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Abstract— This paper presents a two-degree-of-freedom controller

structure for electric power steering systems. The controller is synthe-
sized using a hybrid linear matrix inequality and genetic algorithms

optimization. Robust stability is studied for both sector-bounded and

passive uncertainties resulting in a system of linear matrix inequalities

(LMIs) and a linear matrix equality (LME). This system of LMIs/LME
defines a guaranteed cost H2 optimization subject to an H∞−norm

performance as well as a strict-positive-real constraints. Experimental

results involving human-in-the-loop show that the control design did
satisfy the criteria for robust control and performance. Furthermore,

the ease-of-tuning of the proposed controller structure makes it possible

to improve the steering “feel”.

I. INTRODUCTION

In recent years, there has been noticeably increasing interest

within the automotive industry in electric power steering (EPS) sys-

tems technology as a viable replacement of the more conventional

hydraulic power steering. This transition is justified on the grounds

of four main points [6, 9]: (1) ease of tunability: EPS systems

are examples of mechatronic systems which employ programmable

features making them easily adjustable to wider ranges of operation,

(2) fuel economy: Electric-motor-powered EPS systems are on-

demand systems that operate only when the steering wheel is

turned, (3) modularity: EPS systems are inherently modular since

they are composed of more compact components that are easily

packaged into separate subsystems, (4) environmental friendliness:

EPS systems remove the need for hydraulic oil refills as well as oil

leakage problems. The second item above is an attractive advantage

of EPS systems since they can offer lower energy consumption

than conventional hydraulic power steering systems. It has been

reported in [3] that among the different types of power steering

systems available for passenger vehicles, EPS systems offer the

lowest power consumption. In particular, EPS systems achieve

power consumption savings in excess of 50% of the consumption

of other power steering systems such as hydraulic power steering

and electro-hydraulic power steering systems [3].

In contrast to many conventional feedback systems such as

motion control applications, EPS systems do not have well defined

feedback design measures such as tracking error signals. On the

other hand, performance criteria such as “comfort” and “feel”

are subjective since they vary among drivers and according to

driving conditions. Furthermore, they are difficult to quantify using

available physical measurements. In addition, the presence of the

human-in-the-loop make control design tasks of EPS systems very

challenging. This paper presents a two-degree-of-freedom (2-DOF)

fixed-structure controller design for the EPS system which satisfies

closed loop passivity constraint. The paper addresses the robust

stability of the feedback interaction between the driver, the EPS
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system and the vehicle force impedance. The controller-design

problem is formulated using a system of linear matrix inequalities

(LMIs)/linear matrix equality (LME), which describe performance

objectives as well as the passivity constraint given by the positive

real lemma. Hardware-in-the-loop (HIL) experiments are conducted

to investigate the steering “feel” performance of the synthesized 2-

DOF controller structure.

The control of EPS systems has been reported by a vast number

of researchers [5, 6, 16]. In [16], Zaremba et. al. studied perfor-

mance requirements such as torque amplification and suppression of

oscillations resulting from the lightly damped mode due to the tor-

sion bar. The control synthesis presented in this work is based on the

closed loop H2−norm minimization utilizing fixed structure phase

compensators. In [6], Rakan et. al. employed the H∞ optimization

framework to achieve assist torque generation, driver’s appropri-

ate road-feel and closed loop robustness. The controller structure

proposed has a feed-forward component and a feedback component

which is synthesized using H∞−weighted sensitivity minimization.

In [5], Canudas-De-Wit et. al. approached the EPS control design

using a passivity-based impedance-shaping controller. In this study,

the authors addressed the lack of quantifiable control-design metrics

by choosing the technique of impedance shaping which employs a

master-slave loop structure. The impedance chosen defines desired

dynamics from the driver input torque to the steering wheel angular

position.

This paper is organized as follows, Section 2 presents mathe-

matical models of a column-assist EPS system and road-tire force

impedance and discusses the interaction between them. In Section

3, control design objectives and the 2-DOF controller structure are

given. Section 4, presents robust stability analysis of the EPS closed

loop system. In Section 5, the 2-DOF controller is synthesized

using a hybrid LMI/genetic algorithm (GA) optimization method.

