +
1
2

∆x′c∆xc
(17)

where ∆xc = xc(tj)− xc(ti). Therefore we can write:

V̂j+1− Vj=xc(tj)′
(̂
xc(tj)
α

+ ξFj T

)
+

1
2

∥∥∥∥ x̂c(tj)
α

+ ξFj T

∥∥∥∥2

Applying bounds on ξk and ξFk , we can define an upper
bound on V̂j+1 − Vj as follows:

V̂j+1 − Vj ≤ −
1
2

(
2
α
− 1
α2

)
‖xc(tj) ‖2

+
1
2

(
1− 1

α2

)
LT q ‖xc(tj) ‖+

1
8

(
1 +

1
α

)2

L2T 2q

(18)

Similarly, Vj+1 − V̂j+1 can be written as:

Vj+1 − V̂j+1 = (xc(tj+1) + ξj+1)′ξj+1 +
1
2
‖ ξj+1 ‖2

(19)

Which is bounded as:

Vj+1−V̂j+1 ≤
1
2

(
1− 1

α

)
LT q ‖xc(tj) ‖+

1
8

(
1 +

4
α

)
L2T 2q

(20)
Applying Lemma 4.2 to (18) and (20), we see that Vj+1 −
Vj < 0 whenever ‖xc(tj) ‖ > h1, where h1 is given by (15).

Lemma 4.5: Suppose we have a system defined by (10)
and (8), with discrete ISS Lyapunov function given by (13).
Then

max{Vk+1, ..., Vk+m−1 } ≤ max{Vk,
1
2
h2

1 }

where h1 is defined as in (15).
Proof: First suppose that xc(tk) > h1, corresponding

to Vk > 1
2h

2
1. By Lemma 4.4, this means that Vk+1−Vk < 0,

so that Vk+1 < Vk. By induction, Vj+1 < Vj < Vk holds for
each j ∈ { k + 1, ..., k +m− 1 } so long as xc(tj) > h1.

Now suppose that for some j, ‖xc(tj) ‖ ≤ h1. Then,
adding equations (18) and (20) for time tj , we get:

Vj+1 − Vj ≤ −
1
2

(
2
α
− 1
α2

)
‖xc(tj) ‖2

+
1
2

(
2− 1

α
− 1
α2

)
LT q ‖xc(tj) ‖

+
1
8

(
2 +

6
α

+
1
α2

)
L2T 2q

(21)

Adding Vj = 1
2 ‖xc(tj) ‖

2 to both sides of the inequality,
we see that:

Vj+1 ≤
1
2

(
1− 1

α

)2

‖xc(tj) ‖2

+
1
2

(
2− 1

α
− 1
α2

)
LT q ‖xc(tj) ‖

+
1
8

(
2 +

6
α

+
1
α2

)
L2T 2q

= ã ‖xc(tj) ‖2 + b̃ ‖xc(tj) ‖+ c̃

(22)

where ã, b̃, c̃ are strictly greater than 0 and ãh2
1 + b̃h1 +

c̃ = 1
2h

2
1. By Lemma 4.3, therefore, Vj+1 < 1

2h
2
1 for all

‖xc(tj) ‖ < h1.
We have shown that for all initial values Vk,

max{Vk+1, ..., Vk+m } ≤ max{Vk,
1
2
h2

1 }

Lemma 4.6: Suppose we have a system defined by (10)
and (8), with discrete ISS Lyapunov function given by (13).
Then there exists an h2 > h1 such that Vk+m−Vk+m−1 < 0
for all ‖xc(tk+m−1) ‖ > h2.

