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Abstract—In this paper we consider a mobile cooperative
network that is tasked with building a map of the spatial
variations of a parameter of interest, such as an obstacle map
or an aerial map. We propose a new framework that allows
the nodes to build a map of the parameter of interest with a
small number of measurements. By using the recent results in the
area of compressive sensing, we show how the nodes can exploit
the sparse representation of the parameter of interest in the
transform domain in order to build a map with minimal sensing.
The proposed work allows the nodes to efficiently map the areas
that are not sensed directly. To illustrate the performance of
the proposed framework, we show how the nodes can build
an aerial map or a map of obstacles with sparse sensing. We
furthermore show how our proposed framework enables a novel
non-invasive approach to mapping obstacles by using wireless
channel measurements.

Index Terms—mobile networks, compressive sensing, mapping
of obstacles, cooperative mapping

I. INTRODUCTION

Mobile intelligent networks can play a key role in emer-

gency response, surveillance and security, and battlefield op-

erations. The vision of a multi-agent robotic network cooper-

atively learning and adapting in harsh unknown environments

to achieve a common goal is closer than ever. In this paper, we

are interested in the cases where a mobile cooperative network

is tasked with collecting information from its environment.

More specifically, we consider scenarios where the network

is in charge of building a map of the spatial variations of a

parameter (or a number of parameters) cooperatively, to which

we refer to as cooperative mapping. Such problems can

arise in several different applications. For instance, building

a map of the indoor obstacles [1], ocean sampling [2] or

aerial mapping [3] all fall into this category. A mobile network

tasked with a certain exploratory mission faces an abundance

of information. In such an information-rich world, there is

simply not enough time to sample the whole environment

due to the potential delay-sensitive nature of the application

as well as other practical constraints. A group of unmanned

air vehicles, for instance, may need to cooperatively build an

aerial map of an area in a limited time. It is not practical to

wait for the collective sampling of the vehicles to cover every

single point in the terrain. A fundamental open question is

then as follows: What is the minimal collective sensing needed

to accurately build a map of the whole terrain despite the
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fact that significant parts of it will not be sampled? This is

a considerably important problem as it enhances our ability

to collect information and allows us to keep up with the high

volume of information in the environment.

If we can understand the core information present in the

data and can show that it has a dimension far less than

the data itself, we can then reduce our sensing considerably.

While considerable progress has been made in the area of

mobile networks, a framework that allows the vehicles to

reconstruct the parameter of interest based on a severely under-

determined data set is currently missing. In most related work,

only areas that are directly sensed are mapped. The rich

literature on Simultaneous Localization and Mapping (SLAM)

and its several variations fall into this category [4]–[7]. SLAM

approaches mainly focus on reducing the uncertainty in the

sensed landmarks by using a Kalman filter. Similarly, ap-

proaches based on generating an occupancy map also address

sensing uncertainty [8]. Another set of approaches, suitable

mainly for mapping obstacles, are based on the Next Best

View (NBV) problem [1], [9]–[12]. In NBV approaches, the

aim is to move to the positions “good” for sensing by guiding

the vehicles to the perceived next safest area (area with the

most visibility) based on the current map [1]. However, areas

that are not sensed directly are not mapped in NBV.

In this paper, we present a compressive cooperative mapping

framework for mobile exploratory networks. By compressive

cooperative mapping, we refer to the cooperative mapping of a

spatial function based on a considerably small observation set

where a large percentage of the area of interest is not sensed

directly. Our proposed theory and design tools are inspired

by the recent breakthroughs in non-uniform sampling theory

[13], [14]. The famous Nyquist-Shannon sampling theorem

[15] revolutionized several different fields by showing that,

under certain conditions, it is indeed possible to reconstruct

a uniformly sampled signal perfectly. The new theory of

compressive sampling (also known by other terms such as

compressed sensing, compressive sensing or sparse sensing)

shows that under certain conditions, it is possible to reconstruct

a signal from a considerably incomplete set of observations,

i.e. with a number of measurements much less than predicted

by the Nyquist-Shannon theorem [13], [14]. This opens new

and fundamentally different possibilities in terms of infor-

mation gathering and processing in mobile networks. In this

paper, we develop the fundamentals of cooperative sensing and
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mapping in mobile networks from a compressive sampling per-

spective. While our proposed framework would be applicable

to several mobile network applications, in this paper we mainly

focus on cooperative mapping of a spatial function such as

collective aerial or underwater mapping, collective mapping

of the communication signal strength or cooperative mapping

of the obstacles.

