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Abstract— Adaptive control is presented for a class of elec-
trostatic micro-actuators with bidirectional drive. The objective
is to track a reference trajectory within the air gap without
knowledge of the plant parameters. Motivated by practical
difficulties in measuring velocity of the moving plate, an output
feedback scheme is developed. After transforming the plant into
the parametric output feedback form, adaptive observer back-
stepping is employed to achieve asymptotic output tracking. To
prevent contact of the movable plate and the electrodes, asym-
metric barrier functions are employed in Lyapunov synthesis.
All closed loop signals are ensured to be bounded. A simulation
study demonstrates the effectiveness of the proposed control.

I. INTRODUCTION

The control of micro-scale devices has gained increas-

ing attention in recent decades, spurred by the advent of

microelectromechanical systems (MEMs) technology, which

allows for micro-scale devices to be batch-produced and

processed at low costs. Among the different types of micro-

scale actuators, electrostatic microactuators have gained

widespread acceptance in MEMs applications, due to the

simplicity of their structure, ease of fabrication, and the fa-

vorable scaling of electrostatic forces into the micro domain.

One of the main problems associated with uni-directional

electrostatic actuation with open loop voltage control is

the pull-in instability, which places a severe limit on the

operating range of electrostatic actuators. To overcome this

problem, many methods have been proposed, including volt-

age control with position feedback [1], passive addition of

series capacitor [2], [3], charge feedback [4], and nonlinear

control techniques [5], [6]. Electrostatic micro-actuators with

bidirectional drive [7], [8], [9] are not significantly affected

by pull-in due to the fact that they can be actively controlled

in both directions. As a result, an extended range of travel

is achievable and the added controllability is an advantage

in high performance applications. We focus on bidirectional

micro-actuators in this paper.

In designing a control for electrostatic micro-actuators,

plant model parameters are usually required, and it is com-

mon to estimate them through offline system identification

methods. However, inconsistencies in bulk micromachining

result in variation of parameters across pieces, and may

require extensive efforts in parameter identification, with
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higher costs. Furthermore, some of the parameters, such as

the damping constant, are usually difficult to identify accu-

rately, so a viable alternative is to rely on adaptive feedback

control for online compensation of parametric uncertainties

[10], [11].

In this paper, we extend our previous results [11], which

tackled full-state feedback adaptive control of uncertain

electrostatic microactuators, to the output feedback case,

motivated by the fact that velocity feedback is unavailable in

practice. We consider single degree-of-freedom (1DOF) elec-

trostatic microactuators with bidirectional drive, described in

Section II, which can be transformed into the parametric

output feedback form. Adaptive observer backstepping is

then employed to force the movable electrode to track a

reference trajectory within the air gap without knowledge

of plant parameters or velocity measurements, as shown in

Section III. To prevent the movable electrode from coming

into contact with the fixed electrodes, we employ asymmetric

barrier functions in Lyapunov synthesis, motivated by the

approach of tailoring the Lyapunov function according to the

requirements of the problem (e.g. [12], [13]). To illustrate the

performance of the control, a simulation study is presented

in Section IV.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the dynamic model of the 1-DOF electrostatic

microactuator with bidirectional drive, as illustrated in Figure

1. The state space equations governing the dynamics of the

electrostatic microactuator are given by:

ml̈ + bl̇ + kl =
ǫA

2

(

V 2
f

(l0 − l)2
− V 2

b

(l0 + l)2

)

=:
ǫA

2
ν

(1)

where m denotes the mass of the movable electrode, ǫ the

permittivity of the gap, A the plate area, b and k the damping

and spring constants respectively, all of which are uncertain

parameters.

The constant parameters m, ǫ, A, b and k may be difficult

to identify accurately in practice, and are thus considered

to be uncertain. For example, m, r, and A can vary from

unit to unit due to limitations in fabrication precision. The

permittivity can change according to the ambient humidity.

While stiffness k can be estimated from experimentation and

pull-in analysis, the damping constant is typically difficult to

obtain due to the fact that it is caused by complex processes

such friction and viscous fluid forces [9]. Nevertheless,

it is reasonable to have good indication of the order of

magnitudes of these parameters.
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Fig. 1. Single degree-of-freedom electrostatic microactuator with bidirec-
tional drive

Remark 1: In practice, the displacement l can be mea-

sured by state-of-the-art capacitive sensing methods. The

only difficulty is in the measurement of the velocity l̇, thus

motivating the importance of output feedback designs.

