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Abstract— In this work, we introduce a distributed
Lyapunov-based model predictive control method for nonlinear
systems with input constraints. The class of systems considered
arises naturally when new sensors, actuators and controllers
are added to already operating control loops to improve closed-
loop performance, taking advantage from the latest advances in
sensor/actuator network technology. Assuming that there exists
a Lyapunov-based controller that stabilizes the closed-loop
system using the pre-existing control loops, we propose to use
Lyapunov-based model predictive control to design two separate
predictive controllers that compute the optimal input trajecto-
ries in a distributed manner. The proposed distributed control
scheme preserves the stability properties of the Lyapunov-based
controller while satisfying input constraints and improving the
closed-loop performance. The theoretical results are illustrated
using a chemical process example.

I. INTRODUCTION

Optimal process operation and management of abnormal

situations during plant operation are major challenges in the

process industries. This realization has motivated extensive

research in the area of chemical process control to ensure safe

and efficient process operation. From a control architecture

standpoint, control systems traditionally utilize dedicated,

point-to-point wired communication links to measurement

sensors and control actuators to regulate process variables at

desired values. While this paradigm to process control has

been successful, we are currently witnessing an augmenta-

tion of the existing, dedicated local control networks, with

additional networked (wired and/or wireless) actuator/sensor

devices which have become cheap and easy-to-install the last

few years. Such an augmentation in sensor information and

networked-based availability of data has the potential [1], [2],

[3], [4], [5] to be transformative in the sense of dramatically

improving the ability of the control systems to optimize

process performance (i.e., achieving control objectives that

go well beyond the ones that can be achieved with dedicated,

local control systems) and prevent or deal with abnormal

situations more quickly and effectively (fault-tolerance). The

addition of networked sensors and actuators allows for easy

modification of the control strategy by rerouting signals,
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having redundant systems that can be activated automatically

when failures occur, and in general, they allow having

improved control over the entire plant.

However, augmenting dedicated, local control networks

with real-time sensor and actuator networks gives rise to the

need to redesign and coordinate separate control systems that

operate on a process. There are several ways to deal with this

problem. One is to design a centralized controller to decide

the manipulated inputs of all the actuators, and another one

is to design separate controllers that coordinate their actions

and take into account interactions between subsystems (i.e.,

distributed control architecture). Model predictive control

(MPC) is a natural control framework to deal with the

design of distributed control systems because of its ability

to handle input and state constraints, and also because it

can account for the actions of other actuators in computing

the control action of a given set of control actuators in

real-time. In the context of centralized control design using

MPC, a model of the overall process is used and the control

actions are computed while minimizing an overall objective

function. Usually, centralized MPC gives better closed-loop

performance compared with distributed MPC schemes. How-

ever, with the increase of optimization (decision) variables,

the computational complexity of a centralized MPC scheme

grows significantly, which may prohibit certain online MPC

applications with a large number of decision variables.

In the context of distributed MPC design, several dis-

tributed MPC schemes have been proposed in the literature

that deal with the coordination of separate MPC controllers

that communicate in order to obtain optimal input trajectories

in a distributed manner; see [8], [9] for reviews of results

in this area. In [10], the problem of distributed control

of dynamically coupled nonlinear systems that are subject

to decoupled constraints was considered. In [11], [12], the

effect of the coupling was modeled as a bounded disturbance

compensated using a robust MPC formulation. In [13], it was

proven that through multiple communications between dis-

tributed controllers and using system-wide control objective

functions, stability of the closed-loop system can be guaran-

teed. In [14] distributed MPC of decoupled systems (a class

of systems of relevance in the framework of multi-agents

systems) was studied. In our previous work [16], a distributed

MPC scheme was proposed for nonlinear processes without

explicit consideration of input constraints. Generally, the

computational burden of these distributed MPC schemes is

smaller compared to the one of the corresponding centralized

MPC schemes because of smaller optimization problems.

Within process control, important recent work on the subject
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of networked process control includes the development of a

quasi-decentralized control framework for multi-unit plants

that achieves the desired closed-loop objectives with minimal

cross communication between the plant units [15] and the

development of a two-tier control architecture for nonlinear

processes with heterogeneous measurements to improve the

closed-loop performance by taking advantage of additional

networked asynchronous, delayed measurements and control

actuators [20].

In the present work, we consider a class of nonlinear

control problems with input constraints that arises when

networked control systems which use new sensors and/or

actuators are added to already operating control loops to im-

prove closed-loop performance. In this case, it is desirable to

design the pre-exisitng control system and the new networked

control system in a way that they coordinate their actions.

