
 

Abstract—Previous efforts to control cellular differentiation 

have been largely experimental.  Although some mathematical 

models for this process exist, rarely has a quantitative 

approach been employed to design experiments that 

predictably direct the cell fate.  As an initial step towards this 

aim, a control strategy for sustaining a desired constant level of 

differentiated human promyelocytic leukemia (HL60) cells is 

proposed.  Nonlinear model predictive control is applied using 

a model of HL60 cell differentiation which reflects the 

dominant observable cell states along the known 

granulocyte/monocyte differentiation pathway.  After 

implementing changes identified by a preliminary experimental 

trial, the experimental realization of the controller successfully 

achieved the target differentiation level and demonstrated the 

need for a quantitative approach to experiment design.     

I. INTRODUCTION 

ontrolling cellular processes involves unique challenges 

not encountered in the control of traditionally engineered 

systems.  Real-time continuous feedback is generally not 

available and realizable control actions are limited.  

Mathematical models of the cellular processes are uncertain 

abstractions of complex biochemical and gene regulatory 

networks.   As a result, there have been minimal efforts to 

apply control theory at the cellular level.  Recent work in 

this area has included circadian phase entrainment [1], 

bacterial chemotaxis [2], calcium oscillations [2], and 

cellular differentiation [3], with none of the proposed control 

strategies experimentally evaluated.  The application of 

control theory to these types of problems will help 

quantitatively design experiments to direct cellular processes 

and minimize expensive and exhaustive experimental 

efforts.  There is no doubt that developing a quantitative 

method for predictably controlling stem cell differentiation 

into specific lineages would be a significant contribution to 

stem cell-based technologies, such as tissue engineering [4].   

In this work, a nonlinear model predictive control (MPC) 

strategy is used to control the differentiation of human 

promyelocytic leukemia (HL60) cells into mature 

granulocytes and monocytes.  MPC is employed as it is 

known to be robust to model uncertainties, measurement 

noise, and output disturbances [5], and it naturally 

accommodates the discrete-time feedback necessary for the 
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slow-moving dynamics of a differentiating cell population.  

Control is realized through periodic additions, or boluses, of 

the differentiation-inducing chemical.  The sequence of 

boluses is found by the optimal selection of the controller 

parameter such that a desired level of granulocytes is 

sustained.   

The supporting mathematical model for this work is 

developed in Section III based upon known HL60 cell 

differentiation behaviors briefly described in Section II.  The 

parameters for the model are identified from the results of a 

set of preliminary experiments as described in Section IV.  

Section V presents the nonlinear model predictive controller 

design approach with the experimental control strategy 

implementation described in Section VI.  An initial 

experimental trial evaluated the first proposed experimental 

protocol as described in Section VII and resulted in 

modifications to the model and process.  The final 

experimental results are presented in Section VIII, and 

conclusions and future work are described in Section IX.     

II. BACKGROUND INFORMATION 

The human promyelocytic leukemia HL60 cell line was 

established from a human patient in 1977 and is commonly 

used for studying cell differentiation and leukemia 

treatment.  HL60 cells can be induced to differentiate into 

granulocytes, monocytes, macrophage-like cells, and 

eosinophils [6].  While HL60 cells will naturally 

differentiate into monocytes and granulocytes in very small 

numbers, full-scale differentiation must be induced using 

chemical agents.  Of interest herein, exposing cells to 

dimethyl sulfoxide (DMSO) initiates differentiation into 

granulocytes [7].  The dynamics of HL60 cell differentiation 

are largely dependent on the concentration of DMSO present 

during the period of incubation.   

III. MODEL DEVELOPMENT 

A system of nonlinear ordinary differential equations 

describes how the population of cells progresses through 

discrete maturation stages over time.   A graphical 

representation of the system is shown in Fig. 1.  The 

maturation stages represent benchmarks which are 

experimentally distinguishable using flow cytometry.   

All cells begin in the first stage as undifferentiated HL60 

cells.   The first indication of differentiation is the expression 

of the cell-surface-localized cluster of differentiation (CD) 

CD11b.  A maturing granulocyte will then express the 

marker CD16, and a maturing monocyte will express the 
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marker CD14 [9].   

