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Abstract— This paper discusses how to design decentral-
ized dynamic quantizers for feedback control systems with
discrete-valued input constraints. First, we analytically derive
an optimal decentralized dynamic quantizer such that the
systems subject to discrete-valued input constraints optimally
approximate the behavior of those without such constraints.
Next, the effectiveness of such decentralized dynamic quantizers
is demonstrated by an experiment with a cart-seesaw system.

I. INTRODUCTION

In order to control dynamical systems including discrete-

valued devices such as discrete-level (on/off level) actu-

ators, D/A converters, and communication encoders, one

of the promising approaches is to adopt quantizers which

appropriately convert continuous-valued signals to discrete-

valued ones. Thus the design problem of quantizers has been

actively discussed, and various results have been reported

so far. For instance, the (coarsest) quantizers for networked

control have been derived in [1]–[6], and various quantizers

for control with discrete-level actuators have been proposed:

the locational optimization based quantizer [7], the receding

horizon quantizer [8], and the ∆Σ modulator [9].

The authors also have considered a quantizer design prob-

lem [10], [11]. There the following problem is considered:

when a plant P and a controller K are given in the system

in Fig. 1 (a), find a “dynamic” quantizer Q such that the

system in Fig. 1 (a) optimally approximates the ideal system

in Fig. 1 (b) in the sense of the input-output relation. To

this problem, we have derived a closed form solution and

clarified an optimal quantization structure. On the other hand,

unlike the system in Fig. 1 (a), it is often necessary to have a

decentralized structure in dynamic quantizers. For example,

when two quantizers have to be separately embedded in

systems i.e., quantization is necessary for both actuator and

sensor signals as shown in Fig. 1 (c), the quantizer should be

decentralized. Therefore, in practice, it is crucial to design

the dynamic quantizers of decentralized structure.

Motivated by the above, this paper addresses an optimiza-

tion problem of a class of decentralized dynamic quantizers

for feedback control systems with discrete-valued signal

constraints, i.e., for systems whose input/state signals take

values only on a fixed discrete set. More concretely, we

consider the decentralized version of our former problem

in [10]: when a linear plant P and a controller K are given

in Fig. 1 (c), find a decentralized dynamic quantizer Q such
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(a) Feedback system with a quantizer and a discrete-valued input plant.

(b) Feedback system with a continuous-valued input plant (ideal case).

(c) Feedback system with I/O quantizers.

Fig. 1. Three feedback systems.

that the system in Fig. 1 (c) optimally approximates the ideal

system in Fig. 1 (b) in the sense of the input-output relation.

Since this is the design problem of dynamic quantizers with

decentralized information structure, it is more challenging

than the previous problem.

To this problem, the following contributions are obtained.

First, we derive an optimal decentralized dynamic quan-

tizer in a closed form in terms of the plant/controller parame-

ters. Since the optimal control design subject to decentralized

structure is known to be difficult (or NP hard) [12], [13], this

result is not trivial at all. A key to obtain the closed form

solution is to exploit the special decentralized structures of

dynamic quantizers in order to divide the original problem

into several tractable sub-problems.

Second, we verify the effectiveness of the proposed quan-

tizer by an experiment with a cart-seesaw system. Note that

most of the existing studies on the quantizer design have

focused on theoretical aspects, and therefore few results

on experimental validation can be found. In particular, to

the best of our knowledge, the experimental results which

achieve satisfactory control performance in case of decentral-

ized dynamic quantizers have never reported so far. Hence,

this is a valuable contribution from the practical view point.

It should be remarked that, although the existing studies
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for discrete-valued input control [7]–[11] have not focused on

decentralized quantizers, some results on design of decentral-

ized quantizers for the networked control have been derived

(e.g., [5] and [6]). However, these results are different from

ours. In fact, when we regard the quantizer as a mapping

from the (continuous-valued) domain into the (discrete-

valued) range, the existing results [5], [6] have focused on the

design of the domain and/or range rather than the mapping.

While we are interested in choosing the (non-static) mapping

with the fixed range. Since we mainly aim at controlling the

plants with discrete-valued actuators, we have no flexibility

in choosing the range of quantizers for such plants.

