
Abstract— In this paper a new fault accommodation 
algorithm based on a multi-level hierarchical architecture is 
proposed for satellite formation flying missions. This 
framework introduces a high level (HL) supervisor and two 
recovery modules: low level fault recovery (LLFR) and 
formation level fault recovery (FLFR). In the LLFR module, 
conventional recovery controller (RC) is implemented using 
fault severity estimation techniques. Due to imprecise fault 
estimation and the resulting ineffective recovery controller, the 
HL supervisor alerts violation of error bounds that are 
imposed by the mission specifications. The FLFR module is 
activated to compensate for the performance degradation of 
the faulty satellite by requiring the healthy satellites to allocate 
additional resources. Consequently, fault is cooperatively 
recovered by our proposed architecture, and the formation 
flying mission specifications are satisfied. Simulation results 
confirm the validity and effectiveness of our analytical work. 

I. INTRODUCTION

ORMATION flying is a new concept proposed for a cluster 
of satellites that calls for development of novel 

technologies. This new field has been surveyed in detail in 
[1] and [2], where five architectures are introduced for 
formation flying control (FFC), namely Multiple-Input 
Multiple-Output (MIMO), Leader/Follower (L/F), Virtual 
Structure (VS), Cyclic and Behavioral. Due to the strict 
high-precision control requirements that are necessary in 
position and attitude of satellites in formation flying 
missions, the problem of fault diagnosis has become 
critically significant in this field of study. 

Considerable research has already been devoted to fault 
diagnosis and recovery for the satellite’s attitude and orbital 
control systems (AOCS). In [3] adaptive control is applied 
to systems with actuator uncertainty and failure. In [4], a 
fault is assumed to belong to a finite set of parameters 
(modes), and a sliding mode controller is designed for 
accommodation of each mode in a hierarchical framework. 
In [5], by solving a Lyapunov equation, a robust state-space 
observer is proposed to simultaneously estimate descriptor 
system states, actuator faults, their finite time derivatives, 
and attenuate input disturbances in any desired accuracy. 
Moreover, a fault-tolerant control scheme is worked out 
using the estimates of descriptor states and faults, and the 
linear matrix inequality (LMI) technique. In [6], [7] an 
adaptive Kalman filtering algorithm is developed to estimate 
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the reduction of control effectiveness in a closed-loop 
setting. The state estimate is fed back to achieve steady-state 
regulation, while the control effectiveness estimate is used 
for on-line tuning of the control law. In [8], [9] the authors 
designed an iterative learning observer (ILO), which uses a 
learning mechanism instead of using integrators that are 
commonly used in classical adaptive observers.  
 Various methods have been proposed in the literature for 
the problem of fault recovery of a single satellite. However, 
none of these methods have properly introduced and 
investigated the concept of cooperative fault recovery and 
accommodation in formation flying satellites. In this paper, 
the fault accommodation problem in formation flying 
control (FFC) is investigated by using a cooperative scheme. 
This cooperative scheme is proposed by the authors in [10] 
for the special case of a two-satellite formation with absolute 
state measurements. In this paper, our cooperative fault 
accommodation framework is formulated for the general 
case of multiple-satellite formation with relative 
measurements in deep space. In our cooperative fault 
accommodation framework, once a fault is recovered by the 
low-level fault recovery (LLFR) controller using the fault 
parameter estimate, the performance of the LL-recovered 
satellite with respect to the mission specifications is 
determined by the high level (HL) “supervisor”, which is 
represented as a discrete-event system (DES) [11]. In case 
that the LL-recovered satellite violates the mission error 
specifications, the supervisor activates the formation-level 
fault recovery (FLFR) module, in which all other satellites 
will try to compensate for the performance degradation of 
the partially LL-recovered satellite. Hence, the fault is 
cooperatively accommodated by the LLFR and FLFR 
modules. This is the main idea behind our multi-level 
cooperative fault accommodation scheme proposed in this 
work.