To obtain the same order of magnitude of the variables and

thereby avoid numerical problems in simulation, we perform

a change of time scale τ = σt and change of variables x1 =
l/l0, x2 = (1/l0)(dl/dτ), u = ν/β, for large constants σ >
0 and β > 0, thus yielding:

dx1

dτ
= x2(τ)

dx2

dτ
= − b

mσ
x2(τ) − k

mσ2
x1(τ) +

ǫAβ

2mσ2l0
u(τ)

y = x1(τ) (2)

where y ∈ R is the output. For ease of notation, ẋ1

and ẋ2 are henceforth understood as dx1/dτ and dx2/dτ
respectively, following the change of time scale.

The control objective is to force the movable electrode

to track a reference trajectory yd(t) within the air gap, i.e.

|y(t) − yd(t)| → 0 as t → ∞. Additionally, the control

is required to prevent the movable plate from coming into

contact with the electrodes, so as to avoid mechanical wear,

impact-related perturbations to performance, and compli-

cated switched systems analysis.

Assumption 1: The first and second order time-derivatives

of the reference trajectory yd(t) are bounded, i.e. ẏd < Y1,

ÿd < Y2, where Y1 and Y2 are constants. In addition, the

reference trajectory is bounded by y
d
≤ yd(t) ≤ yd, where

y
d

and yd are constants that satisfy y
d

> −1 + δ
l0

and yd <

1 − δ
l0

.

To design a control that does not violate the constraint

on the output, we employ a barrier function V1(z1) (Figure

2b) in Lyapunov synthesis, which satisfies V1(z1) → ∞ as

z1 → −
√

ka or z1 →
√

kb.

Lemma 1: For trajectories z1(t), z2(t) starting from

z1(0) ∈ (−
√

ka,
√

kb), z2(0) ∈ R, where ka and kb are

positive constants, if there exists a continuously differentiable

and positive definite function

V (z1, z2) = V1(z1) + V2(z2)

defined on z1 ∈ (−
√

ka,
√

kb), z2 ∈ R, such that

V1(z1) → ∞ as z1 → −
√

ka or z1 →
√

kb

γ1(|z2|) ≤ V2(z2) ≤ γ2(|z2|)
with γ1 and γ2 as class K∞ functions, and the following

inequality holds:

V̇ ≤ 0

then z1(t) remains in the open set z1 ∈ (−
√

ka,
√

kb) ∀t > 0.

Proof: Since V (z1, z2) is positive definite and V̇ (z1, z2) ≤
0, it is implied that V (z1, z2) is bounded ∀t > 0. From

V (z1, z2) = V1(z1) + V2(z2) and the fact that V1(z1)
and V2(z2) are positive functions, we can infer that since

V (z1, z2) is bounded, V1(z1) is necessarily bounded as well.

Because V1(z1) is bounded, we know, from (3), that z1 6=√
kb and z1 6= −

√
ka. Given that −

√
ka < z1(0) <

√
kb, it

can be concluded that −
√

ka < z1(t) <
√

kb, ∀t > 0.

0 0
z

1
z

1
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√
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Fig. 2. Schematic illustration of (a) symmetric and (b) asymmetric barrier
functions.

III. ADAPTIVE OUTPUT FEEDBACK CONTROL DESIGN

To facilitate the design of the adaptive observer backstep-

ping control [14], we first perform a change of coordinates:

η1 = x1

η2 = x2 +
b

mσ
x1

so as to rewrite the system dynamics (2) into the parametric

output feedback form:

η̇1 = η2 − θ1η1

η̇2 = −θ2η1 + ϑu

y = η1 (3)

where

θ1 =
b

mσ
, θ2 =

k

mσ2
, ϑ =

ǫAβ

2mσ2l0
(4)

This can be represented by the simplified form:

η̇ = Aη +
2

∑

i=1

θiφi(y) + ϑe2u (5)

y = η1
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where e2 := [0, 1]T , η = [η1, η2]
T , A =

[

0 1
0 0

]

, φ1(y) =

[−y, 0]T , φ2(y) = [0,−y]T .