The paper is organized as follows. In Section II we dis-

cuss the compressibility of the signals of interest in mobile

exploratory networks. In Section III we provide a brief intro-

duction to the theory of compressive sensing. In Section IV

we consider cooperative aerial mapping as well as mapping of

obstacles. In particular, we propose a novel compressive and

non-invasive technique for mapping of the obstacles, based on

wireless channel measurements. We conclude in Section V. A

list of key variables used in the paper is provided in Table 1.

II. SIGNAL COMPRESSIBILITY IN COOPERATIVE MOBILE

NETWORKS

We first define what “sparse” and “compressible” signals

refer to.

Definition: A sparse signal is a signal that can be repre-

sented with a small number of non-zero coefficients.

Definition: A compressible signal is a signal that has a

transformation where most of its energy is in a very few

coefficients, making it possible to approximate the rest with

zero. In this paper, we are interested in linear transformations.

The new theory of compressive sampling shows that, under

certain conditions, a compressible signal can be reconstructed

using very few observations. Most natural signals are indeed

compressible. The best sparse representation of a signal de-

pends on the application and can be inferred from analyzing

similar data. Our analysis of aerial maps, obstacle maps

(indoor or outdoor) as well as maps of communication signal

strength, for instance, has shown them to have a considerably

sparse representation. Fig. 1 shows two maps based on real

data, an aerial map and an obstacle map. By applying a linear

transformation to the signals, it can be seen that most of

the signal’s energy is contained in a small percentage of the

transform coefficients. However, this energy is not necessarily

confined to a consecutive set of transform coefficients, which

makes reconstructing the signal based on a considerably

small number of observations challenging. In general, Fourier

transformation can provide a good compression for the spatial

variations of the communication channel or a height map. For

the maps that have localized non-stationary features, such as

an obstacle map (see Fig. 1 b), wavelet transform or total

variation (a difference-based approach) can provide an even

better compression. A map of the obstacles is also sparse in

the spatial domain. It should be noted that in the compressed

mapping of the obstacles, an object-based approach is not

suitable. Instead, we consider the space of interest as a binary

spatial function that takes on values of 0 or 1 (it is also possible

to make it non-binary and include the properties of the objects

as we shall see in Section IV).

In this paper, we show how the new theory of compres-

sive sampling can result in fundamentally different sensing

approaches in mobile cooperative exploratory networks.

III. COMPRESSIVE SAMPLING THEORY

The new theory of sampling is based on the fact that real-

world signals typically have a sparse representation in a certain

transformed domain. Exploiting sparsity, in fact, has a rich

history in different fields. For instance, it can result in reduced

computational complexity (such as in matrix calculations)

or better compression techniques (such as in JPEG2000).

However, in such approaches, the signal of interest is first fully

sampled, after which a transformation is applied and only the

coefficients above a certain threshold are saved. This, however,

is not efficient as it puts a heavy burden on sampling the

entire signal when only a small percentage of the transformed

coefficients are needed to represent it. The new theory of

compressive sampling, on the other hand, allows us to sense

the signal in a compressed manner to begin with.

Consider a scenario where we are interested in recovering

a vector x ∈ R
N . We refer to the domain of vector x as

the primal domain. For 2D signals, vector x can represent the

columns of the matrix of interest stacked up to form a vector

(a similar approach can be applied to higher-order signals).

Let y ∈ R
K where K ≪ N represents the incomplete linear

measurement of vector x obtained by the sensors. We will

have

y = Φx, (1)

where we refer to Φ as the observation matrix. Clearly, solving

for x based on the observation set y is an ill-posed problem as

the system is severely under-determined (K ≪ N ). However,

suppose that x has a sparse representation in another domain,

i.e. it can be represented as a linear combination of a small

set of vectors:

x = ΓX, (2)

where Γ is an invertible matrix and X is S-sparse, i.e.

|supp(X)| = S ≪ N where supp(X) refers to the set of

indices of the non-zero elements of X and | · | denotes its

cardinality. This means that the number of non-zero elements

in X is considerably smaller than N . Then we will have

y = ΨX, (3)

where Ψ = Φ×Γ. We refer to the domain of X as the sparse

domain (or transform domain). If S ≤ K and we knew the

positions of the non-zero coefficients of X , we could solve

this problem with traditional techniques like least-squares. In

general, however, we do not know anything about the structure

of X except for the fact that it is sparse (which we can validate

by analyzing similar data). The new theory of compressed

sensing allows us to solve this problem.