In section 6, simulation and experimental results are presented.

II. EPS/VEHICLE MODELING AND INTERACTION

The work presented in this paper focuses on column-assist EPS

systems. However, the analysis carried out can be easily extended

to the other types of EPS systems, steer-by-wire systems [1], and

more generally to other applications involving human-in-the-loop

interaction. In [9], a 4th order model in state space form for the

column-assist EPS system (Fig. 1) is developed and validated.

Fig. 1. Schematic diagram of column-assist EPS
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The linearized state space model representation of this column-

assist EPS is given by
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where the state vector is defined by: x =
[

θ2 θ̇2 xrack ẋrack

]T
(see Fig. 1 for variable definitions).

The input disturbance vector is comprised of the driver torque

(τh), the road-tire disturbance forces (fdist) and the force due to

the self-aligning moment (fSAM ). The control input consists of

the motor input torque (τm). Moreover, the first component of

the output vector y is the torsion bar torque (τb), and the second

component is the rack displacement (xrack). Assuming that the

vehicle forward velocity is held constant and the road-tire steering

angle is small, the force impedance for the self-aligning moment

(SAM) is given by the following 2nd order transfer function [9]:

Gxrack→fSAM
(s) =

2tC1

l2
s2 + d1s + d0

s2 + b1s + b0
(2)

where l is the length of the steering knuckle-arm, C1 is the

front tires’s cornering stiffness and t is the dynamic caster mo-

ment arm. The transfer function coefficients are given by d1 =

2
C2(Iz+l2

2
mtot)

mtotIzvx
, d0 = 2C2l2

Iz
, b1 = 2

Iz(C1+C2)+(C1l2
1
+C2l2

2)
mtotIzvx

and

b0 = 2
Iz

(

−C1l1 + C2l2 + 2C1C2(l1+l2)2

mtotv2
x

)

.

A. Passivity of the Road-Tire Force Impedance

Assuming that the stability conditions are satisfied in Eq. 2 (i.e.

b1 > 0 and b0 > 0), the transfer function Gδ̇→fSAM
(s) :=

Gδ→fSAM
(s)

s
is passive if and only if it is positive real (PR) [10].

This is satisfied if and only if Re
{

Gδ̇→fSAM
(jω)

}

≥ 0 for all

ω ∈ R. Carrying out the required computations and simplifying

terms, the transfer function Gδ̇→fSAM
(s) is positive real if and

only if [9]:

2C2 (l1 + l2)
(

Iz + l22mtot

)

− mtot (Iz + l1l2) v2
x > 0 (3)

The condition given by Eq. 3 is plotted in Fig. 2. This figure

shows that unlike passive environments commonly encountered in

tele-manipulated robots [7], the road-tires’ self-aligning moments

exhibit non-passive behavior over a large range of vx and µ. Hence,

this shortage of passivity has to be accounted for, to realistically

address the uncertainty involved in the EPS environment [1].

Fig. 2. Tire force impedance passivity

B. Open loop behavior

The block diagram given in Fig. 3 shows the assist-torque open

loop for a given vehicle forward velocity vx. In this diagram, the

transfer functions G1 (s) and G2 (s) represent the open loop transfer

functions from τh and τm to the torsion bar torque τb, respectively.

Moreover, the boost gain nonlinearity (Fig. 3) φ (., .): R×R+ → R

belongs to the sector given by
[

0, k̄φ

]

. This nonlinearity is “tuned”

to set the appropriate desired current IDes for the assist-torque motor

at a given velocity vx [9]. Thus, in the following sections, the boost

gain will be a given nonlinearity as shown in Fig. 3. It is noted

that the boost gain function is deliberately designed to have “dead-

zone” behavior near the origin to reduce the sensitivity of the EPS

actuator.

Fig. 3. Open loop block diagram (left), boost gain nonlinearity φ (., vx)
(right)

To show the effect of this nonlinearity on the closed loop system,

the Bode plot of G2 (s) is drawn for a different values of vx while

setting the boost-gain nonlinearity to the maximum value of the

sector bound; that is φ (τb (t) , vx (t)) = 10τb (Fig. 3). This worst-

case analysis shows that the open loop system for large values of

the boost gain has a very low phase margin which implies that the

closed loop system lacks robustness.