Design the following filters:

ξ̇0 = A0ξ0 + cy (6)

ξ̇i = A0ξi + φi(y), i = 1, 2 (7)

v̇ = A0v + e2u + ϕ (8)

where ξi ∈ R2 (i = 0, 1, 2), v ∈ R2, ϕ(·) = [ϕ1, ϕ2]
T ∈ R2

is a correction function to be designed, and c = [c1, c2]
T

with positive constants c1 and c2 chosen such that the matrix

A0 =

[

−c1 1
−c2 0

]

satisfies

AT
0 P + PA0 = −R (9)

for some P = PT > 0 and R = RT > 0.

By constructing the state estimate as follows

η̂(t) = ξ0(t) +
2

∑

i=1

θiξi(t) + ϑv(t) (10)

it is easy to see that the dynamics of the observation error,

η̃ = η̂ − η, are given by

˙̃η = ˙̂η − η̇ = A0

(

ξ0 +
2

∑

i=1

θiξi + ϑv

)

− A0η + ϑϕ

= A0η̃ + ϑϕ (11)

where the correction term ϕ(·) is designed later. The con-

structive procedure for adaptive observer backstepping de-

sign will be presented next.

Step 1: Define z1 = y − yd, whose derivative is given by

ż1 = ξ02 +
2

∑

i=1

θiξi2 + ϑv2 − η̃2 − θ1y − ẏd (12)

where ξij and vj denote the j-th elements of ξi and v,

respectively. Denote z2 = v2 − α1, where α1 is a virtual

control to be designed. Consider the asymmetric barrier

Lyapunov function candidate:

V1 =
κ0

2
q(z1) log

kb

kb − z2
1

+
κ0

2
(1 − q(z1)) log

ka

ka − z2
1

+
1

2
Θ̃T

1 Γ−1
1 Θ̃1 +

ϑ

2γ̺

˜̺2 (13)

where κ0 > 0 is a constant, Γ1 = ΓT
1 > 0 is a constant

matrix, Θ̃1 = Θ̂1−Θ1 and ˜̺ = ˆ̺−̺ are the estimation errors

for the unknown parameters Θ1 := [θ1, θ2]
T and ̺ := 1/ϑ,

respectively, and the function q(·) : R → {0, 1} is given by

q(•) =

{

1, if • > 0
0, if • ≤ 0

(14)

and

ka =

(

1 − δ

l0
− |y

d
|
)2

, kb =

(

1 − δ

l0
− |yd|

)2

(15)

are positive constants representing the constraints in the z1

state space, given by −
√

ka < z1 <
√

kb, induced from the

constraints in the x1 state space, given by |x1| < 1 − δ
l0

.

For clarity of presentation, a schematic illustration of V1(z1)
is shown in Figure 2b. Throughout this paper, for ease of

notation, we abbreviate q(z1) by q, unless otherwise stated.

The derivative of V1 is given by

V̇1 =

(

q

kb − z2
1

+
1 − q

ka − z2
1

)

κ0z1[ξ02 + ϑ(z2 + α1)

+ΘT
1 Ψ1 − η̃2 − ẏd] + Θ̃T

1 Γ−1
1

˙̂
Θ1 +

ϑ

γ̺

˜̺ ˙̺̂ (16)

where Ψ1 := [ξ12 − y, ξ22]
T . To facilitate the design of the

virtual control and adaptation laws, we express the virtual

control in the form

α1 = ˆ̺ᾱ1 (17)

where

ᾱ1 := −ξ02 −
[

q(kb − z2
1) + (1 − q)(ka − z2

1)
]

κ1z
3
1

−Θ̂T
1 Ψ1 + ẏd (18)

Choose the adaptation laws as

˙̂
Θ1 = Γ1Ψ1

(

q

kb − z2
1

+
1 − q

ka − z2
1

)

κ0z1 (19)

˙̺̂ = −γ̺

(

q

kb − z2
1

+
1 − q

ka − z2
1

)

κ0ᾱ1z1 (20)

Substituting (17)-(20) into (16), we obtain

V̇1 = −κ0κ1z
4
1 +

(

q

kb − z2
1

+
1 − q

ka − z2
1

)

κ0(ϑ̂z1z2

−z1η̃2 − ϑ̃z1z2) (21)

where ϑ̃ = ϑ̂ − ϑ. From the above equation, it can be

seen that the first term is stabilizing, while the second term

consisting of state and parameter estimation errors will be

brought forward into the subsequent step to be handled by

the actual control.