Theorem 1 (see [13] for details and the proof): If K ≥ 2S

and under specific conditions, the desired X is the solution to

the following optimization problem:

min||X ||0, such that y = ΨX, (4)
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(a) (b)

Fig. 1. (a) Height map of Sandia Mountains in New Mexico – courtesy of U.S. Geological Survey (left), and its transformed representation (Fourier) where
more than 99.9999% of energy is in less than 3% of the coefficients (right). (b) An obstacle map with the obstacles denoted in white (left), and its transformed
representation (wavelet) where 100% of energy is in less than 1% of the coefficients (right).

N size of the original signal in the primal domain

S size of the support of the signal in the sparse domain

K number of measurements taken to estimate the signal

x signal in the primal domain, an N × 1 vector

y K × 1 measured vector of x in the primal domain

X N × 1 vector representing a linear transform of x

Φ K ×N observation matrix, s.t. y = Φx

Γ N ×N linear projection matrix, s.t. x = ΓX

Γ
H Hermitian of Γ

Ψ K ×N matrix (defined as Ψ = Φ× Γ), s.t. y = ΨX

TABLE I
KEY NOTATIONS USED IN THIS PAPER

where ||X ||0 = |supp(X)| represents the zero norm of vector

X .

Theorem 1 states that we only need 2 × S measurements

to recover X and therefore x fully. This theorem, however,

requires solving a non-convex combinatorial problem, which is

not practical. For over a decade, mathematicians have worked

towards developing an almost perfect approximation to the ℓ0

optimization problem of Theorem 1 [16]- [17]. Recently, such

efforts resulted in several breakthroughs.

More specifically, consider the following ℓ1 relaxation of

the aforementioned ℓ0 optimization problem:

min||X ||1, subject to y = ΨX. (5)

Theorem 2: (see [18], [13], [19], [20], [14] for details,

the proof and other variations) Assume that X is S-sparse.

The ℓ1 relaxation can exactly recover X from measurement

y if matrix Ψ satisfies the Restricted Isometry Condition for

(2S,
√

2 − 1), as described below.

Restricted Isometry Condition (RIC) [21]: Matrix Ψ satis-

fies the RIC with parameters (Z, ǫ) for ǫ ∈ (0, 1) if

(1 − ǫ)||c||2 ≤ ||Ψc||2 ≤ (1 + ǫ)||c||2 (6)

for all Z-sparse vector c.

The RIC is mathematically related to the uncertainty prin-

ciple of harmonic analysis [21]. However, it has a simple

intuitive interpretation, i.e. it aims at making every set of Z

columns of the matrix Ψ as orthogonal as possible. Other

conditions and extensions of Theorem 2 have also been

developed [22], [23]. While it is not possible to define all the

classes of matrices Ψ that satisfy RIC, it is shown that random

partial Fourier matrices [24] as well as random Gaussian [25]-

[26] or Bernoulli matrices [27] satisfy RIC (a stronger version)

with the probability 1 − O(N−M ) if

K ≥ BMS × logO(1)N, (7)

where BM is a constant, M is an accuracy parameter and O(·)
is Big-O notation [13].

While the recovery of sparse signals is important, in practice

signals may rarely be sparse. Most signals, however, will be

compressible. In practice, the observation vector y will also be

corrupted by noise. The ℓ1 relaxation and the corresponding

required RIC condition can be easily extended to the cases of

noisy observation with compressible signals [18].

A. Basis Pursuit: Reconstruction Using ℓ1 Relaxation

The ℓ1 optimization problem of Eq. 5 can be posed as a

linear programming problem [28]. The compressed sensing

algorithms that reconstruct the signal based on ℓ1 optimization

are typically referred to as “Basis Pursuit” [14]. Reconstruction

through ℓ1 optimization has the strongest known recovery

guarantees [21]. However, the computational complexity of

such approaches can be high, which resulted in further at-

tempts to reconstruct the signal through different approaches,

as we will discuss in the next section.

B. Matching Pursuit: Reconstruction using Successive Inter-

ference Cancellation

The Restricted Isometry Condition implies that the columns

of matrix Ψ should have a certain near-orthogonality property.