Notation: Let R, R+, and N denote the real number field,

the set of positive real numbers, and the set of positive

integers, respectively. We use I , 0, and 1 to express the

identity matrix, the zero matrix, and the vector whose all

elements are one. For the matrix M := {Mij}, let abs(M)
be the matrix composed of the absolute values of the ele-

ments, i.e., abs(M) := {|Mij |}, and let M† be the pseudo-

inverse. We denote the nm × nm block diagonal matrix

whose diagonal elements are M1,M2, . . . ,Mm ∈ R
n×n by

diag(M1,M2, . . . ,Mm). For the vector x, sign(x) expresses

the vector obtained by elementwisely applying the signum

function to x. Finally, for the vector x, the matrix M , and

the sequence of vectors X := {x1, x2, . . .}, the symbols ‖x‖,

‖M‖, and ‖X‖ express their ∞-norms.

II. PROBLEM FORMULATION

Consider the feedback system ΣQ shown in Fig. 2, which

is composed of the discrete-time linear system G and the

quantizer Q. The system G is given by

G :





x(k + 1) = Ax(k) + B1r(k) + B2v(k),

z(k) = C1x(k) + D1r(k),

u(k) = C2x(k) + D2r(k)

(1)

where x ∈ R
n is the state, r ∈ R

p and v ∈ R
m are the

inputs, z ∈ R
l and u ∈ R

m are the outputs, k ∈ {0} ∪ N

is the time, and A ∈ R
n×n, B1 ∈ R

n×p, B2 ∈ R
n×m,

C1 ∈ R
l×n, C2 ∈ R

m×n, D1 ∈ R
l×p, D2 ∈ R

m×p are

constant matrices. The signals r and z correspond to the

external input and the controlled output, respectively.

On the other hand, Q is the decentralized dynamic quan-

tizer composed of s sub-quantizers

Qi :

{
ξi(k + 1) = Aiξi(k) + B1iui(k) + B2ivi(k),

vi(k) = q[ Ciξi(k) + ui(k) ],
(2)

where i ∈ {1, 2, . . . , s}, ξi ∈ R
Ni is the state, ui ∈ R

mi

is the input, vi ∈ V
mi is the output, V

mi ⊂ R
mi is the

discrete set given by V
mi := {0,±d,±2d, . . .}mi for the

quantization interval d ∈ R+, and Ai ∈ R
Ni×Ni , B1i, B2i ∈

R
Ni×mi , Ci ∈ R

mi×Ni are constant matrices. The function

q : R
mi → V

mi is the nearest-neighbor static quantizer

Fig. 2. General feedback system with multiple quantizers.

Fig. 3. Ideal system with continuous-valued v.

toward −∞ 1. For the static quantizer q, the relation

abs(q[µ] − µ) = abs(µ − q[µ]) ≤
d

2
1 (∀µ ∈ R

mi) (3)

holds, which will be used in this paper. The initial state is

given by ξi(0) = 0 to guarantee that vi(k) = 0 for ui(k) = 0
(k = 0, 1, . . .), i.e., Qi is drift-free. Each sub-quantizer Qi is

the same as those considered in [10], [11] as a class of the

simplest and most fundamental dynamic quantizers.

Using different fonts, we distinguish the symbols

(N, A, B, C) used for Q from (n,A,B,C) for G. Note

here that the signal r includes the reference, the distur-

bance, and the noise, and the signals v and u of G are

respectively composed of vi ∈ R
mi (i = 1, 2, . . . , s) and

ui ∈ R
mi (i = 1, 2, . . . , s), i.e., v = [v⊤1 v⊤2 · · · v⊤

s ]⊤ and

u = [u⊤
1 u⊤

2 · · · u⊤
s ]⊤.

It should be noticed that various types of feedback sys-

tems, which include sub-quantizers in the form of (2), can

be expressed as the system ΣQ in Fig. 2. For instance, the

I/O quantized system in Fig. 1 (c) corresponds to ΣQ when

the signals r, u, and v are defined as r := [r⊤R r⊤N ]⊤,

u := [u⊤
1 u⊤

2 ]⊤, and v := [v⊤
1 v⊤2 ]⊤, respectively. So

the following discussion holds not only for the system in

Fig. 1 (c) but also for other types of quantized systems.

Before formulating the problem discussed here, some

symbols are introduced. For i = 1, 2, . . . , s, let B2i ∈
R

n×mi denote the i-th block column of B2, i.e., B2 =
[B21 B22 · · · B2s]. Moreover, we denote the smallest

1Note that the value of q[µ] is uniquely determined for every µ ∈ R
mi ,

since q[µ] is given as the smallest vector (in the sense of the sum of the all
elements) of the solutions to minvi∈V

mi (vi −µ)⊤(vi −µ). For example,

q[µ] = [0 0]⊤ for µ := [d/2 d/2]⊤ and q[µ] = [0 −d]⊤ for µ :=
[d/2 −d/2]⊤.
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integer k ∈ {0} ∪ N satisfying C1(A + B2C2)
kB2i 6= 0

by τi. Then, in this paper, we make the following two

assumptions for the system G.