In the following lemma, we assert that α1(z1, ·) is a C1

function, which ensures that α̇1 is well-defined.

Lemma 2: The virtual control α1(z1, ·) in (17) is contin-

uous and C1 continuously differentiable with respect to z1

in the open interval z1 ∈ (−
√

ka,
√

kb).
Proof: For 0 < z1 <

√
kb, we have

α1 = ˆ̺[−ξ02 − Θ̂T
1 Ψ1 − (kb − z2

1)κ1z
3
1 + ẏd] (22)

and for −
√

ka < z1 < 0, we have

α1 = ˆ̺[−ξ02 − Θ̂T
1 Ψ1 − (ka − z2

1)κ1z
3
1 + ẏd] (23)

It is easy to see that limz1→0+ α1 = limz1→0− α1 =
ˆ̺(−ξ02 − Θ̂T

1 Ψ1 + ẏd), leading to the fact that α1 is

continuous in z1 ∈ (−
√

ka,
√

kb).
The virtual control α1(z1, ·) is piecewise C1, with re-

spect to z1, over the two intervals z1 ∈ (−
√

ka, 0] and

z1 ∈ (0,
√

kb). Thus, to show that α1 is a C1 function for

−
√

ka < z1 <
√

kb, we need only to show that limz1→0
∂α1

∂z1

is identical from both directions. For 0 < z1 <
√

kb, we have

lim
z1→0+

∂α1

∂z1
= lim

z1→0+
ˆ̺κ1

(

−3kb + 5z2
1

)

z2
1 = 0 (24)
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Similarly, for −
√

ka < z1 < 0, we obtain that

lim
z1→0−

∂α1

∂z1
= lim

z1→0−

ˆ̺κ1

(

−3ka + 5z2
1

)

z2
1 = 0 (25)

Hence, limz1→0+
∂α1

∂z1
= limz1→0−

∂α1

∂z1
, and we conclude

that α1(z1, ·) is C1 with respect to z1.

Step 2: This is the second and final step of the back-

stepping procedure, in which the control input u appears.

According to Lemma 2, the derivative of the virtual control

α1(ξ0, ξ1, ξ2, y, Θ̂1, ˆ̺, yd, ẏd) is well-defined, and can be

computed as:

α̇1 =
∂α1

∂ξ0
(A0ξ0 + cy) +

2
∑

i=1

∂α1

∂ξi

(A0ξi + φi)

+
∂α1

∂z1

(

ξ02 +
2

∑

i=1

θiξi2 + ϑv2 − η̃2 − θ1y − ẏd

)

+
∂α1

∂Θ̂1

Γ1Ψ1

(

q

kb − z2
1

+
1 − q

ka − z2
1

)

κ0z1

−∂α1

∂ ˆ̺
γ̺

(

q

kb − z2
1

+
1 − q

ka − z2
1

)

κ0ᾱ1z1

+
1

∑

i=0

∂α1

∂y
(i)
d

y
(i+1)
d (26)

where y
(i)
d := di

dti (yd), and the partial derivatives are ob-

tained as:

∂α1

∂ξ0
= −eT

2 ˆ̺, ∂α1

∂ξ1
= −eT

2 ˆ̺Θ̂11,
∂α1

∂ξ2
= −eT

2 ˆ̺Θ̂12,
∂α1

∂ẏd

= ˆ̺ ∂α1

∂Θ̂1

= − ˆ̺ΨT
1 , ∂α1

∂ ˆ̺ = ᾱ1,
∂α1

∂yd

= ˆ̺Θ̂11,

∂α1

∂z1
= ˆ̺

[

Θ̂11 − 3 (qkb + (1 − q)ka)κ1z
2
1 + 5κ1z

4
1

]

with Θ1i denoting the i-th element of Θ1, for i = 1, 2. From

Lemma 2, we deduce that α̇1 is continuous. Note that (26)

can be written as the sum of two parts F (·) and G(·):