A constant birth rate, kb, is present in the first state as only 

undifferentiated cells can proliferate.  Cells transition into 

the second state according to a concentration- and duration-

dependent transition rate, Γ(c,τ).  The number of cells 

transitioning depends on the concentration of each previous 

DMSO bolus, ci, and the time since the bolus administration, 

τi.  It is assumed that the concentration of DMSO affects 

only the initiation of differentiation, so the transition rates 

into the third and fourth maturation states are constant.  Cells 

die according to a constant, state-independent death rate, kd.  

The ODE model is constructed from the dynamics of Fig. 

1 as: 
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where xi represents the number of cells in the i
th

 maturation 

state.  The transition rate, Γ(c,τ), describes the cells 

beginning to differentiate: 
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where  
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describes the maximum transition rate as a linear function of 

differentiation-inducing agent concentration and 
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describes the likelihood of transitioning after the j
th

 bolus 

administration as a Gaussian distribution function of the 

duration since that bolus, τj.  The Gaussian distribution with 

mean, µ, and standard deviation, σ, represents the period of 

time for which the undifferentiated cells are responsive to 

the bolus.  At any given time, the effects of each Gaussian 

distribution (resulting from each administered bolus) are 

additive. 

The concentration vector, c, stores the concentration of 

each administered bolus, and the duration vector, τ, tracks 

how much time has elapsed since each bolus was given.  The 

j
th

 bolus, corresponding to concentration cj, is administered 

at
j0τ .  These duration dynamics are modeled as Heaviside 

functions: 

( )
j

tj 01 ττ −= +
ɺ . 

Most cells begin as undifferentiated HL60 cells, so the 

initial condition is assumed to be: 

( ) [ ]TN 00000 0=x , 

where N0 is the initial number of cells.  The duration vector, 

τ, is initialized to zero. 

IV. EXPERIMENTAL METHODS FOR MODEL PARAMETER 

IDENTIFICATION 

A. Cell Culturing 

HL60 cells were grown in suspension at 37ºC and 5% 

CO2
 
in 20mL of an 80/20 mixture of RPMI-1640 (ATCC) 

and fetal bovine serum (Harlan), supplemented with 1% P/S.  

Balanced growth conditions were maintained by passing the 

cells to a concentration of 10
5
 – 10

6
 cells/mL every two 

days.  One day before an experiment, cells were passed 

down to a concentration of 6x10
5
 cells/mL.  Cells were not 

passed during the experiment. 

B. Staining Procedure 

Cells were induced to differentiate using five 

concentrations (v/v) of DMSO: 1.2%, 1.0%, 0.8%, 0.6%, 

and 0.4%.  One sample was taken from each population 

every day for seven days.  For each sample, a 1mL aliquot 

was aspirated and washed in 1mL stain buffer (Pharmingen).  

The cell pellet was exposed to 10µL of each antibody (BD 

Bioscience) for 20 minutes in a covered ice bucket.  PE, PE-

Cy5, and FITC conjugated fluorescent antibodies were used 

to label CD11b, CD16, and CD14, respectively.  Cells were 

washed twice in 1mL stain buffer. 

In preparation for flow cytometry, cells were resuspended 

in 100µL Cytofix/Cytoperm (BD Bioscience), a 4% 

paraformaldehyde fixation buffer, for 30 minutes in a 

covered ice bucket.  Cells were washed and resuspended in 

1mL stain buffer. 

C. Flow Cytometry Analysis 

Cytometry analysis was performed within one week of 

sample collection.  Samples were analyzed with a BD-Elite 

flow cytometer with 20,000 cells analyzed per sample.  

Emissions were measured at 530, 575, and 683nm.  The 

percentage of cells expressing CD11b, CD16, and CD14 

were found by gating the flow cytometry data in WinMDI 

2.8.  