(A1) The matrix D2 is full row rank.

(A2) The matrix C1(A+B2C2)
τiB2i is full row rank for

each i ∈ {1, 2, . . . , s}.

Under (A1) and (A2), the pseudo-inverse matrices of D2

and Fi := C1(A + B2C2)
τiB2i are respectively expressed

as D†
2 = D⊤

2 (D2D
⊤
2 )−1 and F †

i = F⊤
i (FiF

⊤
i )−1. Note that

(A2) is essential in this paper, since an optimal dynamic

quantizer will be derived with the pseudo-inverse matrices

F †
i (i = 1, 2, . . . , s). The case that (A1) does not hold will

be mentioned in Section III-B.

Now we define the cost function. For the system ΣQ

with the initial state x(0) = x0 ∈ R
n and the external

input sequence R := {r0, r1, . . .} ∈ ℓp
∞, let ZQ(x0, R)

be the controlled output sequence for k = 1, 2, . . ., and

zQ(k, x0, R) be the output at the k-th time. In addition, let

Σ denote the ideal system in Fig. 3 (i.e., the system without

quantizers), for which the output sequence and the output at

k-th time are similarly defined by Z(x0, R) and z(k, x0, R),
respectively. Then for given x0 ∈ R

n and R ∈ ℓp
∞, the output

difference is expressed as

‖ZQ(x0, R) − Z(x0, R)‖

:= sup
k∈N

‖zQ(k, x0, R) − z(k, x0, R)‖, (4)

and we employ the following performance index.

E(Q) := sup
(x0,R)∈Rn×ℓ

p
∞

‖ZQ(x0, R) − Z(x0, R)‖. (5)

In this paper, the following problem is considered.

Problem 1: For the system ΣQ, assume (A1) and (A2).

Then, find a decentralized dynamic quantizer Q :=
(Q1, Q2, . . . , Qs) (i.e., find dimensions Ni and matrices Ai,

B1i, B2i, Ci (i = 1, 2, . . . , s) ) minimizing E(Q), and

determine the minimum value of E(Q). ¥

The performance index E(Q) represents the difference be-

tween Σ and ΣQ in terms of the input-output (r-z) relation.

For a good decentralized quantizer Q in the sense of E(Q),
the output behavior of the system Σ is almost preserved in

ΣQ. For example, by using a quantizer Q := (Q1, Q2) with

small enough E(Q) for the system in Fig. 1 (c), the output

response of the system is similar to that of the ideal system

in Fig. 1 (b) when the same external inputs (rR and rN )

are applied to both systems. This implies that the optimal

quantizer Q allows us to use a controller K designed for

the ideal plant in Fig. 1 (b). Thus we can use the existing

controller design methods for the system in Fig. 1 (c).

III. OPTIMAL DECENTRALIZED DYNAMIC QUANTIZER

This section shows how to obtain a closed-form solution

to Problem 1.

A. An optimal decentralized quantizer

The following lemma provided in [10] is the fundamental.

Lemma 1: For the system ΣQ, assume (A1) and suppose

that d ∈ R+ is given. If

C̄ĀkB̄1 = 0 (k = 0, 1, . . .) (6)

holds, then

E(Q) =

∥∥∥∥∥

∞∑

k=0

abs(C̄ĀkB̄2)

∥∥∥∥∥
d

2
; (7)

otherwise

E(Q) = ∞, (8)

where

Ā :=

[
Ã B2C

0 A+B2C

]
, B̄1 :=

[
0

B1+B2

]
, B̄2 :=

[
B2

B2

]
,

C̄ := [ C1 0 ], Ã := A + B2C2,

A :=




A1 0 · · · 0

0 A2
. . .

...
...

. . .
. . . 0

0 · · · 0 As


 , B1 :=




B11 0 · · · 0

0 B12
. . .

...
...

. . .
. . . 0

0 · · · 0 B1s


 ,

B2 :=




B21 0 · · · 0

0 B22
. . .

...
...

. . .
. . . 0

0 · · · 0 B2s


 , C :=




C1 0 · · · 0

0 C2
. . .

...
...

. . .
. . . 0

0 · · · 0 Cs


 .

