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Abstract— This paper introduces the problem of determining
through distributed consensus the fastest mixing Markov chain
with a desired sparsity pattern. In contrast to the centralized
optimization-based problem formulation, we develop a novel
distributed relaxation by constructing a dynamical system
over the cross product of an appropriately patterned set of
stochastic matrices. In particular, we define a probability
distribution over the set of such patterned stochastic matrices
and associate an agent with a random matrix drawn from this
distribution. Under the assumption that the network of agents
is connected, we employ consensus to achieve agreement of all
agents regardless of their initial states. For sufficiently many
agents, the law of large numbers implies that the asymptotic
consensus limit converges to the mean stochastic matrix, which
for the distribution under consideration, corresponds to the
chain with the fastest mixing rate, relative to a standard bound
on the exact rate. Our approach relies on results that express
general element-wise nonnegative stochastic matrices as convex
combinations of 0-1 stochastic matrices. Its performance, as
a function of the weights in these convex combinations and
the number of agents, is illustrated in computer simulations.
Because of its differential and distributed nature, this approach
can handle large problems and seems likely to be well suited
for applications in distributed control and robotics.

I. INTRODUCTION

Markov chains are stochastic processes describing discrete

time trajectories of distributions over discrete state spaces

whose iterates are prescribed probabilistically according to

the value of their immediate predecessors. Under certain

conditions, these processes converge to an equilibrium dis-

tribution, the so called stationary distribution. The rate at

which a Markov chain converges to its stationary distribution

is called the mixing rate of the chain and is determined

by the second largest eigenvalue of its transition matrix. In

this paper, we investigate the problem of determining the

fastest mixing Markov chain over the set of appropriately

patterned stochastic matrices whose convergence yields a

representation of the desired chain.

Markov chains arise frequently in the areas of statis-

tics, physics, biology, computer science [1]–[7] and dis-

tributed robotics [8]–[13] and, in particular, in the context

of Markov chain Monte Carlo (McMC) simulation [14, 15].

McMC allows simulation of stochastic processes with high-

dimensional state spaces and known probability distributions

by simulating instead Markov chains that have the distri-

bution of interest as their stationary distribution [16]. Such
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chains can be obtained by the Metropolis-Hastings algorithm

[2, 17]. Since sampling takes place while the chain converges

to stationarity, rapid mixing rates are necessary for valid

inference results [16]. Therefore, determining or bounding

the second largest eigenvalue of Markov chains is vital.

This paper is strongly influenced by a centralized formu-

lation of a closely related problem, namely, the assignment

of transition probabilities to the edges of a graph on which

resulting random walks are required to converge as quickly

as possible [18]. The authors of [18] contrasted prior effort to

determine analytical bounds for the second largest eigenvalue

of a Markov chain [19]–[24] with their new observation that

the fastest mixing Markov chain on a given graph could

be computed exactly by means of a polynomial time opti-

mization algorithm. The proposed approach was restricted to

chains with symmetric transition patterns and moderate size

(at most 100 states). For larger problems subgradient meth-

ods were proposed. This convex optimization formulation

and duality theory allowed derivation of improved bounds

on the second largest eigenvalue of a Markov chain.

Motivated by the scalability and robustness properties

of distributed control as well as the many applications of

Markov chains in distributed robotics, ranging from motion

planning in probabilistic environments to probabilistic target

tracking, we consider a novel distributed relaxation to the

problem of determining the fastest mixing Markov chain with

a desired sparsity pattern. In particular, we associate every

chain with a stochastic transition matrix, define a probability

distribution over the set of these matrices, and define a

network of agents sampling matrices from this distribution.

Under the assumption that this network is connected, we

construct differential flows on the set of stochastic matrices

that achieve consensus of all agents on their initial samples.

For sufficiently many agents, the law of large numbers

guarantees that the asymptotic consensus limit converges

to the mean stochastic matrix, which for the distribution

under consideration, corresponds to the chain with the fastest

mixing rate. The proposed distribution as well as the desired

sparsity patterns, rely on results that express general element-

wise nonnegative stochastic matrices as convex combinations

of 0-1 stochastic matrices. The efficiency of our approach is

illustrated in representative computer simulations.