Fig. 4. Bode plot of G2 (s)

C. Role of Passivity

Electric power steering systems are examples of driver-assisting

devices that are physically driven by a human operator. This

direct man-machine interaction places stringent requirements on

the feedback design for EPS systems to insure safe operation by

the human operator. Passivity has long been the framework to

study robust stability and performance for applications involving

human interaction such as tele-manipulated robot arms [7, 11]. In

particular, passive dynamical systems are systems which do not

generate energy, but either store or dissipate energy. Consequently,

passive systems behave “friendly” in the environments where they

operate [11]. Specifically, the human arm impedance is bilaterally

coupled to the EPS system via the human input torque (τh) and the

steering wheel angular velocity
(

ω = θ̇2

)

as shown in Fig. 5. Thus
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the passivity of the EPS feedback system ensures that the energy

resulting from the human input torque satisfies [8, 10]:

−
∫ T

0

τhθ̇2dt < ∞, ∀T > 0 (4)

The condition given in Eq. 4 implies that the feedback system in

Fig. 5 is stable since only a finite amount of energy could be

extracted while the system is excited by τh. Moreover, passivity

guarantees closed loop robust stability for all passive un-modeled

dynamics between the port variables τh and θ̇2. In Fig. 5, the

Fig. 5. Closed loop feedback block diagram, vh is the neural muscle
command

driver’s arm impedance is modeled by passive (possibly nonlinear

dynamics). In [14], it was found that a single-degree-of-freedom

model made of linear mass-spring-damper fitted experimental data

well under normal operating conditions (i.e. absence of drugs or

alcohol). In other studies [1], the spring-mass-damper is used to

model the human arm impedance. This model is given by:

Zd (s) ,
τh (s)

ω (s)
= Dd +

Cd

s
+ Jd s (5)

where τh is the torque, ω is the steering wheel angular velocity,

Dd is the viscous damping, Cd is the stiffness, Jd is the inertia

term. However, it is clear that the model parameters in Eq. 5,

are case-dependent. Hence, robust stability is ensured by enforcing

closed loop passivity of the map τh → ω which guarantees that the

negative feedback interconnection of the human arm impedance and

the EPS actuator is asymptotically stable [10].

III. CONTROL DESIGN OBJECTIVES AND CONTROLLER

STRUCTURE

Despite difficulties encountered in quantifying performance cri-

teria for EPS feedback systems, the following two points address

the general desired performance [9]:

1) Driver feel: appropriate driver steering “feel“ is achieved by

tracking the boost gain (i.e. assist-torque) without introduc-

ing large delays in the feedback system resulting from the

narrow bandwidth control design. Furthermore, the controller

needs to attenuate the effects of road-tire disturbance forces

originating from road surface irregularities, tire imbalance or

any other disturbance source,

2) Closed loop robustness: closed loop stability must be main-

tained in the presence of the boost-gain nonlinearity (Fig. 3)

and model parameter uncertainties. In addition, the human

driver introduces an additional loop to the feedback system

generated by the muscle impedance actuation as depicted in

Fig. 5.

For the sake of control synthesis and analysis of closed loop robust

stability, the negative feedback interconnection of EPS/vehicle

dynamics (Eqs. 1 and 2) is be represented by the following 6th

order model:

ẋ = Ax + B1w1 + B2w2 + Buu

z1 = C1x

z2 = C2x + D2u

z∞ = C3x + D4u (6)

y = C4x + ν

w1 = −∆ (z1)

where x (t) is the state vector, w1 (t) is the driver input torque,

w2 (t) is the road disturbance forces, u (t) is the assist-motor torque

control input, z1 (t) is the steering wheel angular velocity and ∆ (.)
is the passive muscle impedance dynamics. The vectors z2 (t) and

z∞ (t) define performance output vectors associated with the closed

loop H2 and H∞ performance criteria, respectively (defined below),

and y (t) is the output vector composed of the torque sensor and

rack displacement (Eq. 1) corrupted by measurement noise ν (t).