Lemma 1 provides a closed form expression of the perfor-

mance index E(Q). The result is explained as follows. We

introduce the new variable w ∈ [−d/2 d/2]m:

w(k) := q[Cξ(k) + u(k)] − (Cξ(k) + u(k)) (9)

with ξ := [ ξ⊤1 ξ⊤2 · · · ξ⊤s ]⊤ (note that w corresponds to the

quantization error generated by the static quantizer q in Q).

Using this variable, the error system for ΣQ and Σ, which is

shown in Fig. 4, can be represented as a linear system whose

output is zQ − z and inputs are r and w [10]. Then, C̄ĀkB̄1

in (6) corresponds to the impulse response matrices from r
to zQ − z, and C̄ĀkB̄2 in (7) is those from w to zQ − z. By

considering these facts, it follows that

zQ(T, x0, R)−z(T, x0, R) =
T−1∑

k=0

C̄Ā(T−1)−kB̄2w(k), (10)

subject to (6). This leads to (7). On the other hand, if (6)

does not hold, then zQ − z depends on r, which gives (8).

Now let us derive a solution to Problem 1 by using

Lemma 1. For this purpose, we divide the original design

problem into several easier problems as follows. If (A1) and

(6) hold for ΣQ, the value of E(Q) is given by the right

hand side of (7), where the matrices Ā, B̄2, and C̄ in (7)
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Fig. 4. Error system for ΣQ and Σ.

can be represented by

Ā =




Ã B21C1 B22C2 · · · B2sCs

0 A1+B21C1 0 · · · 0

0 0 A2+B22C2
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 As+B2sCs




,

B̄2 =




B21 B22 · · · B2s

B21 0 · · · 0

0 B22
. . .

...
...

. . .
. . . 0

0 · · · 0 B2s




, C̄ = [ C1 0 0 · · · 0 ].

Then, by letting B̄2i ∈ R
(n+Ni)×mi be the i-th block column

of B̄2, i.e., B̄2 = [B̄21 B̄22 · · · B̄2s], we obtain

E(Q) =

∥∥∥∥∥

∞∑

k=0

abs
(
C̄Āk[ B̄21 B̄22 · · · B̄2s ]

)
∥∥∥∥∥

d

2

=

∥∥∥∥∥

[ ∞∑

k=0

abs
(
C̄ĀkB̄21

) ∞∑

k=0

abs
(
C̄ĀkB̄22

)

· · ·

∞∑

k=0

abs
(
C̄ĀkB̄2s

) ]∥∥∥∥∥
d

2
.

The matrix C̄ĀkB̄2i in the norm can be expressed as

C̄ĀkB̄2i = [ C1 0 ]

[
Ã B2iCi

0 Ai+B2iCi

]k[
B2i

B2i

]
, (11)

where the relation C̄ĀkB̄2i = 0 holds for k ≤ τi − 1, and

C̄ĀkB̄2i = C1Ã
τiB2i for k = τi. Therefore it follows that

E(Q) =

∥∥∥∥
[

abs(C1Ã
τ1B21) abs(C1Ã

τ2B22)

· · · abs(C1Ã
τsB̄2s)

]

+

[ ∞∑

k=τ1+1

abs
(
C̄ĀkB̄21

) ∞∑

k=τ2+1

abs
(
C̄ĀkB̄22

)

· · ·
∞∑

k=τs+1

abs
(
C̄ĀkB̄2s

) ]∥∥∥∥∥
d

2
.

(12)

In the norm of the equation, the first term depends only on G
and the second term depends on both G and Q. In addition,

each element of the matrices abs(C̄ĀkB̄2i) (i = 1, 2, . . . , s)
is nonnegative for every k ∈ {0}∪N. Thus, if there exists a

decentralized quantizer Q satisfying (6) and

C̄ĀkB̄2i = 0 (k=τi+1, τi+2, . . . , i=1, 2, . . . , s), (13)

such a quantizer Q is a solution to Problem 1. Thus, we

obtain the following result.

Theorem 1: For the system ΣQ, assume (A1) and (A2).

Then an optimal decentralized dynamic quantizer is given by

Q⋆ = (Q⋆
1, Q

⋆
2, . . . , Q

⋆
s) with

Q⋆
i :

{
ξi(k + 1) = Ãξi(k) − B2iui(k) + B2ivi(k)

vi(k)= q[−(C1Ã
τiB2i)

†C1Ã
τi+1ξi(k) + ui(k) ]

(14)

where Ni := n (i = 1, 2, . . . , s), and the minimum value of

the performance is given by

E(Q⋆)=
∥∥∥abs

(
C1[Ã

τ1B21 Ãτ2B22 · · · ÃτsB2s]
)∥∥∥

d

2
.