α̇1 = F
(

ξ0, ξ1, ξ2, z1, Θ̂1, ˆ̺, yd, ẏd

)

+ G (θ1, θ2, ϑ, η̃) (27)

in which F (·) is known and can be directly cancelled by

the control u, while G(·) contains unknown elements. The

functions F (·) and G(·) are defined as follows

F =
∂α1

∂ξ0
(A0ξ0 + cy) +

2
∑

i=1

∂α1

∂ξi

(A0ξi + φi)

+
∂α1

∂Θ̂1

Γ1Ψ1

(

q

kb − z2
1

+
1 − q

ka − z2
1

)

κ0z1

−∂α1

∂ ˆ̺
γ̺

(

q

kb − z2
1

+
1 − q

ka − z2
1

)

κ0ᾱ1z1

+
∂α1

∂z1
(ξ02 − ẏd) +

1
∑

i=0

∂α1

∂y
(i)
d

y
(i+1)
d

= ˆ̺ω − γ̺

(

q

kb − z2
1

+
1 − q

ka − z2
1

)

κ0ᾱ
2
1z1 (28)

G =
∂α1

∂z1

(

2
∑

i=1

θiξi2 + ϑv2 − η̃2 − θ1y

)

=
∂α1

∂z1
(ΘT

2 Ψ2 − η̃2) (29)

where Θ2 = [θ1, θ2, ϑ]T , Ψ2 = [ξ12 − y, ξ22, v2]
T , Ψ1,a =

[c2ξ11 + ξ02, c2ξ21 + y]T and

ω = c2(ξ01 − y) + ÿd + Θ̂T
1 Ψ1,a

−ΨT
1 Γ1Ψ1

(

q

kb − z2
1

+
1 − q

ka − z2
1

)

κ0z1 (30)

+
[

−3(qkb + (1 − q)ka)κ1z
2
1 + 5κ1z

4
1

]

(ξ02 − ẏd)

This yields the derivative of z2 as

ż2 = −c2v1 + u + ϕ2 − F (·) − G(·) (31)

Consider the Lyapunov function candidate V2 as follows:

V2 = V1 +
1

2
z2
2 +

1

2ϑ
η̃T P η̃ +

1

2γϑ

ϑ̃2 +
1

2
Θ̃T

2 Γ−1
2 Θ̃2 (32)

where γϑ > 0 is a constant, Γ2 = ΓT
2 > 0 is a constant

matrix, P > 0 is a matrix satisfying (9), Θ̃2 = Θ̂2 − Θ2 is

the estimation error for the unknown parameter vector Θ2 =
[θ1, θ2, ϑ]T , and η̃ = η̂− η is the observation error. With the

help of (9), the derivative of V2 along (31) is given by

V̇2 = −κ0κ1z
4
1 − 1

2ϑ
η̃T Rη̃ +

(

q

kb − z2
1

+
1 − q

ka − z2
1

)

×κ0(ϑ̂z1z2 − z1η̃2) + η̃T Pϕ + Θ̃T
2 Γ−1

2
˙̂
Θ2

+ϑ̃

[

−
(

q

kb − z2
1

+
1 − q

ka − z2
1

)

κ0z1z2 +
1

γϑ

˙̂
ϑ

]

+z2[−c2v1 + u + ϕ2 − F (·) + ˆ̺[Θ̂11 − 3(qkb

+(1 − q)ka)κ1z
2
1 + 5κ1z

4
1 ](−ΘT

2 Ψ2 + η̃2)] (33)

Design the correction term ϕ as:

ϕ = −
[

ˆ̺[Θ̂11 − 3 (qkb + (1 − q)ka) κ1z
2
1 + 5κ1z

4
1 ]z2

−
(

q

kb − z2
1

+
1 − q

ka − z2
1

)

κ0z1

]

P−1e2 (34)

and the control and adaptation laws as:

u = −κ2z2 + c2v1 − ϑ̂

(

q

kb − z2
1

+
1 − q

ka − z2
1

)

κ0z1

+
∂α1

∂z1
Θ̂T

2 Ψ2 + F (·) − ϕ2 (35)

˙̂
Θ2 = −∂α1

∂z1
Γ2Ψ2z2 (36)

˙̂
ϑ = γϑ

(

q

kb − z2
1

+
1 − q

ka − z2
1

)

κ0z1z2 (37)

Substituting (35)-(37) into (33), we arrive at

V̇2 = −κ0κ1z
4
1 − κ2z

2
2 − 1

2ϑ
η̃T Rη̃ (38)

in which all three terms on the right hand side are always

non-positive.