To address this control problem, we introduce a distributed

model predictive control architecture where both the pre-

exisitng control system and the networked control system

are designed via Lyapunov-based model predictive control

(LMPC) theory. The proposed distributed MPC scheme coor-

dinates the actions of the two LMPCs in an efficient fashion,

preserves the stability properties of the Lyapunov-based

controller while satisfying input constraints and improving

the closed-loop performance, and it is computationally more

efficient compared to the corresponding centralized LMPC.

The theoretical results are illustrated using a chemical pro-

cess example.

II. PRELIMINARIES

A. Problem formulation

We consider nonlinear process systems with input con-

straints described by the following state-space model:

ẋ(t) = f(x(t))+g1(x(t))u1(t)+g2(x(t))u2(t)+k(x(t))w(t)
(1)

where x(t) ∈ Rnx denotes the state vector, u1(t) ∈ Rnu1

and u2(t) ∈ Rnu2 are two separate sets of possible control

(manipulated) inputs and w(t) ∈ Rnw denotes the vector

of disturbance. The two inputs are restricted to be in two

nonempty convex sets U1 ⊆ Rnu1 and U2 ⊆ Rnu2 which

are defined as follows:

Ui := {ui ∈ Rnui : |ui| ≤ umax
i }1, i = 1, 2

where umax
i , i = 1, 2 are the magnitudes of the input

constraints. The disturbance vector is bounded, i.e., w(t) ∈
W where

W := {w ∈ Rnw s.t. |w| ≤ θ, θ > 0}.

We assume that f, g1, g2, k are local Lipschitz vector

functions and that the origin is an equilibrium of the unforced

nominal system (i.e., system (1) with u1 = 0, u2 = 0
and w = 0) which implies f(0) = 0. We also assume

that the state x of the system is sampled synchronously and

continuously and the time instants that we have measurement

samplings are indicated by the time sequence {tk≥0} with

1| · | denotes Euclidean norm of a vector.

tk = t0 + k∆, k = 0, 1, . . . where t0 is the initial time and

∆ is the sampling time.

B. Lyapunov-based controller

We assume that there exists a Lyapunov function V (x) for

the nominal closed-loop system with u2 = 0, which implies

the nominal system can be stabilized using only u1. Based on

this assumption, the following continuous bounded control

law [17], [18], [19] (i.e., u1 = h(x)) can be constructed

to stabilize the nominal system asymptotically satisfying the

input constraint on u1 for suitable initial conditions:

h(x) = −a(x)Lg1
V (x) (2)

where

a(x) =











Lf V +
√

(Lf V )2+(umax

1
Lg1

V )
4

(Lg1
V )2

[

1+
√

1+(umax
1

Lg1
V )

2

] , Lg1
V 6= 0

0 , Lg1
V = 0

with LfV = ∂V
∂x

|xf(x) and Lg1
V = ∂V

∂x
|xg1(x) being the

Lie derivatives of the scalar function V with respect to the

vector fields f and g1 respectively.

We denote Ωρ ⊆ D ⊆ Rnx as the stability region of

the closed-loop nominal system (w = 0) of system (1)

under the control u1 = h(x) and u2 = 0 where D is an

open neighborhood of the origin. Using converse Lyapunov

theorems, it also implies that there exist class K2 functions

αi(·), i = 1, 2, 3, 4 that satisfy the following inequalities

α1(|x|) ≤ V (x) ≤ α2(|x|)
V (x)
∂x

|x(f(x) + g1(x)h(x)) ≤ −α3(|x|)

|∂V (x)
∂x

| ≤ α4(|x|)

(3)

for all x ∈ Ωρ and w ∈ W .

By continuity and the local Lipschitz property assumed

for f , there exists a positive constant M such that

|f(x)| ≤ M (4)

for all x ∈ Ωρ. In addition, by the continuous differentiable

property of the Lyapunov function V and the Lipschitz

property of f, g1, g2 and k, there exist positive constants

Lx, Lu1
, Lu2

and Lw such that

|∂V
∂x

|xf(x) − ∂V
∂x

|x′f(x′)| ≤ Lx|x − x′|

|∂V
∂x

|xg1(x) − ∂V
∂x

|x′g1(x
′)| ≤ Lu1

|x − x′|

|∂V
∂x

|xg2(x) − ∂V
∂x

|x′g2(x
′)| ≤ Lu2

|x − x′|

|∂V
∂x

|xk(x)| ≤ Lw

(5)

for all x, x′ ∈ Ωρ. These constants will be used in the proof

of Theorem 1 in section III-B.

Remark 1: The assumption that there exists a controller

u1 = h(x) which can stabilize the closed-loop system with

u2 = 0 implies that, in principle, it is not necessary to use the

extra input u2 in order to achieve closed-loop stability. How-

ever, one of the main objectives of the proposed distributed

MPC scheme is to profit from the extra control effort to

improve the closed-loop performance while maintaining the

stability properties achieved by only implementing u1.