Let Ψ = [Ψ1Ψ2 . . . ΨN ], where Ψi represents the ith column

of matrix Ψ. We will have y =
∑N

j=1 ΨjXj , where Xj is the

jth component of vector X . Consider recovering Xi:

ΨH
i y

ΨH
i Ψi

= Xi
︸︷︷︸

desired term

+

N∑

j=1,j 6=i

ΨH
i Ψj

ΨH
i Ψi

Xj

︸ ︷︷ ︸

interference

. (8)
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If the columns of Ψ were orthogonal, then Eq. 8 would

have resulted in the recovery of Xi. For an under-determined

system, however, this will not be the case. Then there are

two factors affecting recovery quality based on Eq. 8. First,

how orthogonal is the ith column to the rest of the columns

and second how strong are the other components of X .

In other words, it is desirable to first recover the strongest

component of X , subtract its effect from y, recover the second

strongest component and continue the process. Adopting the

terminology of CDMA (Code Division Multiple Access) in

communication literature, we refer to such approaches as

Successive Interference Cancellation. In fact, if Xi 6= 0, one

can think of Ψi coding Xi. If the ith code is used as in Eq. 8,

then Xj for j 6= i can not be decoded properly and only Xi

can be recovered.

Such successive cancellation methods have been used in

the context of CDMA systems in communication literature

for recovering the signals of different users at the base station

[29], [30]. While the context of the two problems may seem

different, they share a very core fundamental form. Recently,

Tropp et al. independently proposed using a version of suc-

cessive interference cancellation in the context of compressive

sampling and derived the conditions under which it can result

in almost perfect recovery [31]. They refer to it as Orthogonal

Matching Pursuit (OMP). Similar to Successive Interference

Cancellation, the basic idea of OMP is to iteratively multiply

the measurement vector, y, by ΨH , recover the strongest

component, subtract its effect and continue again. Let Iset

denote the set of indices of the non-zero coefficients of X that

is estimated and updated in every iteration. Once the locations

of the S nonzero components of X are found, we can solve

directly for X by using a least squares solver:

X̂ = argmin
X : supp (X)=Iset

||y − ΨX ||2. (9)

OMP, however, has various significant drawbacks, most no-

tably lack of performance guarantee for partial Fourier matri-

ces [21]. Regularized Orthogonal Matching Pursuit (ROMP),

an extension of OMP, was then introduced by Needell et

al. as a way to overcome problems with OMP [21]. The

main difference in ROMP as compared to OMP is that in

each iterative step, a set of indices (locations of vector X

with non-negligible components) are recovered at the same

time instead of only one at a time [21]. Other variations of

this work (some under different names) have also appeared

[21]- [32]. In [33], we proposed Interpolated ROMP (I-

ROMP), an extension of ROMP [21] with a considerably

better performance for certain applications. Both OMP and

ROMP do not consider the progression of the reconstructed

signal in the primal domain and only process the signal in the

sparse domain. We showed in [33] that this can result in a

reconstructed signal with undesirable properties in the primal

domain. In order to address this, we proposed I-ROMP, which

combines upsampling the measurement signal in the primal

domain and successive interference cancellation approaches

(see [33] for more details). Algorithm 1 shows a summary of

Algorithm 1 A Summary of Matching Pursuit Approaches

(OMP [31], ROMP [21] and I-ROMP [33])

Input: measured vector y ∈ R
K , target sparsity S, and size

of full signal N

Output: set of indices Iset ⊂ {1, ..., N} of non-zero coeffi-

cients in X with |Iset| ≤ S, and X̂ , the estimated X .

Initialize: Iset = ∅ and ynew = y

1: while stop criteria not met do

2: ynew
f = F (ynew)

3: Xproj = ΨH
f ynew

f

4: choose a subset of indices from Xproj based on a

utilized criteria for deciding the significant coefficients

5: update index set Iset

6: X̂ = argmin
X : supp (X)=Iset

||y − ΨX ||2

7: ynew = y − ΨX̂

8: end while

the steps involved in Matching Pursuit approaches. Function

F in the second step is an upsampling function (such as

an interpolator) for I-ROMP and is F (ynew) = ynew for

OMP/ROMP. Consequently, Ψf of the third step is the full

N × N Ψ matrix for I-ROMP and is the original K × N

matrix for OMP/ROMP (as discussed previously).