D. Model Parameter Identification 

A model parameter set was identified using Matlab’s 

genetic algorithm to fit (1) to the experimental data.  To 

ensure the simulated model dynamics captured the response 

to different DMSO concentrations, the model was fit to 

experimental data taken at five different DMSO 

kd

x1:  Undifferentiated 

HL60 Cells

)(Γ ττττ,c

x3: CD16 

Expression

x4: CD14 

Expression

x2: CD11b 

Expression

x5: Dead Cells

kb

kd

kd
kd

k3

k4

Fig. 1.  States of the HL60 differentiation model.  Cells begin to 

differentiate according to a concentration- and duration-dependent 

transition rate, Γ(c,τ).  Because only undifferentiated HL60 cells can 

proliferate, a constant birth rate, kb, is associated with the first state.  Cells 

can die in any phase according to a constant, phase-independent death 

rate, kd.   
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concentrations.  Fig. 2 shows an example of the model fit to 

experimental data taken at 0.4% DMSO. 

V. MODEL PREDICTIVE CONTROL PROBLEM FORMULATION 

The objective of this study was to determine a sequence of 

DMSO boluses to reach and sustain a cell population 

containing a fixed percentage of mature granulocytes over a 

three-week period.  Nonlinear MPC uses the mathematical 

model of the underlying process to predict the future 

behavior of the system over a finite prediction horizon.  The 

controller calculates an appropriate input sequence by 

solving a constrained optimization problem.  In this case, the 

optimization problem minimized the deviation of the system 

trajectory from the reference trajectory, as well as the 

magnitude of the control input: 
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where ( )kiky +ˆ  is the predicted output trajectory, s is the 

target percentage of granulocytes, and ( )⋅u  is the control 

input, DMSO dose.  Because the controlled output was the 

percent of total cells that are mature granulocytes (state x3), 

the predicted output trajectory was: 
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where ( )iktx +
ˆ  represents the model-predicted state vector at 

each sampling time.  The parameters used in the 

optimization are shown in Table I.  

Matlab’s constrained optimization solver, fmincon, was 

used to minimize the objective function subject to the 

following control input constraint: 

( ) [ ]2.1,0∈+ kiku . 

The rationale for the higher limit comes from experimental 

results which indicate that a DMSO concentration higher 

than ~1.2% inhibits differentiation by preventing cell 

replication [8].   

VI. EXPERIMENTAL CONTROL STRATEGY IMPLEMENTATION 

To experimentally implement the MPC-derived control 

strategies, feedback data came from a population of 

differentiating HL60 cells, which served as the plant.  

Samples of the differentiating cell population were analyzed 

using flow cytometry to find the percent of the population in 

each maturation stage.  Cells were stained in the same 

manner outlined in Section IV, except samples were 

immediately analyzed using flow cytometry rather than 

being fixed for later analysis.  At each sampling time, the 

experimental results served as the initial conditions from 

which the model of (1) predicted the expected results for the 

prediction horizon (Hp).  The control parameters were 

determined by solving the optimization problem of (2) to 

find the control sequence (of length Hu).  The first element 

of the control sequence was implemented as a bolus of 

DMSO in the flask of differentiating HL60 cells.  At the 

next sampling time, another sample of the cell population 

was taken and analyzed via flow cytometry to find the state 

of the plant.  While equally-spaced sampling times are 

usually used for an MPC experiment, an exception was 

made in this case as the flow cytometry facilities were 

unavailable on weekends.  For this reason, sampling times 

alternated between 4 days and 3 days. 

The long duration of the experiment necessitated changes 

to the original cell culturing procedure outlined in Section 

IV.  Undifferentiated HL60 cells continually proliferate and, 

by the end of a three-week experiment, cell growth would 

have halted due to a lack of nutrients.  Even with the 

addition of fresh media without the removal of any cells, the 

final cell population would be prohibitively large.  Hence, a 

portion of the volume (containing cells) in each flask was 

removed daily and replaced with fresh media to maintain a 

constant concentration of 6x10
5
 cells/mL.  This daily 

removal of cells was reflected in the model implementation 

used for the MPC by assuming a fixed fraction of the cell 

population in each maturation stage was removed.   

VII. INITIAL EXPERIMENTAL TRIAL SUGGESTS 

MODIFICATIONS 

The MPC-design process from Section V was 

experimentally implemented as outlined in Section VI.  The 

Fig. 2.  Model simulation (lines) fit to experimental data (symbols) for 

cells exposed to 0.4% DMSO.  The model also predicts future system 

behavior.    Model parameters: kb = 0.321/day, kd = 0.005/day, k3 = 

0.126/day, k4 = 0.010/day, km = 2.393, ki = 0.126, µ = 5.137 days, σ = 

0.957 days. 