2Class K functions are strictly increasing functions of their argument and
satisfy α(0) = 0.
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C. Centralized LMPC

To take advantage of both sets of manipulated inputs u1

and u2, a possible approach is to design a centralized MPC.

In order to guarantee robust stability of the closed-loop

system, the MPC must include a set of stability constraints.

To do this, we propose to use the LMPC scheme proposed

in [21] which guarantees practical stability of the closed-

loop system, allows for an explicit characterization of the

stability region. LMPC is based on uniting receding horizon

control with Lyapunov functions and computes the manip-

ulated input trajectory solving a finite horizon constrained

optimal control problem. The LMPC controller is based on

the previously designed Lyapunov-based controller h. The

controller h is used to define a contractive constraint for

the LMPC scheme which guarantees that the LMPC inherits

the stability and robustness properties of the Lyapunov-based

controller.

The LMPC scheme introduced in [21] is based on the

following optimization problem

min
uc1,uc2∈S(∆)

∫ N∆

0

[x̃T Qcx̃ + uT
c1Rc1uc1 + uT

c2Rc2uc2]dτ (6a)

˙̃x(τ) = f(x̃) + g1(x̃)uc1(τ) + g2(x̃)ui2(τ) (6b)

x̃(0) = x(tk) (6c)

uc1(τ) ∈ U1 (6d)

uc2(τ) ∈ U2 (6e)

Lg1
V (x(tk))uc1(0) + Lg2

V (x(tk))uc2(0)

≤ Lg1
V (x(tk))h(x(tk)) (6f)

where Lg1
V (x(tk)) = ∂V

∂x
|x(tk)g1(x(tk)) and

Lg2
V (x(tk)) = ∂V

∂x
|x(tk)g2(x(tk)) are the Lie derivatives of

V with respect to the vector fields g1 and g2 respectively,

S(∆) is the family of piece-wise constant functions with

sampling period ∆, Qc, Rc1 and Rc2 are positive definite

weight matrices that define the cost, x(tk) is the state

measurement obtained at tk, x̃ is the predicted trajectory of

the nominal system for the input trajectory computed by the

LMPC, N is the prediction horizon and V is the Lyapunov

function corresponding to the controller h(x).
The optimal solution to this optimization problem is

denoted by u∗
c1(τ |tk) and u∗

c2(τ |tk). The LMPC controller

is implemented with a receding horizon scheme; that is,

at each sampling time tk, the new state x(tk) is received

from the sensors, the optimization problem (6) is solved,

and u∗
c1(0|tk) and u∗

c2(0|tk) are applied to the closed-loop

system for t ∈ [tk, tk+1). In what follows, we refer to this

controller as the centralized LMPC. The manipulated inputs

of the closed-loop system under the above centralized LMPC

are defined as follows

u1(t) = u∗
c1(0|tk), ∀t ∈ [tk, tk+1)

u2(t) = u∗
c2(0|tk), ∀t ∈ [tk, tk+1).

(7)

III. DISTRIBUTED LMPC

A. Distributed LMPC formulations

For a nonlinear MPC scheme, the computational com-

plexity is a very important issue. It is well known that the

Process

Sensors

x

LMPC 1

u1

LMPC 2

x

u2

Fig. 1. Distributed LMPC control system.

computational complexity of a nonlinear MPC optimization

problem grows significantly with the increase of the iteration

times and the number of optimization (decision) variables.

High computational complexity may prohibit the application

of an MPC scheme because of the real-time requirements

of control systems. The computation delays introduced by

an MPC to the controller-actuator link may deteriorate

the closed-loop performance significantly. Using distributed

MPC schemes instead of centralized MPC schemes is a pos-

sible approach to handle the high computational complexity

problem of centralized MPC problems.

The main objective of the proposed distributed LMPC

scheme is to reduce the computational burden in the evalu-

ation of the optimal manipulated inputs u1 and u2, while

satisfying the input constraints and maintaining the per-

formance of the closed-loop system at a very close level

to the one attained when the centralized LMPC is used.

Note that in general, the coordination of two controllers

to regulate the same process is a difficult problem. In the

present work, we design two separate LMPC schemes to

compute u1 and u2, respectively. We refer to the LMPC

schemes computing the trajectories of u1 and u2 as LMPC 1

and LMPC 2, respectively. Figure 1 shows a schematic of

the proposed distributed scheme. We propose to use the

following implementation strategy:

1) At each sampling instant tk, both LMPC 1 and

LMPC 2 receive the state measurement x(tk) from the

sensors.

2) LMPC 2 evaluates the optimal input trajectory of u2

based on the current state measurement and sends the

optimal input trajectory to the corresponding actuators

and to LMPC 1.

3) Once LMPC 1 receives the optimal input trajectory of

u2 from LMPC 2, it evaluates the optimal trajectory

of u1 based on the current state measurement and the

optimal trajectory of u2 decided by LMPC 2.