The rest of this paper is organized as follows. In Section II

we define the problem of determining the fastest mixing

Markov chain with a desired sparsity pattern. In Section III

we define the consensus algorithm on the set of stochastic

matrices and discuss its convergence properties. Performance

of the algorithm is discussed in Section IV, while in Sec-

tion V, we illustrate our approach in nontrivial simulations.
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II. PRELIMINARIES & PROBLEM DEFINITION

Let {Xt}∞t=0 denote a sequence of random variables,

where every variable Xt takes values in a finite set X =
{1, . . . , n}. We call the stochastic process {Xt}∞t=0 a Markov

chain with state space X if it satisfies the Markov property:

P(Xt = xt|Xt−1 = xt−1, . . . , X0 = x0) =

= P(Xt = xt|Xt−1 = xt−1),

for all t ≥ 1 and all xt, . . . , x0 ∈ X [25, 26]. We assume

time-homogenous Markov chains, for which the transition

probabilities sij = P(Xt+1 = j|Xt = i) from state i to state

j are independent of t. Then, the matrix S = (sij) ∈ R
n×n

is called the transition matrix of the Markov chain and is

a non-negative and stochastic matrix, i.e., its row sums are

all equal to one. Denote, further, by πt = (π
[i]
t ) ∈ R

n
+ the

distribution of Xt so that π
[i]
t = P(Xt = i).1 Then, we have

the following update rule

πt+1 = STπt, (1)

which implies that πt = (ST )tπ0, where π0 denotes the

initial distribution of the chain. If the Markov chain is

irreducible and ergodic, then there exists a distribution π⋆ =
(π⋆

i ) over X such that

lim
t→∞

πt = π⋆.

The distribution π⋆ is called the stationary distribution of

the chain and is the unique vector that satisfies π⋆ = STπ⋆

and 1
Tπ⋆ = 1, where 1 is a column vector of all entries

equal to one. A chain is irreducible if every state in the

chain can be reached from every other state, i.e., if for every

pair of states i, j ∈ X , there exists a t ∈ N such that P(Xt =
j | X0 = i) > 0. On the other hand, necessary and sufficient

conditions for ergodicity are that the chain is

(a) persistent, i.e., fii ,
∑∞

t=1 f
t
ii = 1 for all i ∈ X , where

f t
ij is the probability that starting from i, the first entry

to j occurs at the t-th step,

(b) non-null, i.e., the mean recurrence time µi ,
∑∞

t=1 tf
t
ii

for every state i ∈ X is finite,

(c) aperiodic, i.e., gcd{t | P(Xt = i | X0 = i) > 0} = 1
for all i ∈ X , where gcd indicates the greatest common

divisor.

Hence, a time-homogeneous Markov chain converges to the

unique stationary distribution π⋆, independent of π0, if it is

irreducible and ergodic. In this case, π⋆
i = 1

µi
[26]. If the

chain is also symmetric, then π⋆
i = 1

n
[18].

The time required for a Markov chain to converge to its

stationary distribution is called the mixing time of the chain

and is determined by the second largest eigenvalue modulus

of the transition probability matrix of the chain. Let 0 ≤
|λ1| ≤ · · · ≤ |λn−1| ≤ |λn| = 1 be the ordered modula

of the eigenvalues of S, which by the Perron-Frobenious

theorem can not be greater that one [27]. Define, further, the

sparsity pattern P = (pij) ∈ {0, 1}n×n of the chain with

1We denote by R+ the set [0,∞).

pij = 1 if sij > 0,2 and let SP
n denote the set of all n× n

transition matrices S that respect the pattern P . Then, the

problem addressed in this paper can be stated as follows.

Problem 1: Given a sparsity pattern P , design a dis-

tributed dynamical estimation scheme whose execution, from

a set of arbitrarily initialized local estimates {Si}m
i=1 ∈ SP

n

of the underlying Markov chain, collectively converges to a

common, pattern-preserving transition matrix, S ∈ SP
n , with

the smallest mixing rate |λn−1|.
Our approach to Problem 1 relies on defining a consensus

flow on the transition matrices {Si(t)}m
i=1 that lies in the

set SP
n for all time t. The following result characterizes

the set SP
n in terms of the 0-1 stochastic matrices Σ =

(σij) ∈ {0, 1}n×n, and is similar in nature to a well known

result that expresses the doubly stochastic matrices as convex

combinations of permutation matrices [27].