II. PROBLEM FORMULATION

Consider the four-satellite formation depicted in Fig. 1. 
Assume that the satellite #2 is faulty and partially recovered 
by the low-level fault recovery (LLFR) system. Therefore, it 
tracks the desired trajectory within an error bound of radius 
r . The entire purpose of formation-level fault recovery 
(FLFR) is to show that by restricting (decreasing) the input 
effort of satellite #2, at the expense of more input effort 
from other satellites #1, #3 and #4, one can reduce the error 
radius r  to meet the error specifications of the formation 
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mission. The main objective is to propose a framework and 
guidelines to optimally achieve the FLFR without resorting 
to any iterative trial-and-error procedure. 

Fig. 1. A four-satellite formation. 
In this work, a four-satellite formation in deep space, as 

shown in Fig. 1, is considered. However, the main results 
can be easily extended to the general case of n-satellite
formation. The model of the satellite #i is approximated by a 
double integrator on each of the three axes as follow: 
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where 3T
iii R)z,y,x(  is the three-dimensional position 

coordinates in the local inertial frame, and 
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 is the input force vector. The actuators 

are modeled by the gains 
ixb ,

iyb  and 
izb , and the 

environmental disturbances are represented by 
T

zyx )d,d,d( .

For simplicity, the following analysis ignores the effects 
of disturbances. However, later on in Section IV these 
effects are analyzed. Since the dynamics on the three axes 
are decoupled, for sake of simplicity and due to space 
limitations, we only consider the dynamics on the x-axis
although the results can be easily extended to the y- and z-
axes dynamics, that is we consider to have iii ubx .

The control approach implemented in this work is based 
on a conventional linear design technique. The solid lines in 
Fig. 1 represent the system outputs, for which a linear 
controller will be designed. In order to avoid output 
redundancy, three outputs (corresponding to three solid 
lines) are chosen. For each solid line, the corresponding 
output error and its first two derivatives are as follow: 

d
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where ijij xxx  is the relative position state between the 

two satellites #i and #j, and d
ijx  is the desired relative state. 

Therefore, in compact matrix form the second derivatives of 
output errors are expressed as follow: 
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Due to availability of high precision autonomous 
formation flying (AFF) sensors [12] in deep space, instead 
of imprecise measurements of absolute states ix  and ix ,
relative states ijx  and ijx  are measured and used in the 

formation feedback loop. Therefore, the control law 
resulting from the output error ije  is derived as follows: 

)t(peexubub ijij0ij1
d
ijiijj

which results in the closed-loop characteristic polynomial 
0ss 01

2 . Choosing the parameters 01  and 
00  properly, one can make the closed-loop system 

asymptotically stable. The matrix form of the three control 
laws corresponding to the three solid lines in Fig. 1 is as 
follow: 
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III. LOW-LEVEL FAULT RECOVERY

In order to determine the four control signals in 
T

4321 uuuuu , infinite solutions exist to the matrix 
equation (2). This shows that there exist many degrees of 
freedom in choosing the control inputs. In the following, we 
take advantage of this flexibility to optimize fuel 
consumption across the formation. The following cost 
function is considered in the constrained optimization 
problem 
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Solving the above minimization problem by the Lagrange 
method results in: 
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Replacing the original form of equation (3) into (1) we get 
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In the absence of any noise, disturbances and system 
uncertainties, the above shows that asymptotic stability is 
achieved by the LLFR module if the fault is accurately 
estimated. However, when there is only a partial or an 
inaccurate estimation/recovery of a fault, asymptotic 
stability is no longer achieved, and instead ultimate 
boundedness can be guaranteed. These results will be 
discussed in the next section where the FLFR module is 
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qualitatively and quantitatively formulated to tackle possible 
violations of the error specifications. 