4) LMPC 1 sends the optimal input trajectory of u1 to

the corresponding actuators.

First we define the LMPC 2 optimization problem. This

optimization problem depends on the latest state measure-

ment x(tk), however, LMPC 2 does not have any information

about the value that u1 will take. In order to make a decision,

LMPC 2 must assume a trajectory for u1 along the prediction

horizon. To this end, the Lyapunov-based controller u1 =
h(x) is used. In order to inherit the stability properties of

this controller, u2 must satisfy a contractive constraint that

guarantees a given minimum decrease rate of the Lyapunov

function V . The LMPC 2 controller is based on the following
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optimization problem:

min
ui2∈S(∆)

∫ N∆

0

[x̃T Qcx̃ + uT
i1Rc1ui1 + uT

i2Rc2ui2]dτ (8a)

˙̃x(τ) = f(x̃) + g1(x̃)ui1(τ) + g2(x̃)ui2(τ) (8b)

ui1(τ) = h(x̃(j∆)),∀ τ ∈ [j∆, (j + 1)∆] (8c)

x̃(0) = x(tk) (8d)

ui2(τ) ∈ U2 (8e)

Lg2
V (x(tk))ui2(0) ≤ 0 (8f)

where x̃ is the predicted trajectory of the nominal system

with u2 being the input trajectory computed by the LMPC

and u1 being the Lyapunov-based bounded control law h(x)
applied in a sample and hold fashion and j = 0, 1, · · · , N−1.

The optimal solution to this optimization problem is

denoted by u∗
i2(τ |tk). This information is sent to LMPC 1.

Constraint (8c) defines the manipulated input u1 which

is based on the bounded Lyapunov-based control law (2),

constraint (8e) defines the constraint on the manipulated

input u2, constraint (8f) guarantees that the value of the

time derivative of the Lyapunov function, V̇ , at the initial

evaluation time, if u1 = h(x) and u2 = u∗
i2(0|tk) are applied,

is lower than or equal to the value obtained when u1 = h(x)
and u2 = 0 are applied.

The LMPC 1 optimization problem depends on the latest

state measurement x(tk), and the decision taken by LMPC 2,

u∗
i2(τ |tk). This allows the LMPC 1 to compute an input u1

such that the closed-loop performance is optimized, while

guaranteeing that the stability properties of the Lyapunov-

based controller are preserved. Specifically, the LMPC 1

controller is based on the following optimization problem:

min
ui1∈S(∆)

∫ N∆

0

[x̃T Qcx̃ + uT
i1Rc1ui1 + u∗T

i2 Rc2u
∗
i2]dτ (9a)

˙̃x = f(x̃) + g1(x̃)ui1(τ) + g2(x̃)u∗
i2(τ |tk) (9b)

x̃(0) = x(tk) (9c)

ui1 ∈ U1 (9d)

Lg1
V (x(tk))ui1(0) ≤ Lg1

V (x(tk))h(x(tk)) (9e)

where x̃ is the predicted trajectory of the nominal sys-

tem with u2 being the optimal input trajectory u∗
i2(τ |tk)

computed by LMPC 2 and u1 being the input trajectory

computed by LMPC 1. The optimal solution to this opti-

mization problem is denoted by u∗
i1(τ |tk). Constraint (9d)

defines the constraint on the manipulated input u1 and

constraint (9e) guarantees that the value of the time derivative

of the Lyapunov function, V̇ , at the initial evaluation time,

if u1 = u∗
i1(0|tk) and u2 = u∗

i2(0|tk) are applied, is lower

than or equal to the value obtained when u1 = h(x) and

u2 = u∗
i2(0|tk) are applied.

Once both optimization problems are solved, the manipu-

lated inputs of the proposed distributed LMPC scheme with

input constraints based on the LMPC 1 and LMPC 2 are

defined as follows:

u1(t) = u∗
i1(0|tk), ∀t ∈ [tk, tk+1)

u2(t) = u∗
i2(0|tk), ∀t ∈ [tk, tk+1).

(10)

The stability property of the distributed LMPC scheme

(10) is presented in Theorem 1 in section III-B.

Remark 2: Since the computational burden of nonlinear

MPC schemes is usually high, the proposed distributed

LMPC scheme (10) only requires LMPC2 and LMPC 1 to

“talk” once every sampling time (that is, LMPC 2 sends

its optimal input trajectory to LMPC 1) to minimize the

communication between the two LMPC controllers. This

strategy is more robust when communication between the

distributed LMPCs can be subject to disruptions.