Since u is an aggregate control variable defined for ease of

analysis, we still need to compute the actual voltage controls
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Vf and Vb according to (1), which is performed with the

following algorithm

Vf =
√

βl20q(u)(1 − x1)2u

Vb =
√

−βl20(1 − q(u))(1 + x1)2u (39)

where the function q(·) is defined in (14). It can be checked

that βl20q(u)(1− x1)
2u and −βl20(1− q(u))(1 + x1)

2u, i.e.,

the terms within the square root operators, are always non-

negative.

Remark 2: It can be checked that the control u =
u(y, v, ξ0, ξ1, ξ2, Θ̂1, Θ̂2, ˆ̺, ϑ̂, yd, ẏd, ÿd), where the filter

signals ξ0(t), ξ1(t), ξ2(t) are generated from y(t), the signal

v(t) from u(t), the parameter estimates Θ̂1, Θ̂2, ˆ̺, ϑ̂ from

y, yd, ẏd, ξ0, ξ1, ξ2. Therefore, the control u is feasible based

on only output measurement, and does not require the

feedback of the state x2.

Theorem 1: Consider the uncertain 1DOF electrostatic

microactuator system (2) under Assumption 1, output feed-

back control law (35), and adaptation laws (19), (20), (36),

and (37). For initial conditions satisfying x(0) ∈ Ω̄ where

Ω̄ := {x ∈ R2 | yd(0) −
√

ka < x1 < yd(0) +
√

kb}
the output tracking error with respect to any reference

trajectory within the air gap, i.e.

yd(t) ∈ (−l0 + δ, l0 − δ)

is asymptotically stabilized, i.e., y(t) → yd(t) as t → ∞,

and all closed loop signals remain bounded. Furthermore,

the output y(t) remains in the set

Ωy := {y ∈ R : |y| < 1 − δ/l0}
∀t > 0, i.e. the output constraint is never violated.

Proof: First, we show that all closed loop signals are

bounded. From (38), we know that V̇2(t) ≤ 0 ∀t > 0, and

thus, the error signals z1(t), z2(t), Θ̃1(t), Θ̃2(t), ˜̺(t), ϑ̃(t),
and η̃(t) are bounded. Since Θ1, Θ2, ̺, ϑ are constants,

we have that Θ̂1(t), Θ̂2(t), ˆ̺(t), ϑ̂(t) are bounded. The

boundedness of z1(t) and the reference trajectory yd(t)
implies boundedness of the output y(t). From the filters (6)-

(7), we know that ξi(t) (i = 0, 1, 2) are all bounded.

Given that ẏd(t) is bounded, the virtual control α1 is also

bounded from (17). This leads to the boundedness of v2(t) =
z2(t)+α1(t), and ϕ(t), which implies that v1(t) is bounded.

According to Lemma 1, the tracking error z1(t) remains in

the set −
√

ka < z1 <
√

kb ∀t > 0. Thus, we can deduce

that the control u(t) in (35), as well as the adaptation rates
˙̂
Θ1, ˙̺̂,

˙̂
Θ2,

˙̂
ϑ in (19), (20), (36), (37) respectively, are all

bounded. At the same time, from (10), it follows that η̂(t)
is bounded, which in turn implies that η2(t), and thus x2(t),
are bounded. Therefore, all closed loop signals are bounded.

Next, we prove that y(t) → yd(t) as t → ∞. From

V̈2 = −4κ1z
3
1 ż1 − 2κ2z2ż2 − 2η̃T R ˙̃η

we know that V̈2(t) is bounded, since ż1 is bounded from

(12), ż2 is bounded from (31), and ˙̃η is bounded from

(11). Hence, V̇ (t) is uniformly continuous. According to

Barbalat’s Lemma, z1(t), z2(t) → 0 as t → ∞. Since

z1(t) = x1(t)−yd(t), it is clear that y(t) → yd(t) as t → ∞.