IV. FORMATION-LEVEL FAULT RECOVERY

In case of a partially LL-recovered satellite due to biased 
estimates, that is 22 bb̂  or 22 bb̂ , where  is 
unknown but bounded ( B|| ) with B  known, we get 

T
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In comparison with equation (4), the matrix )t(D  in 
equation (5) will disturb and affect the asymptotic stability 
of the closed-loop system. Equation (5) consists of two 
disturbed subsystems ( 12e  and 23e ) and one asymptotically 
stable subsystem ( 34e ). The third subsystem ( 34e ) is 
asymptotically stable, so that its states approach to zero 
( 0e34  and 0e34 ). Therefore, one is left with the first 
two disturbed subsystems 12e  and 23e , for which the 
dynamic equation (5) yields: 

D)t(XA)t(X clp    , A)I(Aclp                        (7) 
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Our first result is given next. 
Lemma 1. Consider the matrix D  in equation (6), and 

assume that the coefficient 2  in equation (3) corresponds 
to the faulty satellite with partially estimated/recovered 
actuator kk bb̂  ( 2k  in this case). The parameters k

and kb̂  ( 2k  in this case) appear in the denominator and 
not numerator of the nonzero elements of the matrix D , and 

in order to decrease the norm of D , one should 
appropriately increase the coefficient 2 .

Proof. Let us start with equation (6) and rewrite it as 
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is the determinant and coM  is the cofactor (adjugate) of 

matrix Ĵ  in equation (6). We now have 
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The matrix F  has elements (.)f1 , (.)f 2 , (.)f3 , and 
(.)f4 , which can be shown to be functions of 

)b,b,b,,,( 431431 . Therefore, 2  and 2b̂  do not 
appear in the numerator of elements of matrix D  and 
instead appear in its denominator. Moreover, since the 
denominator DET  is a monotonically increasing function of 

2 , the norms |DET/(.)f| 1 , |DET/(.)f| 2 ,
|DET/(.)f| 3 , and |DET/(.)f| 4  are monotonically 

decreasing functions of 2 . This implies that the norm of 
D  is a monotonically decreasing function of 2  which 
completes the proof.                                                             
We are now in a position to state our main results. 

Theorem 1. To stabilize the nominal (disturbance free) 
system AX)I(X  given by equation (7), the FLFR 
module should choose a sufficiently large coefficient k  in 
(3) corresponding to the partially estimated/recovered 
actuator kk bb̂ .

Proof. We rearrange the nominal system AX)I(X
( A  is Hurwitz) into an equivalent closed-loop configuration 
of the following system S  and controller CON :

AXY
UAXX:S      , YU:CON
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where the system S  is controllable and observable. Let us 
take 

)]j(S[sup max
R

1

where max  denotes the maximum singular value of a 
complex matrix. 1  is finite since )j(S  is Hurwitz. 
Taking 2|||| , the controller CON  satisfies: 

||Y||||U|| 2

According to the small-gain theorem [13], [14] the sufficient 
condition for the overall closed-loop system stability is 

121 . Taking 1/1B , the sufficient condition 
becomes B|||| , which is equivalent to appropriately 
decreasing |||| , or alternatively, appropriately decreasing 

||D|| . The latter can be achieved by using Lemma 1-(b) 
where the coefficient k  is selected to be sufficiently large. 

Theorem 2. Assume that the nominal system 
AX)I(X  given in (7) is stable (Theorem 1). In order 

to decrease the norm of the error vector X  in equation (7), 
the FLFR module should appropriately increase the 
coefficient k  in (3) corresponding to the partially 

estimated/recovered actuator kk bb̂ .
Proof. Since the nominal system (7) is stable, and taking 

A)I(Aclp  as in (7), the error vector X  is governed 

by the dynamical system )t(D)t(XA)t(X clp  whose 

Laplace transform is given by 
)s(D)s(G)s(D)AsI()s(X 1

clp

(by neglecting the initial conditions) where 14iXX  and 

44ij )s(G)s(G  are the error vector and the transfer 

function matrix, respectively. Using the definition of )t(D
in (7), and id  ( 4,3,2,1i ) from Lemma 1, and 0q1  and 