Remark 3: Constraints (8f), (9b) and (9e) are a key el-

ement of the proposed distributed LMPC scheme (10). In

general, guaranteeing closed-loop stability of a distributed

control scheme is a difficult task because of the interactions

between the separate controllers and can only be done under

certain assumptions (see, for example, [22], [23], [24]). Con-

straint (9b) guarantees that LMPC 1 takes into account the

effect of LMPC 2 to the applied inputs (recall that LMPC 2 is

designed without taking LMPC 1 into account). Constraints

(8f) and (9e) together with the hierarchical control strategy

(i.e., LMPC 2 is solved first and LMPC 1 is solved second)

guarantee that the value of the Lyapunov function of the

closed-loop system is a decreasing sequence of time with a

lower bound.

Remark 4: Note that the stability of the closed-loop sys-

tem is inherited from the Lyapunov-based controller u1 =
h(x). Once the contractive constraints (8f) and (9e) are

satisfied, the closed-loop stability is guaranteed. The main

purpose of LMPC 1 and LMPC 2 is to optimize the inputs

u1 and u2. Thus, during the evaluation of the optimal

solutions of LMPC 1 and LMPC 2 within a sampling period,

we can terminate the optimization (i.e., limit the function

evaluation times in the process of searching for the optimal

solutions) to obtain sub-optimal input trajectories without

loss of the closed-loop stability. An extreme application of

this idea is when the optimization process is terminated at

the beginning of every optimization process which gives the

inputs: u1(t) = h(x(tk)) and u2(t) = 0 for t ∈ [tk, tk+1).
Remark 5: In the proposed distributed LMPC scheme

(10), LMPC 2 and LMPC 1 are evaluated in sequence,

which implies that the minimum sampling time of the

system should be greater than or equal to the sum of the

evaluation times of LMPC 2 and LMPC 1. In order to

make the two distributed LMPC optimization problems to

be solved in parallel, LMPC 1 can use old input trajectories

of LMPC 2, that is, at tk, LMPC 1 uses u∗
2(t|tk−1) to define

its optimization problem. This strategy may introduce extra

errors in the optimization problem, however, and may not

guarantee closed-loop stability.

B. Distributed LMPC stability

In this subsection, we present the stability properties

of the proposed distributed LMPC scheme (10). In order

to guarantee the closed-loop stability under the proposed

distributed LMPC scheme (10), we propose to follow a

Lyapunov-based approach. The main idea, is that u1 and u2

have been computed in a way such that in the closed-loop
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system, the value of the Lyapunov function at time instant

tk (i.e., V (x(tk))) is a decreasing sequence of values with a

lower bound. Following Lyapunov arguments, this property

guarantees practical stability of the closed-loop system. This

is achieved due to the contractive constraints (8f) and (9e).

This property is presented in Theorem 1 below.

Theorem 1: Consider system (1) in closed-loop under the

distributed LMPC scheme (10) with the bounded control

law (2) designed using the Lyapunov function V . Let ǫw > 0,

∆ > 0 and ρ > ρs > 0 satisfy the following constraint:

−α3(α
−1
2 (ρs)) + L∗ ≤ −ǫw/∆. (11)

with L∗ = LxM∆ + Lu1
Mumax

1 + Lu2
Mumax

2 + Lwθ. If

x(t0) ∈ Ωρ and if ρ∗ ≤ ρ where

ρ∗ = max{V (x(t + ∆)) : V (x(t)) ≤ ρs},

then the state x(t) of the closed-loop system is ultimately

bounded in Ωρ∗ .

Proof: The proof consists of two parts. We first prove that the

optimization problems (8) and (9) are feasible for all states

x ∈ Ωρ. Then we prove that, under the proposed distributed

LMPC scheme (10), the state of system (1) is ultimately

bounded in a region that contains the origin.

Part 1: We prove the feasibility of LMPC 2 first, and

then the feasibility of LMPC 1. All input trajectories of

u2(τ) such that u2(τ) = 0, ∀τ ∈ [0, N∆] satisfy the

input constraint (8e) and the contractive constraint (8f), thus

the feasibility of LMPC 2 is guaranteed. If x(tk) ∈ Ωρ,

the feasibility of LMPC 1 follows. All input trajectories

u1(τ) such that u1(τ) = h(x), ∀τ ∈ [0, N∆] are feasible

solutions to the optimization problem of LMPC 1 since

all such trajectories satisfy the input constraint (9d) which

is guaranteed by the property of h and the contractive

constraints (9e).

Part 2: From condition (3) and the constraints (8f) and

(9e), if x(tk) ∈ Ωρ it follows that

∂V (x)
∂x

|x(tk)(f(x(tk)) + g1(x(tk))u∗
i1(0|tk)

+g2(x(tk))u∗
i2(0|tk))

≤ ∂V (x)
∂x

|x(tk)(f(x(tk)) + g1(x(tk))h(x(tk)))

≤ −α3(|x(tk)|).