A. Controller Structure

From the previous discussion, it is clear that phase compensation

is required to enhance the robustness of the EPS feedback system

against parameter variations. Moreover, the torsion bar mode needs

to be damped by employing velocity feedback. Consequently, a 2-

DOF controller will be considered for the EPS closed loop system.

The first component of this controller is the phase compensator,

denoted by Gc1 (s), while the second component is comprised

of a state feedback controller employing the rack displacement

and velocity, denoted as Gc2 (s). Hence if Gc2 (s) is an SPR

transfer function, in addition to the phase compensation provided by

Gc1 (s), the feedback of the steering subsystem and the rack/vehicle

subsystem can be rendered passive making the closed loop map:

τh → θ̇2 strictly passive. Thus, the 2-DOF compensator to be

designed is given by:

u (s) = −Gc2 (s) ẋrack (s) + Gc1 (s) η (s) (7)

where η (t) = φ (τb (t) , vx (t)), and the compensator transfer

function Gc2 (s) is given by:

Gc2 (s) = Bc2 +
Kc2

s
(8)

Two possible network cascades will be chosen for the phase

compensator Gc1 (s) [9, 16]:

1) Triple lead with a lag filter:

Gc1 (s) =
plag

s + plag

3
∏

i=1

1

βi

s + zi

s + pi

βi ,
zi

pi

i = 1 · · · 3 (9)

2) Lag with a notch filter:

Gc1 (s) =
plag

s + plag

(

p1p2

ω2
0

)

s2 + 2ξω0s + ω2
0

(s + p1) (s + p2)
(10)

where βi i = 1 · · · 3 is the lead ratio and ω0 will be set to 12

Hz. It is obvious that each Gc1 (s) as defined will have a DC gain

equal 1. Thus, the boost gain does not get amplified or attenuated in

the feedback loop. Moreover, from the control objectives defined

above, it is desired that the phase φ (jω) for each compensator

Gc1 (s) satisfies −20◦ ≤ φ (jω) ≤ 50◦ ∀ω > 0 [9, 16].

B. Performance Measures

The driver feel and stability robustness are two important control

design objectives for EPS systems. In order to satisfy the driver feel

objective, the following performance measure is defined:

J1 = ‖Tw1→z2
‖2 (11)
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where Tw1→z2
denotes the closed loop map from the input torque

disturbance w1 to the performance output z2 and ‖.‖2 is the

standard H2 norm. The performance output z2 in Eq. 11 is given

by the following equation:

z2 =





0 q1 0 0 0 0
0 0 0 q2 0 0
0 0 0 0 0 0



 x +





0
0
ρ1



 u (12)

where the weighting parameters q1, q2 and ρ1 are all pos-

itive constants. With this definition, the performance objec-

tive in Eq. 12 represents the standard LQR cost function
∫

∞

0

(

q1θ̇
2
2 + q2ẋ

2
rack + ρ1u

2
)

dt which is a weighted sum of the

system states related to the kinetic energy of the EPS system and

the control input. To account for the effect of road-tire disturbance

forces acting on the rack, the following performance measure is

considered:

J2 = ‖Tw2→z∞‖
∞

(13)

where Tw2→z∞ denotes the closed loop sensitivity function from

the input road-tire disturbance to the performance output z∞ and

‖.‖
∞

is the H∞ norm. The performance output z∞ is taken to be:

z∞ = q3

[

k2 0 − k2

rp
0 0 0

0 0 0 0 0 0

]

x +

[

0
ρ2

]

u (14)

Similarly, the weighting design parameters q3 and ρ2 are positive

constants. It is clear that z∞ considers the effect of the road-tire

disturbances on the torsion bar signal and the control input. The

reason for choosing the torsion bar signal is the central role it plays

in EPS feedback system functionality by setting the appropriate

assist-torque.

IV. ROBUST STABILITY ANALYSIS

Stability analysis is fundamentally important for robust control

design of EPS feedback systems. The uncertain system given in

Eq. 6 involves the passive driver muscle impedance ∆ (.) and the

sector-bounded boost gain nonlinearity φ (τb (t) , v (t)) employed

by the controller. Consequently, Eq. 6 can be represented using

a linear fractional transformation (LFT) block diagram (Fig. 6).