Lemma 2.1: The set SP
n of all n× n stochastic matrices

is a convex polyhedron whose vertices are the 0-1 stochastic

matrices Σ ∈ {0, 1}n×n.

Proof: Let S ∈ SP
n . We use induction on the number of

positive entries in S. If S has exactly n positive entries, then

S is a 0-1 stochastic matrix, so the result holds. If S is not

a 0-1 stochastic matrix, let θ = mini,j{sij} < 1 and define

the 0-1 stochastic matrix Σ ∈ SP
n , such that if σij = 1, then

sij > 0. Clearly, such a matrix Σ exists for any S ∈ SP
n .

Then, S̃ = 1
1−θ

(S−θΣ) is also a stochastic matrix in SP
n and

has fewer positive entries than S. Hence, by the induction

hypothesis, S̃ is a convex combination of 0-1 stochastic

matrices, and therefore, so is S = (1−θ)S̃+θΣ. This shows

that SP
n is the convex hull of 0-1 stochastic matrices, which

are the vertices of SP
n , since no 0-1 stochastic matrix can

be written as a convex combination of other 0-1 stochastic

matrices.

III. CONSENSUS ON THE SET OF STOCHASTIC MATRICES

A. Sampling Stochastic Matrices

Before addressing Problem 1, we characterize the transi-

tion matrix S ∈ SP
n that corresponds to the Markov chain

with the fastest mixing rate.

Lemma 3.1: Let ψ(S) , ‖S − 1
n
11

T ‖2
F . Then,

|λn−1(S)| ≤ ψ(S) for all S ∈ SP
n .

Proof: Similarly to [18], note that |λn−1(S)| corre-

sponds to the spectral radius of S restricted to the subspace

1
⊥, i.e., |λn−1(S)| = ρ(BTSB), where B = [b1 . . . bn] ∈

R
n×n denotes an orthogonal projection on 1

⊥, such that

bTi bj = 0 and bTi 1 = 0 for all i, j = 1, . . . , n. Moreover,

ρ(BTSB) ≤ ‖BTSB‖2, and letting B = In − 1
n
11

T , we

get

|λn−1(S)| ≤ ‖(In − 1

n
11

T )TS(In − 1

n
11

T )‖2

= ‖S − 1

n
11

T ‖2 ≤ ‖S − 1

n
11

T‖F ,

where ‖X‖2
F = tr(XXT ) for any X ∈ R

n×n denotes the

Frobenious norm and the last inequality results from the

2Note that sij = 0 does not imply that pij = 0.
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equivalence of the norms ‖ · ‖2 and ‖ · ‖F , i.e., ‖X‖2 ≤
‖X‖F ≤ √

n‖X‖2.

Minimizing |λn−1(S)| directly is, in general, hard. In-

stead, using Lemma 3.1 we can minimize the relaxation

ψ(S), which is a convex function of the stochastic matrix

S. Let

S⋆ , argminS∈SP
n
ψ(S). (2)

The following result makes use of Lemma 2.1 and charac-

terizes a class of distributions of stochastic matrices S ∈ SP
n

with mean S⋆. Essentially, it provides a way of sampling

from the set SP
n and motivates the design of the distributed

algorithm for Problem 1.

Lemma 3.2: For any collection of k uniformly distributed

0-1 stochastic matrices {Σj}k
j=1 ∈ SP

n and any random

vector of nonnegative weights α = [α1 . . . αk]T ∈ R
k
+,

let S = 1
αT 1

∑k

j=1 αjΣj ∈ SP
n . Then, assuming the usual

independence, we have E(S) = S⋆.