While ℓ1 relaxation of the previous part can solve the com-

pressed sampling problem with performance guarantees, the

computational complexity of the iterative greedy approaches

of this part can be considerably less [31]. In the next section,

we use both approaches when reconstructing the signal.

IV. COMPRESSIVE COOPERATIVE MAPPING IN MOBILE

NETWORKS

In this section we show how the new theory of compressive

sampling and reconstruction can result in the efficient mapping

of a spatial function in mobile cooperative networks. In

particular, we discuss two cases, cooperative aerial mapping

and mapping of the obstacles.

A. Compressive and Cooperative Aerial Mapping

Consider a case where a group of Unmanned Air Vehicles

(UAVs) are tasked with building an aerial map of a region.

Then x of Eq. 1 represents the aerial map of interest in the

spatial domain. The vehicles make measurements in the spatial

domain, i.e. vector y consists of the few measurements made

by the vehicles. Then Fourier transformation, for instance, can

be used for sparse representation and reconstruction.

Fig. 2 (left) shows an aerial map of a portion of the Sandia

Mountains in Albuquerque, NM. Fig. 2 (right) shows our

reconstruction when only 30% of the area is sensed. We used

I-ROMP of Algorithm 1 for reconstruction and exploited the

sparse representation of the signal in the Fourier domain. The

normalized MSE of this reconstruction is 7.5 × 10−8. It can

be seen that the reconstructed map is almost identical to the

real map. The result indicates the potentials of compressive

sampling framework for efficient and cooperative mapping in

mobile networks.
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Fig. 2. Demonstration of the reconstruction of a height map (as applicable to UAV applications) with only 30% measurements using compressed sensing. (left)
the original height map of a portion of Albuquerque Sandia Mountains data set (courtesy of U.S. Geological Survey). (right) reconstruction using I-ROMP
technique with only 30% random samples. The normalized MSE of the reconstruction is 7.5 × 10−8 . For clarity, refer to the original PDF for the color
version of this image.

B. Compressive Cooperative Mapping of Obstacles

In this section we show how a group of mobile nodes

can build a high-quality map of the obstacles with minimal

sensing and without directly sampling a high percentage of

the area. Accurate mapping of the obstacles is considerably

important for the robust operation of a mobile network. Yet the

high-volume of the information presented by the environment

makes it prohibitive to sense all the areas, making accurate

mapping considerably challenging. In this part, we show how

the nodes can cooperatively build a map of the obstacles based

on a considerably small set of observations. We furthermore

propose a non-invasive mapping strategy which is enabled by

the theory of compressive sampling. Since the non-invasive

case is more challenging and not addressed previously (to the

best of authors’ knowledge), this part will mainly focus on the

non-invasive case.

1) Compressive Non-Invasive Mapping of Obstacles – A

New Possibility for Non-Invasive Mapping:

In this part we show how the theory of compressive

sensing enables new non-invasive mapping possibilities. By

non-invasive mapping, we refer to a mapping technique that

allows the vehicles to map inside a building, for instance,

before entering it. In general, devising non-invasive map-

ping strategies can be considerably challenging. Motivated by

computed tomography approaches to medical imaging [34],

geology [35], and computer graphics [36], we show how

our proposed compressed mapping framework can result in a

new and efficient non-invasive sensing technique for mapping

indoor obstacles, based on wireless channel measurements.

Consider a case where a number of vehicles want to build

a map of the obstacles inside a building before entering it. A

non-invasive mapping allows the nodes to assess the situation

before entering the building and can be of particular interest

in several applications such as an emergency response. In this

part, we consider building a 2D map (our proposed approach

can be extended to 3D maps as well). Figure 3 (left) shows

a sample indoor 2D map where a number of vehicles want

to map the space before entering it. Let g(u, v) represent the

binary map of the obstacles at position (u, v) for u, v ∈ R.

We will have

g(u, v) =

{
1 if (u, v) is an obstacle

0 else
(10)

Consider communication from Transmitter 1 to Receiver 1,

as marked in Fig. 3 (left). A fundamental parameter that

characterizes the performance of a communication channel

is the received signal power, which is measured in every

receiver [37]. There are three time-scales associated with the

spatio-temporal changes of the channel quality and therefore

received signal strength [38], as indicated in Fig. 4. The

slowest dynamic is associated with the signal attenuation due

to the distance-dependent power fall-off (path loss). Then there

is a faster variation referred to as shadow fading (shadowing),

which is due to the impact of the blocking objects. This means

that each obstacle along the transmission path leaves its mark

on the received signal power by attenuating it to a certain

degree characterized by its properties. Finally, depending on

the receiver antenna angle, multiple replicas of the transmitted

signal can arrive at the receiver due to the reflection from

the surrounding objects, resulting in multipath fading, a faster

variation in the received signal power.