Furthermore, a loop transformation is introduced around the boost

gain nonlinearity where cφ =
k̄φ

2
. In addition to reducing conser-

Fig. 6. LFT for robust stability (left), Loop transformation (right)

vatism, it is well known that the loop transformation introduced in

Fig. 6 does not change the feedback loops and induces the norm-

bound ‖χ‖ ≤ rφ ‖π‖ where rφ =
k̄φ

2
[8]. Hence, given a feedback

compensator (Eq. 7) which internally stabilizes the closed loop

EPS/vehicle system, robust stability and performance are analyzed,

in the presence of ∆ (.) and the sector bounded nonlinearity

φ (., .) ∈
[

0, k̄φ

]

, by considering the following two problems:

1) Robust strict positive realness:

The closed loop EPS system (Eqs. 6, 7) is robustly stable if

the closed loop map w1 → z1 is strictly positive real (SPR),

2) Robust disturbance attenuation:

The closed loop map Tw2→z∞ satisfies ‖Tw2→z∞‖
∞

≤ γ
for a given γ > 0.

After standard algebraic manipulations of Eqs. 6, 7 and 8, the closed

loop system with the loop transformation is given by the following

state space representation:

˙̃x =

(

Ã +
k̄φ

2
B̃uC̃4

)

x̃ + B̃1w1 + B̃2w2 + B̃uχ

z1 = C̃1x̃

z2 = C̃2x̃

z∞ = C̃3x̃

w1 = −∆ (z1) (15)

A. Robust Strict Positive Realness

The following theorem gives a sufficient condition for robust

stability of the uncertain system given in Eq. 6. Applying the S-

procedure [4], the following result, with w2 = 0 is obtained.

Theorem 1: Given the internally stabilizing feedback compensator

in Eq. 7, the uncertain system in Eq. 6 is globally asymptotically

stable for all passive systems (possibly nonlinear) ∆ (.) and sector

bounded nonlinearities φ (., .) which belong to the sector
[

0, k̄φ

]

,

if for the following closed loop system

˙̃x =

(

Ã +
k̄φ

2
B̃uC̃4

)

x̃ + B̃1w1 + B̃uχ

z1 = C̃1x̃

w1 = −∆ (z1) (16)

there exist a positive definite symmetric matrix Y ≻ 0 and a scaling

multiplier τ1 ≥ 0 such that

2x̃TY
(

Āx̃ + B̃uχ
)

+ τ1

(

r2φx̃TC̃T
4 C̃4x̃ − χTχ

)

< 0 (17)

YB̃1 = C̃T
1(18)

where Ā =
(

Ã +
k̄φ

2
B̃uC̃4

)

.

Proof: Differentiating the positive definite function V (x̃) = x̃TYx̃
along an arbitrary trajectory of the system in Eq. 16, it is clear that

the conditions given in Eqs. 17 and 18 imply that V̇ (x̃)−2zT
1 w1 <

0. Thus, the map w1 → z1 is strictly passive with respect to the

positive definite storage function
V (x̃)

2
. Asymptotic stability of Eq.

15 follows from that of the negative feedback interconnection of

passive systems [10] �.

It is noted that in the case when the nonlinearity φ (., .) is replaced

by a linear gain, global asymptotic stability is established if the

feedback system is SPR [2].

B. Robust Disturbance Attenuation

Having established asymptotic stability of the negative feedback

interconnection in Eq. 15, disturbance attenuation due to w2 is

considered independently of w1. This is done by enforcing an upper

bound γ on the H∞ norm of the objective given in Eq. 13 such

that ‖Tw2→z∞‖
∞

≤ γ. Applying the S-procedure, the following

result directly follows [4].

Theorem 2: Given the internally stabilizing feedback compensator

in eq. 7, if there exist a positive definite symmetric matrix X ≻ 0
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and a scaling multiplier τ2 ≥ 0 such that

2x̃TX
(

Āx̃ + B̃2w2 + B̃uχ
)

+ τ2

(

r2φx̃TC̃T
4 C̃4x̃ − χTχ

)

−γ2wT
2 w2 + x̃TC̃T

3 C̃3x̃ ≤ 0 (19)

then the closed loop system in Eq. 15 with w1 = 0, is asymptoti-

cally stable and ‖Tw2→z∞‖
∞

≤ γ.