Proof: Since E(S) is a stochastic matrix, we have that

E(S)11
T = 11

T . Hence, using the property that the trace

of a matrix is equal to the trace of its transpose, we get

ψ(E(S)) = tr
(

E(S) − 1

n
11

T )(E(S)T − 1

n
11

T
)

= tr
(

E(S)E(S)T
)

− 1,

where

E(S) =

k
∑

j=1

E

( αj

αT 1

)

E(Σj) = E(Σ)E
(

k
∑

j=1

αj

αT 1

)

= E(Σ),

for any uniformly distributed 0-1 stochastic matrix Σ ∈ SP
n .

Note, further, that E(Σ) =
∑Np

j=1
1

Np
Σj , where Np is the

total number of 0-1 stochastic matrices that satisfy the pattern

SP
n , and for any 0 < ǫ < 1

Np
, define the ǫ-perturbed mean

of the 0-1 stochastic matrix Σ by

Eǫ(Σ) =
( 1

Np

+ ǫ
)

Σ1 +
( 1

Np

− ǫ
)

Σ2 +
1

Np

Np
∑

j=3

Σj

= E(Σ) + ǫ(Σ1 − Σ2).

Then, we have

ψ(E(Σ)) − ψ(Eǫ(Σ)) =

= tr
(

E(Σ)E(Σ)T − Eǫ(Σ)Eǫ(Σ)T
)

= −2ǫtr
(

E(Σ)(Σ1 − Σ2)
T
)

− ǫ2‖Σ1 − Σ2‖2
F

= − 2ǫ

Np

tr

(

Np
∑

j=1

(Σ1 − Σ2)Σ
T
j

)

− ǫ2‖Σ1 − Σ2‖2
F

= −ǫ2‖Σ1 − Σ2‖2
F < 0,

since tr
(
∑Np

j=1(Σ1−Σ2)Σ
T
j

)

= 0. To see this, suppose that

Σ1 and Σ2 differ in the i-th row. Then, there exist indices

s 6= t such that [Σ1 − Σ2]is = 1 and [Σ1 − Σ2]it = −1,

where [·]ij denotes the ij-th entry of a matrix. Observe,

further, that the number of 0-1 stochastic matrices Σj with

[Σj ]is = 1 is equal to the number of 0-1 stochastic matrices

Σj with [Σj ]it = 1, and corresponds to the number of all 0-1

stochastic matrices with all remaining rows k 6= i satisfying

the sparsity pattern SP
n . Hence, [

∑Np

j=1(Σ1 − Σ2)Σ
T
j ]ii = 0

for all i = 1, . . . , n, which implies that tr
(
∑Np

j=1(Σ1 −
Σ2)Σ

T
j

)

= 0, as desired.3

We conclude that ψ(E(Σ)) < ψ(Eǫ(Σ)) for any per-

turbation 0 < ǫ < 1
Np

, which implies that ψ(E(Σ)) =

minS∈SP
n
ψ(S) and, hence, E(S) = S⋆, by convexity of the

function ψ(S).

In other words, if we sample stochastic matrices S ∈ SP
n

according to the assumptions of Lemma 3.2, then their mean

value is equal to S⋆. Combined with Lemma 3.1 and the law

of large numbers [25, 26]

lim
m→∞

1

m

m
∑

i=1

Si = E(S)

we conclude that we can obtain a stochastic matrix S ∈ SP
n

with the lowest second largest eigenvalue |λn−1(S)| by

sampling the set SP
n of stochastic matrices and averaging

these samples. This observation leads to a distributed con-

trol scheme for Problem 1 using distributed averaging or

consensus.

B. The Distributed Consensus Algorithm

Let G = (V , E) denote a network of m agents, where

V = {1, . . . ,m} is the set of vertices indexed by the set of

agents and E ⊆ V×V is the set of communication links. We

assume bidirectional communication links and so (i, j) ∈ E
if and only if (j, i) ∈ E . Such graphs are called undirected

and are the main focus of this paper. Furthermore, assume

G is such that there exists a path (i.e., a sequence of distinct

vertices such that consecutive vertices are adjacent) between

any two of its vertices. Then, we say that G is connected. Any

vertices i and j of an undirected graph G that are joined by

a link (i, j) ∈ E), are called adjacent or neighbors. Hence,

we can define the set of neighbors of agent i by Ni , {j ∈
V | (i, j) ∈ E}.