Lastly, to show that y ∈ Ωy, note that V̇2(t) ≤ 0 ∀t > 0,

which implies that for any bounded V2(0), we have that V2(t)
remains bounded ∀t > 0. From (32), it follows that V1(t) is

also bounded ∀t > 0, and thus, −
√

ka < z1 <
√

kb from

Lemma 1. From (15) and z1 = y − yd, it can be shown that

−1 +
δ

l0
+ yd + |y

d
| < y < 1 − δ

l0
+ yd − |yd|

From Assumption 1, we know that y
d
≤ yd ≤ yd, which

yields fact that yd + |y
d
| ≥ 0 and yd − |yd| ≤ 0, leading to

the following inequality

−1 +
δ

l0
< y < 1 − δ

l0

Hence, we can conclude that y(t) ∈ Ωy ∀t > 0.

IV. SIMULATION RESULTS

To demonstrate the effectiveness of the control design, we

perform simulation for (2) with parameter values: b = 5.5×
10−3Nsm−1, k = 350.0Nm−1, m = 7.32 × 10−10kg, ǫ =
8.859 × 10−12Fm−1, A = 7.854 × 10−7m2, l0 = 1.5 ×
10−6m, δ = 3.0 × 10−8m. The scaling constants are σ =
1.0×106, β = 1.0×1016, and the initial conditions x1(0) =
0.0, x2(0) = 0.0, θ̂1(0) = 0.0, and θ̂2(0) = 0.0.

The performance of the proposed control, given by (35)-

(37) and (39), is investigated for the task of regulating the

movable plate at the specified set points ysi, i = 1, 2, 3, 4.

Between the start position and each set point, the plate is to

follow a reference trajectory ydi(t) defined by:

ydi(t) =

{

y0 + (ysi − y0)d(t) for t ≤ tdi

ysi for t > tdi
(40)

where y0 is the desired initial position, td is the time to reach

ys, starting from y0, and

d(t) = 6(
t

tdi

)5 − 15(
t

tdi

)4 + 10(
t

tdi

)3 (41)

We simulate stabilization to four set points within the gap,

namely ys1 = −0.2, ys2 = 0.4, ys3 = −0.6, and ys4 =
0.8, with each case starting from y0 = 0.0. To generate

the reference trajectory (40) for each case, we specify the

corresponding durations tdi = 50|y0 − ysi| µs. The bounds

on z1 corresponding to the set points can be computed as√
ka1 = 0.78,

√
kb1 = 0.98,

√
ka2 = 0.98,

√
kb2 = 0.58,√

ka3 = 0.38,
√

kb3 = 0.98,
√

ka4 = 0.98, and
√

kb4 =
0.18.

For the task of set point regulation, the control pa-

rameters are chosen as κ0 = 1.0, κ1 = κ2 = 2.0,

Γ1 =diag{100.0, 500.0}, Γ2 = 100.0I , γ̺ = 1.0, γϑ = 1.0,

c1 = 8.0, c2 = 15.0, R = I , and the results are shown in

Figures 3-5. From Figure 3, it can be seen that the movable

electrode is successfully stabilized at each of the four set

points without coming into contact with the electrodes.

The boundedness of the control voltages, the velocity and
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parameter estimates are shown in Figures 4 and 5. Similar

results of asymptotic tracking performance and boundedness

of signals are also obtained for the task of tracking a time-

varying desired trajectory, but they are omitted due to space

constraint.

V. CONCLUSIONS

We have presented adaptive output feedback control for

a class of 1DOF electrostatic microactuator systems, such

that the movable plate is able to track asymptotically a

reference trajectory within the air gap without knowledge

of the plant parameters, and without any contact between

the movable plate and the electrodes. The control design is

based on the use of asymmetric barrier functions combined

with adaptive observer backstepping. Simulation results show

that the proposed adaptive control is effective.
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Fig. 3. Normalized displacement x1 and tracking error z1
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Fig. 4. Control inputs Vf and Vb
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Fig. 5. Norm of parameter estimates and normalized velocity x2

4220