V. FIXED STRUCTURE OPTIMAL CONTROL SYNTHESIS

A. Guaranteed Cost Formulation

The controller synthesis is formulated as a guaranteed cost

optimization problem. The following corollary extends the robust

stability analysis given in Theorem 1 to a robust H2 optimization

problem.

Corollary 1: Suppose that the conditions in Theorem 1 are satisfied

with Eq. 17 changed to

2x̃TY
(

Āx̃ + B̃uχ
)

+ τ1

(

r2φx̃TC̃T
4 C̃4x̃ − χTχ

)

+

x̃TQx̃ < 0 (20)

for some positive semidefinite symmetric matrix Q � 0. Then there

exists a constant c such that
∫

∞

0

x̃TQx̃dt < x̃T (0) Yx̃ (0) + 2c2
(21)

Proof: This result follows from using the conditions in Theorem

1 and noting that Eq. 20 provides an upper bound for Eq. 17,

which implies that the system in Eq. 16 is asymptotically stable.

Integrating the left hand side of Eq. 20 along an arbitrary trajectory

of the system in Eq. 16, the following is obtained:

x̃T (T )Yx̃ (T )−x̃T (0) Yx̃ (0)+2

∫ T

0

zT
1 (−w1) dt < −

∫ T

0

x̃TQx̃dt

(22)

From the passivity of ∆(.), it follows that
∫

∞

0
zT
1 (−w1) dt ≥ −c2

for some constant c [8]. Thus, letting T → ∞ and rearranging

terms, Eq. 21 is arrived at �.

In particular, if the matrix Q is written as Q = C̃T
2 C̃2, it follows

that for the feedback system in Eq. 16, the H2 norm of the output

defined by z2 , C̃2x̃ is upper bounded by x̃ (0)T Yx̃ (0) where

Y satisfies Eqs. 17 and 18. Moreover, in the case of linear ∆ (.)
(Eq. 5), c in Eq. 21 can be set equal to zero [8].

B. Controller Synthesis

In the following presentation, unknown controller parameters

(Eqs. 8, 9 and 10) are expressed as a row vector Θ ∈ R
1×N

where N is the number of unknown parameters. Consequently, the

closed loop system can be expressed as a function of the unknown

parameters Θ (i.e. Ā (Θ), etc.). With this notational convenience the

guaranteed-cost optimal control problem for the closed loop system

is defined, given Θ
(

∈ R
1×N

)

, x̃ (0) (∈ R
n) and γmax (∈ R) such

that γ ≤ γmax, by the following system of LMIs/LME:

min
Y,X,κ,τ1,τ2

trace
(

x̃ (0)T Yx̃ (0)
)

subject to :

X ≻ 0, Y ≻ 0, κ > 0,
√

γmax ≥ γ > 0, τ1 ≥ 0, τ2 ≥ 0
[

ĀTY + YĀ + τ1r
2
φC̃T

4 C̃4 + C̃T
2 C̃2 YB̃u

B̃T
u Y −τ1I

]

≺ 0 (23)

B̃T
1 Y = κC̃1





ĀTX + XĀ+τ2r
2
φC̃T

4 C̃4 + C̃T
3 C̃3 XB̃u XB̃2

B̃T
u X −τ2I 0

B̃T
2 X 0 −γI



 � 0

The optimization problem given in Eq. 23 involves product terms

between the controller and the optimization variables giving rise

to bilinear matrix inequalities (BMIs). Optimization problems in-

volving BMIs constraints are non-convex, NP hard problems [4].

However, given a candidate controller parameter vector Θ, the

optimization problem in Eq. 23 is convex and hence can be solved

efficiently using semidefinite programming (SDP). This motivates

the use of global optimization techniques such as genetic algorithms

(GA) [13] to search the controller parameter space. Once an optimal

controller parameter vector Θ is produced by the GA code, the

SDP in Eq. 23 can be solved using readily available software [12].