0q2  as 
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we now have 
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where {.}L  represents the Laplace transform of a given 
signal. Let us define  

d
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where “ ” represents the convolution operator. We now 
express the error vector iX  in the time domain as follows 

iX
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i
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where the values of the parameters 1q , 2q , and iH  are 
known, and the parameter  is unknown ( B||  and B
is known). It follows that |)t(X| i  is bounded by a 
monotonically decreasing function of the parameter 02 .
This completes the proof of the theorem.

Let us now assume that an external (environmental) 
disturbance extD  that is bounded by extB  (i.e., 

extext B||D|| ) is applied to our system. Equation (8) should 
be modified as follows 

iXi TB|)t(X|
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One immediate conclusion is that by using the above 
method, one cannot certainly get a better (smaller) error than 

iT .
Since the estimation error  is unknown, Theorem 1 can 

not determine how much one should decrease the parameter 
2  in equation (8) to meet the desired mission error 

specifications that is determined by se . However, since  is 
bounded ( B|| ), and assuming that the bound B  is 
known a priori, a non-iterative (one shot) solution can be 
obtained as 
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which is a rather conservative solution. Therefore, one may 
prefer to deal with this problem from a probabilistic 
perspective as discussed next. 

From the probabilistic perspective, we assume that the 
probability distribution function of the estimation error  is 
known and is equal to )m(f . The objective is to find the 
parameter 2  such that the probability of violation of the 
error specification ( se ) is less than a predefined probability, 
namely  ( 10 ), that is 

)e|)t(X(|P si -1)e|)t(X(|P si

Considering the definition of 
iXB  in equation (8), it 

yields 
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. Therefore, determining 

the solution reduces to finding the coefficient 2  which 
satisfies the following expression 

-1dm)m(f
m

If the information regarding the probability distribution 
function of the estimation error  is not available, one 
conventional and practical solution would be to assume that 
it is uniformly distributed in the interval ]BB[ as given 
by 

otherwise0

BmB
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We now need to solve the following equation for 2 :
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The solution becomes 
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The solution in equation (9) is a special case (most 
conservative result, 0 ) of the solution in equation (11). 
However, one can improve the performance of the FLFR 
module by utilizing a more precise probability distribution 
function instead of the uniform distribution function that is 
used in equation (10). 

V. SIMULATION RESULTS

Consider the four-satellite deep space formation in the xy-
plane as shown in Fig. 1. The objective is a counter-
clockwise rotation maneuver in the xy-plane with the 
frequency of )s/rad(1.0 , such that the satellites 
always maintain a square shape with the side lengths of 

)m(200 . The desired formation outputs are the relative 
distances among the neighboring satellites. The major 
environmental disturbance in deep space is solar pressure 
[15], which is of the order )N(10 5 , and the sensor noise is 
an additive zero-mean white Gaussian process with the 
variance 410 .

For simulations, a %20  loss-of-effectiveness fault is 
applied to the x-axis actuator of the satellite #2, and the 
corresponding fault parameter is estimated within a %10
relative error, that is 1.0b/|bb̂|b/|| 22222 . Let 
satellite #2 be partially recovered by the LLFR module. The 
objective is to further accommodate this satellite by the 

FLFR to meet the desired error specification of 
)m(03.0es . Using the low-level (LL) recovery controller 

with the design parameters 20  and 31 , we consider 
the following three scenarios: 

(a) All the satellites are fault-free. In this case, we have 

ii bb̂  ( 4,3,2,1i ). Moreover, the optimization parameters 
are set equal to one another, i.e. 1i  ( 4,3,2,1i ). The 
maximum tracking error obtained is quite acceptable 
(namely, sem03.0m0001.0error ). Fig. 2-(a) shows 
the x-axis cumulative input effort, which is defined 
according to 

t

0

2
xixi d)(u)t(E      ( 4,3,2,1i )