TABLE I 

Parameter Description Value 

Hp Prediction horizon 21 days 

Hu Control horizon 7 days 

s Target trajectory 15% of population 

granulocytes 

Q Weight for matching 

trajectory 

10 

R Weight for minimizing 

control input 

1 

Parameters for MPC constrained optimization problem of (2). 
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administered control sequence is stated in Table II.  

It was noticed after day 7 of the experiment that the level 

of differentiation was nearly zero (see Fig. 3).  This was 

inconsistent with the previous results obtained for the 

parameter identification with a similar DMSO dosage (see 

Fig. 2).  We reexamined the originally-perceived minimal 

change in the protocol (namely, the daily passage of cells) 

and discovered that the new protocol lead to a higher 

proliferation rate.  Retrospectively, this was not surprising 

due to the daily addition of fresh media.  But more 

importantly, there was a dilution of the DMSO concentration 

in the media during the attempt to keep the number of cells 

in the flask constant.   

To investigate the effects of this dilution, on day 11 the 

experimental flask was divided into two flasks.  The first 

flask was cultured with the same DMSO dilution as before, 

but the second flask was cultured such that DMSO was 

replaced after each daily passing to simulate a constant 

concentration.   The time- course experimental results for the 

diluted-DMSO flask are shown in Fig. 3 as open bars, and 

the time-course experimental results for the constant-DMSO 

flask are shown as solid bars.  The revision of the 

experimental procedure on day 11 to keep the DMSO 

concentration constant between sampling points did cause a 

small but visible increase in the level of differentiated cells.  

These results motivated changes to the experimental 

protocol and MPC parameters. 
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The results of the initial experimental trial indicated that it 

was necessary to maintain a constant DMSO concentration.  

However, adding a portion of fresh DMSO and media daily 

is not consistent with the procedure used to gather data for 

model identification, resulting in model-plant mismatch.  In 

the model-identification experiment, DMSO and media were 

added to the flask once and allowed to naturally degrade, be 

taken up and consumed by cells over the course of several 

days.  When a portion of the DMSO and media is replaced 

daily, this alters the anticipated differentiation dynamics.  

The work of [9] shows that exposing cells to 1.2% DMSO 

for 3 days results in a peak differentiation level of ~90%, 

which represents full-scale differentiation for this 

concentration [8].  Thus, it is expected that 3 days of 

exposure should provide sufficient time for any DMSO 

bolus to achieve its maximal level.  Hence the HL60 cell 

population will be reduced to 6x10
5
 cells/mL only at 

sampling times to maintain the constant DMSO 

concentration for the necessary period of time while 

providing fresh media to maintain the nutrient level every 3 

to 4 days.  Passing the cells less frequently should not have 

an adverse effect on cell growth as it is common practice to 

culture cells by passing twice weekly.  This will allow the 

controller-designed experiment to more closely mimic the 

model-identification experiment. 

To further minimize any potential model-plant mismatch, 

the model parameters were also refined prior to the next 

iteration.  The revised parameters were close to the original 

parameters.  Changes can be found by comparing the values 

reported in the captions of Figs. 2 and 4.   

Adjustments were also made to several MPC parameters 

given in Table I.  The prediction horizon, Hp, was deemed to 

be too large because the controller did not aggressively 

adjust the inputs mid-experiment when the controlled output 

failed to reach the target.  A new prediction horizon of 7 

days was chosen to address this problem.  The target 

percentage of granulocytes, s, was also adjusted.  Due to 

error inherent in the experimental process and flow 

cytometry analysis, we decided that a granulocyte objective 

higher than 15% was necessary to be confident that the 

results were safely outside the bounds of measurement error.  

For this reason, we increased our target level to 25% 

granulocytes.  A revised MPC parameter set is given in 

Table III. 