(15)

Proof: As mentioned above, a decentralized quan-

tizer Q satisfying (6) and (13) is optimal under (A1).

In fact, (6) and (13) always hold for Q⋆ in Theorem 1.

This is verified by using the relation (C1Ã
τiB2i)

† =
(C1Ã

τiB2i)
⊤((C1Ã

τiB2i)(C1Ã
τiB2i)

⊤)−1 under (A2).

Theorem 1 gives an optimal decentralized dynamic quan-

tizer and the minimum value of E(Q), and then the latter

means the performance limitation of the decentralized quan-

tizer composed of s sub-quantizers in the form of (2). The

key points of obtaining the analytical solution to Problem 1

are that the parameters of i-th sub-quantizer Qi are included

only in the matrices C̄ĀkB̄2i (k = τi+1, τi+2, . . .) in (12)

(see (11)), and that the relation (13) holds for i-th optimal

quantizer Q⋆
i in (14).

B. Extensions to more general cases

This section extends Theorem 1 to more general cases.

1) Case that (A1) does not hold: If (A1) does not hold, the

performance index E(Q) cannot be expressed as (7) and (8)

but E(Q) is estimated as

E(Q) ≤

∥∥∥∥∥

∞∑

k=0

abs(C̄ĀkB̄2)

∥∥∥∥∥
d

2
(16)

and (8). Therefore we cannot directly derive an optimal

quantizer in a similar way to Section III-A.

However, we can prove that Q⋆ given in Theorem 1 is

optimal under (A2) and the following condition (the proof

is omitted in order to save space).

(A1’) The matrix [C2 D2] is full row rank, and the set

I is empty or the matrix D̂2 is full row rank.

The set I is defined by I := {i ∈ {1, 2, . . . , s} : τi 6=
τmax} for τmax := maxi∈{1,2,...,s} τi. In addition, let D2i ∈
R

mi×p (i = 1, 2, . . . , s) denote the i-th block row of D2 ∈
R

m×p, i.e., D2 = [D⊤
21 D⊤

22 · · · D⊤
2s]

⊤. Then, the matrix

D̂2 is composed of the matrices D2i (i ∈ I)2 if I is not

empty.

On the other hand, if (A1’) is not satisfied, the dynamic

quantizer Q⋆ in Theorem 1 is not always optimal, while the

quantizer minimizes the upper bound of E(Q), i.e., the right

2For example, when I := {1, 2, . . . , s − 1}, D̂2 is defined as D̂2 :=
[D⊤

21 D⊤
22 · · · D⊤

2(s−1)
]⊤.
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hand side of (16). In this sense, Q⋆ is a practical quantizer

in such a case.

2) Case that the quantization intervals are different

in each sub-quantizers: Even if the quantization

intervals of sub-quantizers Q1, Q2, . . . , Qs are

different each other as d1, d2, . . . , ds ∈ R+, similar

results to Lemma 1 can be obtained by replacing

the matrix B̄2 with the scaled matrix B̄♯
2 :=

B̄2 diag(Im1
, (d2/d1)Im2

, (d3/d1)Im3
, . . . , (ds/d1)Ims

).
Note that Imi

is the mi × mi identity matrix.

Therefore, an optimal decentralized quantizer is given

by Q⋆ = (Q⋆
1, Q

⋆
2, . . . , Q

⋆
s) in Theorem 1, where the static

quantizer q in (14) is replaced by qi with the interval di. In

addition the minimum performance is given by

E(Q⋆) =
∥∥∥abs

(
C1[Ã

τ1B21 Ãτ2B22 · · · ÃτsB2s]
)

· diag

(
Im1

,
d2

d1
Im2

,
d3

d1
Im3

, . . . ,
ds

d1
Ims

)∥∥∥∥
d1

2
.

(17)

This will be used in Section IV.

IV. APPLICATION TO A CART-SEESAW SYSTEM

We evaluate the effectiveness of the proposed decentral-

ized quantizer by an experiment using a cart-seesaw system.