Recently, hybrid GA optimization techniques have gained attention

as important tools to solve difficult optimization problems arising

in control and/or estimation (see [9, 15]). The hybrid GA/LMI

optimization algorithm described previously is depicted in the flow

chart given in Fig. 7. In Fig. 7, Npop is the population size of

Fig. 7. Structure of hybrid GA\LMI

unknown controller parameters, Po (Θo) is the initial population of

randomly chosen controller parameters and Pnew (Θnew) is a new

population produced by the GA operations (i.e. selection, crossover

and mutation). The GA used in this paper has the following

specifications [9]: (1) floating point representation, (2) tournament

selection with linear ranking [13], (3) arithmetic cross-over, (4)

uniform mutation, (5) elitism is applied. In particular, the closed

loop matrix Ā (Θ) :=
(

Ã +
k̄φ

2
B̃uC̃4

)

must be Hurwitz (i.e.

Re
{

λi

(

Ā (Θ)
)}

< 0 i = 1, .., n), since otherwise the LMI’s

in Eq. 23 will be infeasible. This condition constrains the choice

of the controller-parameters search space since only internally

stabilizing controllers are permissible. Consequently, for a given

internally stabilizing controller parameter vector Θ, the associated

optimization cost is given by:

cost (Θj) =

{

trace
(

x̃ (0)T Yx̃ (0)
)

Γ

if Eq. 23 is satisfied
otherwise

(24)

where j = 1, .., Npop and Γ is a large penalty (e.g. 106) to lower

the rank of these controllers in subsequent iterations.

C. Optimization and Simulation Results

The weighting parameters used in the performance measures

(Eqs. 12 and 14) are q1 = 4, q2 = 0.5, ρ1 = 0.01 and q3 = 5, ρ2 =
0.01. The upper bound γmax is set equal to 0.5. Moreover, the

vehicle velocity vx and the road-surface friction coefficient µ are set

equal to 30 m/sec and 0.6, respectively (i.e. extremely non-passive

conditions). The GA parameters are set to Npop = 50, crossover

probability equal to 0.6, mutation probability equal to 0.85 and the
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maximum number of generations used is 80. The minimum value

achieved for the H2-performance cost is equal to 8 for the closed

loop system with the triple lead/lag compensator (Eqs. 8, 9). The

Bode plots of the phase compensators (Eqs. 9 and 10) along with

the compensated open loop transfer function G2 (s) are given in

Fig. 8 (vx = 30 m/sec, µ = 0.6).

Fig. 8. Phase compensator Gc1 (s) (left), compensated G2 (s) (right):
lag/notch (solid), triple lead/lag (dash-dot), uncompensated (dash)

As shown in Fig. 8, both compensators (Eqs. 8,9 and 10) enhanced

the feedback system’s robustness by introducing gain margin of

14.5 dB and phase margin of 45◦.

D. Human-in-the-Loop Experimental Results Using HIL Setup

Due to space limitation, only experimental results of the closed

loop system with the triple lead/lag compensator (Eqs. 8, 9)

are presented in the following. The experimental conditions are:

vx = 120km/h, µ = 0.8 and the steering wheel angle θ2 (t) =
20◦sin (πt). Shown in Fig. 10 are the plots of: the steering wheel

angle, the torsion bar, the assist-motor current and the Lissajous

curve between the steering wheel angle and the torsion bar.

Fig. 9. Hardware-in-the-loop (HIL) experimental setup

Fig. 10. Measurements of the closed loop system

The effect of road-tire disturbance is investigated using fdist (t) =
200sin(2π12t) [N] at vx = 80km/h which is equivalent to tire-

imbalance at 12 Hz. As shown by the Lissajous curve in Fig. 11, the

2-DOF controller structure has significantly reduced the effect of

the disturbance on the steering “feel” in comparison to the feedback

system with the phase compensator (Eq. 9) only.

Fig. 11. Effect of disturbance on Lissajous cruve: phase compensator (left),
2-DOF compensator (right)

VI. CONCLUSIONS

This paper presented a 2-DOF fixed-structure controller for

EPS systems. The controller is synthesized using hybrid GA/LMI

optimization. The experimental results obtained show that the

controller did satisfy the performance objectives defined in section

3. Specifically, absence of oscillations in the Lissajous curve and

reduced phase lag between the steering angle and the input steering

torque indicate “good” steering “feel” [9].
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