In what follows, we make use of an equivalent algebraic

representation of a graph G = (V , E) using a laplacian

matrix

L = ∆ −A, (3)

where A = (aij) ∈ R
m×m corresponds to the adjacency

matrix of the graph G, which is such that aij = 1
|Ni|

if

(i, j) ∈ E and aij = 0 otherwise and ∆ = diag
(
∑n

j=1 aij

)

denotes the valency matrix.4 The spectral properties of the

laplacian matrix are closely related to graph connectivity. In

particular, if ν1 ≤ ν2 ≤ · · · ≤ νm are the ordered eigenvalues

of the laplacian matrix L, then ν1 = 0, with corresponding

eigenvector 1, and ν2 > 0 if and only if G is connected [28].

Hence, we have the following result.

3Note that if Σ1 and Σ2 do not differ in the i-th row, then the i-th row

of Σ1 − Σ2 is zero, which again results in [
PNp

j=1
(Σ1 − Σ2)ΣT

j ]ii = 0.
4Since we do not allow self-loops, we define aii = 0 for all i. Also,

|Ni| denotes the cardinality of the set Ni.
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Lemma 3.3 (Consensus on SP
n ): Let G denote a network

of m agents and assume that every agent i is associated with

a stochastic matrix Si ∈ SP
n . Then, the closed loop system

Ṡi = − 1

|Ni|
∑

j∈Ni

(Si − Sj), ∀ i = 1, . . . ,m, (4)

defines a consensus algorithm on the set of stochastic matri-

ces SP
n , and if G is connected, it guarantees that Si−Sj → 0

for all i, j as t→ ∞.

Proof: For all agents i, observe that
∑

j∈Ni
(Si −

Sj)1 = 0, which implies that Ṡi1 = 0. Hence, Si(t)1 = ci,

for any constant vector ci ∈ R
n and all time t ≥ 0. Since,

Si(0)1 = 1 for all agents i, we have that ci = 1 for all

i, and so Si(t)1 = 1 for all time t ≥ 0 and all agents

i. The fact that Si(t) ≥ 0 for all i and all time t ≥ 0
follows from the fact that Si(0) ∈ SP

n for all agents i
and the distributed averaging law (4), which ensures that

Si(t) ∈ conv{Sj(0) | j = 1, . . . ,m} for all time t ≥ 0.

Hence, Si(t) ∈ SP
n for all time t ≥ 0 and all agents i.

Consider now the Lyapunov function candidate

V (S) ,
1

2

m
∑

i=1

∑

j∈Ni

‖Si − Sj‖2
F =

1

2
trST (L⊗ In)S,

where ⊗ denotes the Kronecker product of matrices and S =
[ST

1 . . . ST
m]T ∈ R

mn×m. Taking the time derivative of

V (S) we get

V̇ (S) =
1

2
trṠT (L⊗ In)S +

1

2
trST (L ⊗ In)Ṡ

= −trST (L ⊗ In)T (L⊗ In)S

= −‖(L⊗ In)S‖2
F ≤ 0.

The set of critical points satisfies (L⊗ In)S = 0 and if the

network is connected, then Si − Sj → 0 as t→ ∞.

If we initialize consensus (4) according to the assumptions

of Lemma 3.2, then the law of large numbers implies that for

sufficiently large numberm of agents, the asymptotic limit of

the consensus approximates the optimal solution S⋆. In other

words, Lemmas 3.2 and 3.3 provide a distributed algorithm

for Problem 1, as desired.

IV. CONSENSUS PERFORMANCE

In this section we characterize the performance of the

consensus update (4) for a given number of agents m. In par-

ticular, given a set of 0-1 stochastic matrices {Σij}i=1,...,m
j=1,...,ki

,

with ki > 0 the number of such matrices associated with

agent i, and recalling that (Lemma 2.1)

Si =
1

αT
i 1

ki
∑

j=1

αijΣij ,

where αi = [αi1 . . . αiki
]T is a vector of positive weights, we

are interested in the solution of the following optimization

problem

min
αij≥0

P (‖vec(S) − vec(S⋆)‖2 ≥ ǫ)

s.t. S , 1
m

∑m
i=1 Si, Si = 1

αT
i
1

∑k
j=1 αijΣij

(5)

for any ǫ > 0, where S and S⋆ are the limit of the consensus

update (4) and the sought expectation, respectively, and

vec : R
n×n → R

n2

denotes the vectorization of an n × n
matrix. Optimization problem (5) is, in general, hard to solve.