Fig. 3.  Experimental time course for the differentiation of HL60 cells 

to granulocytes.  Open bars indicate diluted-DMSO flask data and 

solid bars (starting at day 11) show the result with the modified 

experimental procedure keeping the DMSO level constant at the 

controller input.  The trajectories do not achieve the desired level of 

15% granulocytes.  Model parameters were given in Fig. 2. 

TABLE III 

Parameter Description Value 

Hp Prediction horizon 7 days 

Hu Control horizon 7 days 

s Target trajectory 25% of population 

granulocytes 

Q Weight for matching 

trajectory 

10 

R Weight for minimizing 

control input 

1 

Revised parameter set for MPC constrained optimization problem of (2). 

 

TABLE II 

Time Point (days) Control Input 

0 0.42% 

4 0.03% 

7 0.34% 

11 0.13% 

14 0.26% 

Each control input gives the application dose of DMSO (v/v). 

MPC-derived control strategy for experimental study of Fig. 3.   
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VIII. RESULTS 

An experimental evaluation of the MPC-derived strategy 

was performed using the revisions outlined in the previous 

section.  The experimental time-course results are shown in 

Fig. 4.  The control strategy was successful in achieving and 

sustaining the target percentage of granulocytes.  The 

implemented control strategy that achieved these results is 

provided in the second column of Table IV.  The controller 

implemented a “bang-bang” strategy to drive the granulocyte 

population to the desired level before applying a bolus at an 

intermediate concentration to sustain the target level.   

It is interesting to note that the controller opted for no 

DMSO input on several days during the experimental 

evaluation despite the fact that the controlled output had not 

reached the target level (see days 3 and 10).  This occurred 

due to the percentage of cells in x2 of the model (cells 

beginning to differentiate, CD11b).  On days when the 

controller opted for no input, the population of CD11b cells 

was significant (~50%-60%):  these cells transitioned slowly 

into granulocytes during the next 4-7 days.  Thus, even with 

no DMSO added, the granulocyte population rose at the next 

sampling point.  Controlling the cell population given this 

observed time lag may be non-obvious to an experimenter 

using intuition alone to determine DMSO inputs.  The 

predictive capabilities of the model allow for future state 

projections to be quantitatively factored into the current 

input decision.  In this way, the controller designed an 

easily-implementable control strategy while taking into 

account quantitative projections not obvious to the 

experimenter.   

To investigate the implications of a mismatch between the 

model and the plant on the MPC-derived sequence of DMSO 

boluses, a simulation of the MPC implementation without 

any model-plant mismatch was conducted.  It found that the 

granulocyte population would reach and sustain the target 

0 3 7 10 14 17 21 24
0

5

10

15

20

25

30

Time (days)

P
e

rc
e

n
ta

g
e

 o
f 

T
o

ta
l 
P

o
p

u
la

ti
o

n

Percent of Total Population as Mature Granulocytes

 

level with minimal error (±2%) (results not shown) using the 

control strategy shown in the third column of Table IV.  

Without any model-plant mismatch, the necessary sustaining 

dosages of DMSO seem to alternate between two low levels 

administered at each 3 and 4 day sampling point. 

IX. SUMMARY AND FUTURE WORK 

This work presents a model for the differentiation of 

HL60 cells and implements a model predictive controller to 

achieve a desired level of granulocytes.  After an initial 

experimental study that highlighted key changes to the MPC 

problem formulation and experimental protocol, the MPC-

derived DMSO schedule and dosage was successful in 

achieving and maintaining the desired level of granulocytes 

in the laboratory.  Additionally, the control sequence was 

non-intuitive and relied on the model’s ability to predict 

responses in the calculation of each dosage.  This 

demonstrates the need for a quantitative approach to design 

experiments, as relying on intuition alone may necessitate a 

series of expensive experiments.  

This work represents a first step toward providing a more 

quantitative framework for systematically controlling 

cellular differentiation.  Further improvements to the model 

to minimize model-plant mismatch are anticipated to 

improve the precision of the results.  Additionally, 

extensions will be made to the single-input, single-output 

controller to design multivariable controllers capable of 

simultaneously directing HL60 differentiation into several 

specific cell lineages.  The evolution of these techniques for 

quantitative experiment design will ultimately develop an 

approach to design bioreactors and experimental protocols 

for predictably manipulating stem cell differentiation.   
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