A communication from Transmitter 1 to Receiver 1 in

Fig. 3 (left), therefore, contains implicit information of the

obstacles along the communication path. Let P (θ, t) represent

the received signal power in the transmission along the ray

(line) that corresponds to θ and t, as shown in Fig. 3 (left).

We can then model lnP (θ, t) as follows [38]

lnP (θ, t) = lnPT
︸︷︷︸

transmitted power in dB

+ β − αlnd(θ, t)
︸ ︷︷ ︸

path loss (≤0)

+
∑

i

ri(θ, t)ni(θ, t)

︸ ︷︷ ︸

shadow fading effect due to blocking objects (≤0)

+ w(θ, t),
︸ ︷︷ ︸

multipath fading + noise

(11)

where PT is the transmitted power, d(θ, t) is the distance

between the transmitter and receiver across that ray, α and β

are constants, ri is the distance travelled across the ith object
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Transmitter 1

t

Receiver 1

P(θ,t)

Fig. 3. An indoor obstacle map with the obstacles marked in white and the illustration of compressed non-invasive mapping (left), Reconstruction of the map
using the proposed framework with only 4% measurements (middle), Reconstruction of the map using the proposed framework with only 11.7% measurements
(right) – only shadowing and path loss are considered.

along the (θ, t) ray and ni < 0 is the decay rate of the wireless

signal within the ith object. Furthermore, the summation of Eq.

11 is over the objects across the ray. Then we have

A(θ, t) , lnP (θ, t) − lnPT − (β − αlnd(θ, t)
︸ ︷︷ ︸

path loss

=
∑

i

ri(θ, t)ni(θ, t)

︸ ︷︷ ︸

shadow fading effect

+ w(θ, t).
︸ ︷︷ ︸

multipath fading + noise

(12)

Path loss and shadowing effects represent the signal degrada-

tion due to the distance travelled and obstacles respectively

and w(θ, t) represents the impact of multipath fading, sensing

noise and modeling errors. Then

A(θ, t) =

∫ ∫

line (θ,t)

f(u, v)dudv + w(θ, t). (13)

where

f(u, v) =

{
n(u, v) if g(u, v) = 1

0 else
(14)

with g(u, v) representing the binary map of the obstacles

(indicated by Eq. 10) and n(u, v) denoting the decay rate of

the signal inside the object at position (u, v). By changing t at

a specific θ, a projection is formed, i.e. a set of ray integrals,

as is shown in Fig. 3 (left).

Fourier Slice Theorem [34]: Consider the case where there

is no multipath fading and noise. The Fourier transformation

of A(θ, t) (with respect to t) is equal to the samples of the

Fourier transform of f(u, v) across angle θ.

The Fourier Slice Theorem allows us to measure the samples

of the Fourier transform of the map by measuring the received

signal strength and as a result A(θ, t) across rays. We can
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e
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n
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l 
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o
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e
r

distance

path loss

Shadow fading

multipath fading

Fig. 4. A multi-scale representation of the received signal power

then pose the problem in a compressive sampling framework.

By measuring the received signal power across the rays, the

vehicles can then compute samples of A(θ, t) and apply the

Fourier Slice Theorem to effectively sample the Fourier trans-

formation of the 2D map. In this case, x of Eq. 1 represents

the samples of the Fourier transform of the map (f(u, v))
acquired using the Fourier Slice Theorem. By utilizing the

sparse representation of the signal in the spatial domain (or

wavelet), the vehicles can solve for the map cooperatively,

based on minimal measurements, and more importantly in

a non-invasive manner. For instance, X can be the vector

representation of f(u, v). Since the changes in the map is

typically sparser than the map itself, a better approach is to

consider X to be the variations in the map. This approach

is referred to as Total Variation (TV) [13], which we will

use later in our simulation results. Wavelet transformation

can potentially result in even a sparser representation than

TV in some cases. By sampling in the Fourier domain and

reconstructing based on the sparsity in the spatial or wavelet
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Fig. 5. Normalized Mean Square Error for the reconstruction of the map of
Fig. 3 (left) as a function of the % of measurements taken – only shadowing
and path loss are considered.

domain, the resulting Ψ matrix of Eq. 3 will have good

isometry properties.