Proof: At time tk+m, estimates of the states of both
targets are available, so that the error in position is given
by ξc,k+m = 1

2 (ξ1,k+m + ξ2,k+m), where ξ1,k+m ∈ X
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with ∆t = mT and ξ2,k+m ∈ X with ∆t = T .
The error in velocity is given by ξFc,k+m = 1

2 (ξF1,k+m +
ξF2,k+m), where ξF1,k+m ∈ XF with ∆t = mT and
ξF2,k+m ∈ XF with ∆t = T . Thus, we can say that
ξc,k+m ∈ {φ : ‖φ ‖ ≤ 1

2 (1 +mq)LT q } and ξFc,k+m ∈
{ψ : ‖ψ ‖ ≤ 1

2 (1 +mq−1)LT q−1 }.
We write Vk+m − Vk+m−1 as:

Vk+m − Vk+m−1

= Vk+m − V̂k+m + V̂k+m − Vk+m−1

(23)

and analyze Vk+m− V̂k+m and V̂k+m−Vk+m−1 separately.
It can be shown that:

V̂k+m − Vk+m−1 ≤ −
1
2

(
2
α
− 1
α2

)
‖xc(tk+m−1) ‖2

+
1
2

(
1− 1

α2

)
LT q ‖xc(tk+m−1) ‖+

1
8

(
1 +

1
α

)2

L2T 2q

(24)

Then, we can find a bound on Vk+m − V̂k+m as:

Vk+m − V̂k+m ≤
1
2

(
1− 1

α

)
(1 +mq)LT q ‖xc(tk+m−1) ‖

+
1
8

(
4
α

(1 +mq) + (1 +mq)2
)
L2T 2q

(25)

Adding together equations (24) and (25) and applying
Lemma 4.2, we see that Vk+m − Vk+m−1 < 0 whenever
‖xc(tj) ‖ > h2, where h2 is given by:

h2 =
α2LT q(2− 1

α −
1
α2 +

(
1− 1

α

)
mq +

√
H)

2(2α− 1)
(26)

where

H = 4+
7
α2
− 2
α3

+
(

4− 6
α

+
6
α2
− 2
α3

)
mq+m2q (27)

Note that h2 > h1.
We are now ready to show that, as t→∞, xc stays within

an invariant neighborhood of the center of the camera’s FOV:
Theorem 4.1: Suppose we have a system defined by (10)

and (8), with discrete ISS Lyapunov function given by (13).
The position of target 1 is measured with interval mT , and
that of target 2, with interval T . Then as tk →∞, ‖xc ‖ is
bounded above by h2, which is defined as in (26).

Proof: Consider a function Wk defined as Wk+m =
maxi∈k,k+m Vi. By Lemma 4.5, we know that

max{Vk+1, ..., Vk+m−1 } ≤ max{Vk,
1
2
h2

1 }

where h1 < h2.
Suppose that Vk+m−1 >

1
2h

2
2 >

1
2h

2
1. By Lemma 4.5, it

follows that Vk+m−1 < Vk. In this case, by Lemma 4.6,
Vk+m − Vk+m−1 < 0, so that Vk+m < Vk+m−1 < Vk, and
we have established that

max{Vk+1, ..., Vk+m−1 } = Vk ≤ max{Vk,
1
2
h2

2 }

Now suppose that Vk+m−1 ≤ 1
2h

2
2. Adding equations (24)

and (25) for time tk+m−1, we get:

Vk+m − Vk+m−1 ≤ −
1
2

(
2
α
− 1
α2

)
‖xc(tk+m−1) ‖2

+
1
2

(
1− 1

α2
+
(

1− 1
α

)
(1 +mq)

)
LT q ‖xc(tk+m−1) ‖

+
1
8

((
1 +

1
α

)2

+
4
α

(1 +mq) + (1 +mq)2
)
L2T 2q

(28)

Then, adding Vm+k−1 = 1
2 ‖xc(tm+k−1) ‖2 to both sides of

the inequality, we see that:

Vk+m ≤
1
2

(
1− 1

α

)2

‖xc(tk+m−1) ‖2

+
1
2

(
1− 1

α2
+
(

1− 1
α

)
(1 +mq)

)
LT q ‖xc(tk+m−1) ‖

+
1
8

((
1 +

1
α

)2

+
4
α

(1 +mq) + (1 +mq)2
)
L2T 2q

= ã ‖xc(tk+m−1) ‖2 + b̃ ‖xc(tk+m−1) ‖+ c̃
(29)

where ã, b̃, c̃ are strictly greater than 0, and ãh2
2 + b̃h2 +

c̃ = 1
2h

2
2. Therefore, by Lemma 4.3, Vk+m < 1

2h
2
2 ≤

max{Vk, 1
2h

2
2 } for all ‖xc(tk+m−1) ‖ ≤ h2.