(12)

The time derivative of the Lyapunov function along the actual

state trajectory x(t) of system (1) in t ∈ [tk, tk+1] is given

by

V̇ (x(t)) = ∂V
∂x

|x(t)(f(x(t)) + g1(x(t))u∗
i1(0|tk)

+g2(x(t))u∗
i2(0|tk) + k(x(t))w(t)).

Adding and subtracting
∂V (x)

∂x
|x(tk)(f(x(tk)) +

g1(x(tk))u∗
i1(0|tk) + g2(x(tk))u∗

i2(0|tk)) and taking

into account (12) we obtain the following inequality

V̇ (x(t)) ≤ −α3(|x(tk)|) + ∂V
∂x

|x(t)(f(x(t))

+g1(x(t))u∗
i1(0|tk) + g2(x(t))u∗

i2(0|tk)

+k(x(t))w(t)) − ∂V (x)
∂x

|x(tk)(f(x(tk))

+g1(x(tk))u∗
i1(0|tk) + g2(x(tk))u∗

i2(0|tk)).

(13)

From (3), (5) and (13), the following inequality is obtained

for all x(tk) ∈ Ωρ/Ωρs

˙̃V (x(t)) ≤ −α3(α
−1
2 (ρs)) + (Lx + Lu1

u∗
i1(0|tk)

+Lu2
u∗

i2(0|tk))|x(t) − x(tk)| + Lw|w|.

Taking into account (4) and the continuity of x(t), the

following bound can be written for all t ∈ [tk, tk+1]

|x(t) − x(tk)| ≤ M∆.

Using this expression and the bounds on inputs u1 and u2,

we obtain the following bound on the time derivative of the

Lyapunov function for t ∈ [tk, tk+1], for all initial states

x(tk) ∈ Ωρ/Ωρs

V̇ (x(t)) ≤ −α3(α
−1
2 (ρs))

+(Lx + Lu1
umax

1 + Lu2
umax

2 )M + Lwθ.

If condition (11) is satisfied, then there exists ǫw > 0 such

that the following inequality holds for x(tk) ∈ Ωρ/Ωρs

V̇ (x(t)) ≤ −ǫw/∆

in t = [tk, tk+1]. Integrating this bound on t ∈ [tk, tk+1], we

obtain that

V (x(tk+1) ≤ V (x(tk)) − ǫw

V (x(t)) ≤ V (x(tk)), ∀t ∈ [tk, tk+1]
(14)

for x(tk) ∈ Ωρ/Ωρs
. Using (14) recursively it is proved

that, if x(t0) ∈ Ωρ/Ωρs
, the state converges to Ωρs

in a

finite number of sampling times without leaving the stability

region. Once the state converges to Ωρs
⊆ Ωρ∗ , it remains

inside Ωρ∗ for all times. This statement holds because

of the definition of ρ∗. This proves that the closed-loop

system under the proposed distributed LMPC scheme (10)

is ultimately bounded in Ωρ∗ .

Remark 6: Referring to Theorem 1, condition (11) guar-

antees that if the state of the closed-loop system at a sampling

time tk is outside the level set V (x(tk)) = ρs but inside

the level set V (x(t)k)) = ρ, the derivative of the Lyapunov

function of the state of the closed-loop system is negative

under the proposed distributed LMPC scheme (10).

Remark 7: Referring to Theorem 1, ρ∗ is the maximum

value that the Lyapunov function can achieve in a time period

of length ∆ when x(tk) ∈ Ωρs
. Ωρ∗ defines an invariant set

for the state x(t) under sample-and-hold implementation of

the inputs of the proposed distributed LMPC scheme (10).

IV. APPLICATION TO A REACTOR-SEPARATOR PROCESS

The process considered in this example is a three ves-

sel, reactor-separator process consisting of two continuously

stirred tank reactors (CSTRs) and a flash tank separator (see

Figure 2). A feed stream to the first CSTR F10 contains the

reactant A which is converted into the desired product B. The

desired product B can then further react into an undesired

side-product C. The effluent of the first CSTR along with

additional fresh feed F20 makes up the inlet to the second

CSTR. The reactions A → B and B → C (referred to as 1

and 2, respectively) take place in the two CSTRs in series

before the effluent from CSTR 2 is fed to a flash tank. The

overhead vapor from the flash tank is condensed and recycled

to the first CSTR and the bottom product stream is removed.

A small portion of the overhead is purged before being

recycled to the first CSTR. All the three vessels are assumed
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Q3

Fig. 2. Reactor-separator system with recycle.