Fig. 3 (middle and right) shows our preliminary results in

a simplified setting (only shadow fading and path loss) for

non-invasive compressed mapping of the obstacles of the left

figure. For this result, no noise and multipath fading is con-

sidered. Furthermore, path loss model as well as the distance

between the transmitter and receiver is assumed known. Our

reconstruction is based on minimizing Total Variation, using

ℓ1 magic toolbox [39]. It can be seen that with only 11.7%

measurements (right figure), the map can be built almost

perfectly. Even with 4% measurements (middle figure), the

reconstruction is very close to the original. Fig. 5 shows

the normalized MSE of the reconstruction of the obstacle

map of Fig. 3 (left) as a function of the percentage of the

measurements taken. It can be seen that a cooperative network

can build a high-quality and non-invasive map of indoor

obstacles with a considerably small set of measurements.

While this is a preliminary result, it shows the potential of

compressive mapping for non-invasive mapping of obstacles.

1) Practical Challenges of Non-Invasive Mapping and Fur-

ther Extensions: In this part, we proposed a non-invasive

compressive and cooperative mapping framework for mapping

indoor obstacles. In practice, there can be several challenges

in implementing a non-invasive approach, which necessitates

further research and implementation in this area. The goal of

this part was to propose the foundations of this approach, show

that the compressive sampling framework enables the possibil-

ity of non-invasive mapping, and initiate further investigation

in this area.

The main challenge in implementing the proposed non-

invasive mapping approach is multipath fading, i.e. multiple

replicas of the transmitted signal will be received at the

receiver due to the reflection from the objects inside the

building. This will result in the information of the obstacles

that are not along the direct path from the transmitter to

the receiver to interfere with the desirable information. In

general, multipath fading can result in a non-invasive but

noisy reconstruction of the indoor obstacle map. However, in

several applications it may still be useful to have a rough

map before entering the building. The effect of multipath

fading can also be reduced by using directional antennas

as well as averaging the received signal over a very small

distance. It should be noted that the compressive sensing

framework enables the possibility of non-invasive mapping

in ways that was not feasible beforehand. By utilizing the

proposed compressive mapping framework, the map can be

built with a considerably small set of measurements. This

allows for more measurements to go towards averaging over

fading and noise. Such efficient fading mitigation approaches

would not have been possible without utilizing the compressive

sampling theory framework. In our previous work [40]–[44],

we have also developed other multipath fading mitigation

techniques in the context of mobile communications. Such

approaches can also be utilized to develop a framework where

the vehicles cooperatively learn the impact of all the obstacles

(not only the ones along the communication path) and remove

the effect of interference (caused by multipath) from their

received signals. It should also be noted that an estimate of the

position of the transmitting vehicle (or the distance between

the transmitter and receiver) as well as an approximation of

the path loss component (which can be acquired by averaging

the received signal) is also needed to implement the non-inv

asive approach. Once the vehicles map the obstacles from

outside, they can safely enter the building and improve the map

by using typical sensing devices and utilizing the proposed

compressive mapping framework of this paper.

C. Note on the Decentralized Nature of Compressive Mapping

It should be noted that the nature of our proposed compres-

sive mapping framework is reconstruction based on minimal

sensing. Therefore, it naturally lends itself to decentralized

approaches where every node can estimate the map based on

its own observations as well as the observations of whichever

node it can receive information from. This is particularly

important in mobile cooperative networks since they typically

lack a leader and the underlying graph of the network is not

necessarily fully connected.

V. CONCLUSIONS

In this paper, we considered a mobile cooperative network

that is tasked with building a map of the spatial variations of a

parameter in its environment. We developed the foundations of

compressive cooperative mapping, a new mapping framework

for mobile cooperative networks. By using the recent results in

the area of compressive sensing, we showed how the nodes can

exploit the sparse representation of the parameter of interest

in order to build a map with minimal sensing, and without

directly sensing a large percentage of the area. We showed

the application of our proposed framework to aerial mapping

as well as mapping of the obstacles. We also proposed a

new non-invasive mapping technique for cooperative mapping

of the obstacles. Our simulation results showed the superior

performance of the proposed framework.
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