Since it is known that

max{Vk+1, ..., Vk+m−1 } ≤ max{Vk,
1
2
h2

1 }

≤ max{Vk,
1
2
h2

2 }
(30)

And we have shown that for arbitrary Vk+m−1, Vk+m ≤
max{Vk, 1

2h
2
2 }, it follows that

Wk+m = max{Vk+1, ..., Vk+m } ≤ max{Vk,
1
2
h2

2 }

If Wk >
1
2h

2
2, it decreases as k → ∞, until Wk ≤ 1

2h
2
2,

and is thereafter bounded by 1
2h

2
2. In terms of ‖xc(tk) ‖,

this means that ‖xc(tk) ‖ converges to a neighborhood of
size h2 about the origin; that is, the centroid of the targets
remains within h2 of the center of the camera’s FOV.

We have shown that ‖xc ‖ converges to an invariant
neighborhood of 0, with upper bound defined by h2. This
bound will tend to be conservative, as we have always
assumed a worst-case estimation error for the state of each of
the targets. However, it is a useful metric for estimating the
performance of the networked camera tracking system given
computation and communication delay and asynchronicity.

V. SIMULATION

The above camera tracking system is simulated in Matlab
for both the single-target and the two-target asynchronous
measurement case. Arbitrary deterministic 2-dimensional tra-
jectories are assigned to the targets. It was assumed that the
camera system can observe the location of each object with
additive Gaussian white noise.
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Given the nonlinear dynamics of the targets and measure-
ment noise, it is desirable to use a short-memory filter to
estimate the state x from a given observation. A polynomial
predictor (implemented using Matlab polyfit function)
was used to estimate the state at each control instant. The
ten most recent data points were used to find a least-squares
second-order polynomial function for x1 and x2 over time.

Fig. 3. Distance of target to center of C1’s FOV (blue), and theoretical
bound (green). The bound is higher when one or both of the targets are
occluded.

The simulation was run with T = 10−3 sec and m varying
between 1 (target not occluded) to 5 (target occluded). A
section of the target space was designated “brush area”, with
targets becoming occluded whenever they entered this area.
As illustrated in fig. 3, the estimates of the size of the neigh-
borhood of the center of the camera’s FOV in the previous
sections tend to be much higher than the neighborhoods
obtained in simulation. This is not surprising, since we have
always assumed a worst-case scenario, and calculated bounds
on V (xc(t)) corresponding to maximum possible error at
every measurement instant. It may be observed, however,
that the size of the neighborhood to which x converges is
dependent on the control interval T and on measurement
frequency, as expected from our model and calculations.

VI. CONCLUSION

In this paper we have studied the behavior of a camera
tracking system in which multiple pan/tilt-enabled cameras
are used to track a set of targets in an environment where
occlusions can occur. If a target is occluded in a given
camera’s field of view, the camera can request estimates of
the target’s position and velocity from cameras which have
line of sight with the given target. The states of the different
targets are therefore available asynchronously. There is also a
delay associated with communications. We have shown that,
applying the controller described in (8) to a 2-target system,
we can maintain the centroid of the targets within some
neighborhood of size h about the center of the camera’s field
of view. The value of h depends on the control/measurement
interval T , and the communication interval mT for obtaining
estimates for occluded targets. If a certain performance is
required, it can be achieved by adjusting the control and
communication intervals. This can be helpful in developing
a real-time scheduling control for camera systems, or similar
systems in which delay and asynchronicity play a significant

role. In the future, we will consider the effect of stochastic
measurement intervals on the performance of the tracking
system. The results developed here will be adapted and used
to analyze the performance of formation control for groups of
underwater robots, which experience extremely long delays
and significant asynchronicity in the available measurements.
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