TABLE I

NOISE PARAMETERS.

xA1 xB1 T1 xA2 xB2 T2 xA3 xB3 T3

σp 1 1 10 1 1 10 1 1 10
φ 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
θp 0.25 0.25 2.5 0.25 0.25 2.5 0.25 0.25 2.5

to have static holdup. The dynamic equations describing the

behavior of the system, obtained through material and energy

balances under standard modeling assumptions, are given

below:

dxA1

dt
=

F10

V1
(xA10 − xA1) +

Fr

V1
(xAr − xA1) − k1e

−E1

RT1 xA1

dxB1

dt
=

F10

V1
(xB10 − xB1) +

Fr

V1
(xBr − xB1) + k1e

−E1

RT1 xA1

−k2e
−E2

RT1 xB1

dT1

dt
=

F10

V1
(T10 − T1) +

Fr

V1
(T3 − T1) +

−∆H1

Cp

k1e
−E1

RT1 xA1

+
−∆H2

Cp

k2e
−E2

RT1 xB1 +
Q1

ρCpV1

dxA2

dt
=

F1

V2
(xA1 − xA2) +

F20

V2
(xA20 − xA2) − k1e

−E1

RT2 xA2

dxB2

dt
=

F1

V2
(xB1 − xB2) +

F20

V2
(xB20 − xB2) + k1e

−E1

RT2 xA2

−k2e
−E2

RT2 xB2

dT2

dt
=

F1

V2
(T1 − T2) +

F20

V2
(T20 − T2) +

−∆H1

Cp

k1e
−E1

RT2 xA2

+
−∆H2

Cp

k2e
−E2

RT2 xB2 +
Q2

ρCpV2

dxA3

dt
=

F2

V3
(xA2 − xA3) −

Fr + Fp

V3
(xAr − xA3)

dxB3

dt
=

F2

V3
(xB2 − xB3) −

Fr + Fp

V3
(xBr − xB3)

dT3

dt
=

F2

V3
(T2 − T3) +

Q3

ρCpV3
(15)

The model of the flash tank separator was derived under

the assumption that the relative volatility for each of the

species remains constant within the operating temperature

range of the flash tank. This assumption allows calculating

the mass fractions in the overhead based upon the mass

fractions in the liquid portion of the vessel. It has also been

assumed that there is a negligible amount of reaction taking

place in the separator. The following algebraic equations

model the composition of the overhead stream relative to

TABLE II

STEADY-STATE VALUES FOR u1s AND u2s .

Q1s 12.6×105[KJ/hr] Q3s 11.88×105[KJ/hr]

Q2s 13.32×105[KJ/hr] F20s 5.04[m3/hr]

TABLE III

STEADY-STATE VALUES FOR xs .

xA1s 0.605 xA2s 0.605 xA3s 0.346
xB1s 0.386 xB2s 0.386 xB3s 0.630
T1s 425.9[K] T2s 422.6[K] T3s 427.3[K]

the composition of the liquid holdup in the flash tank:

xAr =
αAxA3

αAxA3 + αBxB3 + αCxC3

xBr =
αBxB3

αAxA3 + αBxB3 + αCxC3

xCr =
αCxC3

αAxA3 + αBxB3 + αCxC3

(16)

Each of the tanks has an external heat input. The manip-

ulated inputs to the system are the heat inputs, Q1, Q2 and

Q3, and the feed stream flow rate to vessel 2, F20.

System (15) was numerically simulated using a standard

Euler integration method. Process noise was added to the

right-hand side of each equation in the system of ODEs of

(15) to simulate disturbances/model uncertainty and it was

generated as autocorrelated noise of the form wk = φwk−1+
ξk where k = 0, 1, . . . is the discrete time step of 0.001 hr,

ξk is generated by a normally distributed random variable

with standard deviation σp, and φ is the autocorrelation factor

and wk is bounded by θp, that is |wk| ≤ θp. Table I contains

the parameters used in generating the process noise.

We assume that the measurements of the temperatures

T1, T2, T3 and the measurements of mass fractions xA1,

xB1, xA2, xB2, xA3, xB3 are available synchronously and

continuously at time instants {tk≥0} with tk = t0+k∆, k =
0, 1, . . . where t0 is the initial time and ∆ is the sampling

time. For the simulations carried out in this section, we pick

the initial time to be t0 = 0 and the sampling time to be

∆ = 0.02 hr = 1.2 min.

The control objective is to regulate the system to the steady

state xs corresponding to the operating point defined by Q1s,

Q2s, Q3s of u1s and F20s of u2s. The steady-state values for

u1s and u2s and the values of the steady-state are given in

Table II and Table III, respectively. Taking this into account,

the process model (15) belongs to the following class of

nonlinear systems

ẋ(t) = f(x(t)) + g1(x(t))u1(t) + g2(x(t))u2(t) + w(x(t))

where xT = [x1 x2 x3 x4 x5 x6 x7 x8 x9] = [xA1 −
xA1s xB1 − xB1s T1 − T1s xA2 − xA2s xB2 − xB2s T2 −
T2s xA3 − xA3s xB3 − xB3s T3 − T3s] is the state, uT

1 =
[u11 u12 u13] = [Q1 − Q1s Q2 − Q2s Q3 − Q3s] and u2 =
F20 − F20s are the manipulated inputs which are subject to

the constraints |u1i| ≤ 106 KJ/hr (i = 1, 2, 3) and |u2| ≤
3 m3/hr, and w = wk is a time varying noise.