Instead, we solve the simpler relaxation

min
αij≥0

Var(vec(S))

s.t. S , 1
m

∑m
i=1 Si, Si = 1

αT
i
1

∑k
j=1 αijΣij ,

(6)

which results from an application of Chebyshev’s inequality

P (‖vec(S) − vec(S⋆)‖2 ≥ ǫ) ≤ Var(vec(S))

ǫ2
,

where the variance Var(vec(S)) is defined as [29, pp. 446–

451]

Var(vec(S)) , E
(

‖vec(S) − E(vec(S))‖2
2

)

.

In particular, we have the following result.

Lemma 4.1: Problem (6) has a unique minimum obtained

when αi = ci1, for any set of scalars ci > 0 and all agents

i = 1, . . . ,m.

Proof: Let βij , αij/α
T
i 1. Then,

∑ki

j=1 βij = 1 for

all i = 1, . . . ,m and using Lemma 1.1 in the Appendix, the

the objective function becomes

Var(vec(S)) =
1

m2

m
∑

i=1

Var(vec(Si))

=
1

m2

m
∑

i=1

ki
∑

j=1

β2
ijVar(vec(Σij)),

by independence of the 0-1 stochastic matrices Σij . Hence,

the optimization problem (6) is equivalent to

minβij≥0

∑m

i=1

∑ki

j=1 β
2
ij

s.t.
∑ki

j=1 βij = 1 ∀ i = 1, . . . ,m,
(7)

which is separable, and so corresponds to the solution of m
copies of the problem

minβij≥0

∑ki

j=1 β
2
ij

s.t.
∑ki

j=1 βij = 1,
(8)

It can be shown that the solution to problem (8) is βij = 1
ki

for all j = 1, . . . , ki, which along with its convex nature,

completes the proof.

In other words, Lemma 4.1 implies that in order to increase

the performance of the consensus update (4), every agent i
should initialize its stochastic matrix Si = 1

αT
i
1

∑ki

j=1 αijΣij

with equal weights αij .

V. SIMULATIONS

In this section we simulate the distributed consensus

algorithm discussed in Sections III and IV. In particular, for

the pattern illustrated in Fig. 1 and ki = 5 for all agents

i, we construct the initial samples Si = 1
αT

i
1

∑ki

j=1 αijΣij

choosing the 0-1 stochastic matrices Σij uniformly in the

set SP
n and the positive weights αij either randomly or
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2

3

4

5

6

7

8

9

10

Fig. 1. Markov chain of size n = 10.

uniformly, as discussed in Section IV. Following is the initial

stochastic matrix Si of a sample agent i:

Si =











.2 0 .4 0 0 0 0 0 0 .4
0 .4 .6 0 0 0 0 0 0 0
0 .6 0 .2 .2 0 0 0 0 0
0 0 .6 0 .2 .2 0 0 0 0
0 0 0 .2 .2 0 .6 0 0 0
0 0 0 0 .4 .4 .2 0 0 0
0 0 0 0 0 .4 0 .4 .2 0
0 0 0 0 0 0 .2 .2 .6 0
.2 0 0 0 0 0 0 .4 .2 .2
.6 0 0 0 0 0 0 0 0 .4











We run the consensus update (4) developed Section III

for different numbers of agents m and the results are shown

in Table I and the associated Fig. 2. Note that the larger

the number of agents, the better the approximation of the

sought expectation S⋆, as predicted by the law of large

numbers. Furthermore, choosing the weights αij uniformly

results in a better performance of the algorithm, as discussed

in Section IV. Following is the final stochastic S for the case

of m = 100 agents and uniform weights:











.2501 .2813 .2502 0 0 0 0 0 0 .2183

.2432 .2674 .2638 .2257 0 0 0 0 0 0
0 .2079 .2484 .2916 .2521 0 0 0 0 0
0 0 .2377 .2514 .2867 .2242 0 0 0 0
0 0 0 .2313 .2311 .2797 .2580 0 0 0
0 0 0 0 .2302 .2473 .2871 .2354 0 0
0 0 0 0 0 .2487 .2415 .2654 .2443 0
0 0 0 0 0 0 .2134 .2422 .2746 .2698

.2619 0 0 0 0 0 0 .2570 .2313 .2498

.2448 .2434 0 0 0 0 0 0 .2498 .2620











Note that S approximates well the transition matrix S⋆ with

the the fastest mixing rate, which for the particular example

has all positive entries equal to 0.25.