(b) Satellite #2 is faulty and the fault is partially 
recovered by the LLFR module. In this case, the 
optimization parameters i  are taken from part (a), and the 
LL recovery controller is activated. Fig. 2-(b) shows the x-
axis cumulative input efforts. The maximum tracking error 
obtained is unacceptable (namely, 

sem03.0m072.0error ) due to the violation of the 
error specification se , and hence the faulty satellite is 
partially recovered by the LLFR controller. Therefore, the 
FLFR module is activated by the supervisor. 

(c) The partially LL-recovered satellite #2 is 
cooperatively accommodated by the FLFR module. In 
this case, all the optimization parameters i  are taken from 
part (a) except for the one corresponding to the partially LL-
recovered satellite ( 101 2 ). The simulation results for 

2  versus the disturbance norm ||D||  and the maximum 
tracking error se  are shown in Fig. 3-(a) and Fig. 3-(b), 
respectively. These figures indicate that the undesirable 
perturbations and the tracking error are decreased by 
increasing 2  at the formation level (FL). The analytical 
(for brevity, 40.0...,,10.0,05.0,00.0 ) and simulation 
results for 2  versus the maximum tracking error se  are 
simultaneously sketched in Fig. 4. In this figure to satisfy 
the error specification )m(03.0es , in Fig. 4, the 
simulation curve indicates that the minimum required 
parameter for 2  is 6.52 , whereas the analytical curves 
estimate it to be 4.32  ( 40.0 ), 4.52

( 20.0 ), 0.62  ( 15.0 ), and 6.72  ( 00.0 ,
most conservative result). Fig. 4 justifies the validity and 
effectiveness of our analytically estimated 2  when 
compared with the simulation result of the desired 2 . Fig. 
2-(c) and Fig. 2-(d) show the x-axis cumulative input efforts 
for the cases 62  and 102 , respectively. Comparing 
Fig. 2-(c) and Fig. 2-(d) with Fig. 2-(b), one can conclude 
that the more one increases the parameter 2  in the FLFR 
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process, the less satellite #2 will spend control effort, and 
the more other satellites will use control efforts to 
compensate for the deficiency of satellite #2. This is an 
interesting interpretation of the FLFR in favor of the 
partially LL-recovered satellite #2.

VI. CONCLUSIONS

The problem of fault accommodation in satellite 
formation flying was investigated based on a new 
hierarchical multi-level architecture. Two fault-recovery 
levels are designed in this framework, namely a low level 
fault recovery (LLFR) and a formation level fault recovery 
(FLFR). The LLFR utilizes conventional recovery methods 
based on fault severity estimation techniques. However, due 
to inexact estimation of a fault, the high level (HL) 
supervisor is able to detect potential violations of the 
mission specifications. Subsequently, the FLFR module is 
activated. At the formation level, the partially LL-recovered 
faulty satellite is further accommodated by the entire 
formation, at the cost of other healthy satellites spending 
more control efforts to compensate for the deficiency of the 
faulty satellite. The simulation results presented show that 
the FLFR module was capable of accommodating the faulty 
(partially LL-recovered) satellite in the formation and 
improved the overall formation performance. 
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                               (a)                                                 (b) 

                                (c)                                                (d) 
Fig. 2. The x-axis cumulative input effort for (a) the case of all satellites 

fault free, (b) faulty satellite #2 with LLFR: 12 , (c) faulty satellite #2 

with HLFR: 62 , and (d) faulty satellite #2 with HLFR: 102 .

                               (a)                                                  (b) 
Fig. 3. Simulation results for 2  versus (a) ||D||  and (b) se .

Fig. 4. The analytical and simulation results for 2  versus the maximum 

tracking error se .
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