A. Description of experimental setup

We consider the cart-seesaw system shown in Fig. 5. The

system is composed of the cart and the seesaw, and it is

0.8(L)×0.3(W)×0.3(H) meters long. The mass of the cart

is 0.57 [kg] and that of the seesaw is 2.29 [kg]. The cart

moves along the seesaw rail by applying a voltage onto the

DC motor (0.023 [Nm/A]), and the seesaw rotates only in

the vertical plane. The position of the cart and the angle of

the seesaw are measured by the potentiometers. The com-

puter (using MATLAB Real-time Workshop and Simulink)

is connected to the cart-seesaw system. Then the feedback

system in Fig. 1 (c) is constructed, where a controller K
and a decentralized dynamic quantizer Q := (Q1, Q2) are

implemented in the computer. The control objective is to

achieve the desired seesaw angle by the coarse discrete-

valued control input on {−8, 0, +8} [V] and the feedback

signals (i.e., the signals for calculating the control input) on

{0,±0.02,±0.04, . . . ,±0.06}.

The continuous-time model of the cart-seesaw system is

given by




ẋP (t)=




0 1.00 0 0
−1.92 −4.15 5.38 0

0 0 0 1.00
25.63 1.27 9.91 0


xP (t)+




0
0.51
0

−0.15


v1(t),

z(t) = [ 0.5 0.45 1.0 1.0 ]xP (t),

y(t) =

[
1 0 0 0
0 0 1 0

]
xP (t)

(18)

for the state variable xP := [ α α̇ θ θ̇ ]⊤ ∈ R
4, where α

is the position of the cart, θ is the angle of seesaw, and v1

is the voltage applied to the motor as a control input.

(a) Overview of cart-seesaw system

(b) Diagram of control system

Fig. 5. Experimental device of cart-seesaw system

The controlled output z is chosen so as to reflect the

relative importance of θ and θ̇ compared to α and α̇ while

satisfying (A2). The measured output y is of the position α
and the angle θ.

Then P is the discrete-time model obtained from (18) and

the sampling period h := 0.01 [s], and K is the observer

based integral servo controller:





AK :=




0.769 0.007 −0.008 0.001 0
−2.371 0.741 −0.664 −0.296 0
−0.017 0 0.737 0.009 0
−0.079 0.074 −1.959 1.079 0

0 0 0 0 0.99


,

[B1K B2K ] :=




0 0.222 0.003
0 0.764 −0.451
0 0.021 0.264
0 0.821 2.416

0.01 0 −0.01


,

CK := [−330.6 −44.1 −244.8 −62.2 57.59 ],

[D1K D2K ] :=
[

0.01 0 0
]
,

which achieves the control objective for the ideal system in

Fig. 1 (b). For G defined by the above P and K, (A1) and

(A2) are satisfied, and so Q⋆ = (Q⋆
1, Q

⋆
2) in Theorem 1 can

be used. Here, by considering that the inputs of P and K
are restricted to taking values on the aforementioned discrete

sets, the quantization intervals d1 of Q1 and d2 of Q2 are

respectively defined as d1 := 8 and d2 := 0.02. Note that as

mentioned in Section III-B. 2), even if d1 6= d2, we can use

Q⋆ in Theorem 1 by replacing q in Qi with qi.
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Fig. 6. Experimental result of the system in Fig. 1 (c) with Qi := Q⋆
i

(thick lines), the ideal system in Fig. 1 (b) (thin line) and the system in
Fig. 1 (c) with the static quantizer Qi := qi (dotted line).

B. Experimental result

Fig. 6 shows by thick lines the experimental result where

the initial state of P and K are given by xP (0) :=
[0 0 −0.013 0]⊤ and xK(0) := [0 0 0 0 0]⊤, and we

assume that rR(k) ≡ 0. Also in this figure, the experimental

result of the ideal system in Fig. 1 (b) is depicted by the

thin lines. In spite of the very coarse input signals of P
and K as shown in the first, second, and third figures, the

position α and the angle θ of the system in Fig. 1 (c) are

close to those of the ideal system in Fig. 1 (b). Moreover, for

comparison, the result of the static quantizer case (Qi := qi)

is shown in the forth and fifth figures by the dotted lines. The

response of the static quantizer case is worse. This means that

Q⋆ provides a satisfactory control performance under such

severe discrete-valued signal constraints.

V. CONCLUSION

This paper has discussed an optimization problem of

a class of decentralized dynamic quantizers in feedback

control. For the problem, we have derived an optimal

quantizer in an analytical way. The result is based on the

formulation with the LFT (linear fraction transformation)

representation of a linear system and a decentralized dynamic

quantizer, and thus our framework will be a fundamental tool

in decentralized quantizer design for various systems with

discrete-valued input. Finally, the validity of the proposed

optimal decentralized quantizer has been demonstrated by

an experiment with a cart-seesaw system.
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