VI. CONCLUSIONS

In this paper, we considered the problem of determining

the fastest mixing Markov chain with a desired sparsity pat-

tern, captured by a stochastic transition matrix. We developed

TABLE I

THE COST FUNCTIONψ(S) AFTER APPLYING CONSENSUS (4) FOR THE

MARKOV CHAIN SHOWN IN FIG. 1.

ki = 5, ∀ i
Number of agents m

5 10 20 50 100

Random αi
.9678 .8591 .7993 .7755 .7605
±.0636 ±.0474 ±.0152 ±.0051 ±.0012

Uniform αi
.9252 .8367 .7863 .7680 .7587
±.0472 ±.0324 ±.0085 ±.0033 ±.0010
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Fig. 2. Plot of the cost function ψ(S) obtained by applying consensus (4)
for the pattern illustrated in Fig. 1, corresponding to the data presented
in Table I. Note that the larger the number of agents, the better the
approximation of the sought expectation S⋆. Moreover, uniform weights
αij ≥ 0 result in better performance, as discussed in Section IV. The
communication networks G underlying the consensus algorithm are taken
to be random and connected.

a novel distributed relaxation to the problem by constructing

differential flows on the set of stochastic matrices. In par-

ticular, we defined a probability distribution over the set of

stochastic matrices and associated an agent with any random

matrix drawn from this distribution. Under the assumption

that the network of agents is connected, we employed

consensus to achieve agreement of all agents independent of

their initial states. For sufficiently many agents, we showed

that the asymptotic consensus limit converged to the mean

stochastic matrix, which for the distribution under consid-

eration, corresponded to the chain with the fastest mixing

rate. The proposed distribution as well as the desired sparsity

patterns, relied on results that express general stochastic

matrices as convex combinations of 0-1 stochastic matrices.

Due to its differential and distributed nature, our approach

can handle large problems and seems likely to be well suited

for applications in distributed control and robotics. Future

work involves determining more quantitative bounds on the

number of agents required to obtain almost optimal solutions,

as well as applications in distributed robotics, in the context

of probabilistic mapping of environments and target tracking.
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APPENDIX

In this section we show a generalization of the well known

identity Var(aX + bY ) = a2Var(X) + b2Var(Y ) [25]

for X,Y ∈ R independent identically distributed random

variables, to the case of random vectors. In particular, we

have the following result.

Lemma 1.1: Let X,Y ∈ R
n be independent identically

distributed random vectors with mean E(X) = E(Y ) = µ ∈
R

n and let Var(X) , E‖X − E(X)‖2
2 (similarly for Y )

[29, pp. 446–451]. Then, Var(aX + bY ) = a2Var(X) +
b2Var(Y ), for any scalars a, b ∈ R.

Proof: Observe first that

Var(X) = E(X − µ)T (X − µ)

= E(XTX) − 2E(XT )µ+ µTµ = E‖X‖2
2 − ‖µ‖2

2,

and similarly Var(Y ) = E‖Y ‖2
2 − ‖µ‖2

2. Then,

Var(aX + bY ) = E‖aX + bY − E(aX + bY )‖2
2

= E‖aX + bY − (a+ b)µ‖2
2

= E‖aX + bY ‖2
2 − (a+ b)2‖µ‖2

2

= a2
E‖X‖2

2 + 2abE(XT )E(Y ) + b2E‖Y ‖2
2 − (a+ b)2µ2

= a2
(

E‖X‖2
2 − ‖µ‖2

2

)

+ b2
(

E‖Y ‖2
2 − ‖µ‖2

2

)

= a2Var(X) + b2Var(Y ),

which completes the proof.
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