To illustrate the theoretical results, we consider a Lya-

punov function V (x) = xT Px where P is the following

weight matrix
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TABLE IV

TOTAL PERFORMANCE COST.

sim. Distr. Centr. sim. Distr. Centr.

1 65216 70868 9 79658 64342
2 70772 73112 10 65735 72819
3 57861 67723 11 62714 70951
4 62396 70914 12 76348 70547
5 60407 67109 13 49914 66869
6 83776 66637 14 89059 72431
7 61360 68897 15 78197 70257
8 47070 66818

P = diag3(5.2 · 1012Pv)

with Pv =
[

4 4 10−4 4 4 10−4 4 4 10−4)
]

.
The values of the weights in P have been chosen in such

a way that the Lyapunov-based controller (2) stabilizes the

closed-loop system and provides good closed-loop perfor-

mance.

Based on the Lyapunov-based controller (2), we design

the centralized and the proposed distributed LMPC schemes.

In the simulations, the same parameters are used for both

controllers. The prediction step is the same as the sampling

time, that is ∆ = 0.02 hr = 1.2 min; the prediction horizon

is chosen to be N = 6; and the weight matrices for the

LMPC schemes are chosen as

Qc = diag(103Qv)

with Qv =
[

2 2 0.0025 2 2 0.0025 2 2 0.0025
]

,

and Rc1 = diag(
[

5 · 10−12 5 · 10−12 5 · 10−12
]

) and

Rc2 = 100.

First, we have carried out a set of simulations to compare

the distributed LMPC scheme (10) with the centralized

LMPC scheme (6) with the same parameters from a per-

formance index point of view. Table IV shows the total cost

computed for 15 different closed-loop simulations under the

distributed LMPC scheme (10) and the centralized LMPC

scheme (6). To carry out this comparison, we have computed

the total cost of each simulation with different operating

conditions (different initial states and process noise) based

on the index of the following form

M
∑

i=0

x(ti)
T Qcx(ti) + u1(ti)

T Rc1u1(ti) + u2(ti)
T Rc2u2(ti)

where t0 is the initial time of the simulations and tM = 1 hr
is the end of the simulations. As we can see in Table

IV, the distributed LMPC scheme (10) has a cost lower

than the centralized LMPC scheme (6) in 10 out of 15

simulations. This illustrates that in this example, the closed-

loop performance of the distributed LMPC scheme (10) is

comparable to the one of the centralized LMPC scheme (6).

Moreover, we have studied the importance of communi-

cating optimal input trajectories of LMPC 2 to LMPC 1.

Figures 3 and 4 show the results under the distributed LMPC

scheme (10) with and without communication between the

two controllers from the initial state

x(0)T = [0.89 0.11 388.7 0.89 0.11 386.3 0.75 0.25 390.6].

3diag(v) denotes a diagonal matrix with its diagonal elements being the
elements of vector v.
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Fig. 3. State trajectories of system (15) under the distributed LMPC
scheme (10) with (dashed) and without (solid) communication between the
two controllers.
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Fig. 4. Input trajectories of system (15) under the distributed LMPC
scheme (10) with (dashed) and without (solid) communication between the
two controllers.

When there is communication, LMPC 2 sends its optimal

input trajectories to LMPC 1 as stated in the proposed

implementation strategy in section III-A; when there is no

communication, LMPC 2 does not send its optimal input

trajectory to LMPC 1 at a sampling time. In order to make

LMPC 1 work in the case of no communication, we use

the nominal value of u2 (i.e., u2 = F20s) to replace u∗
2 in

equation (9). From figure 3, we can see that the distributed

LMPC scheme (10) without communication between the

two controllers cannot stabilize the system at the required

steady-state. The result is expected because when there is no

communication between the two distributed controllers, they

cannot coordinate their control actions and each controller

views the input of the other controller as a disturbance and

tries to counteract for it.

Furthermore, we have carried out a set of simulations

to compare the computation time needed to evaluate the

distributed LMPC scheme (10) with that of the centralized

LMPC. The simulations have been carried out using Matlab

in a Pentium 3.20 GHz. The optimization has been solved

using the built-in function fmincom of Matlab. To solve the

ODE model (15), an Euler method with a fixed integration

time of 0.001 hr has been implemented in a mex DLL using

C programming language. For 50 evaluations, the mean time

to solve the centralized LMPC is 9.40 s; the mean times

to solve LMPC 1 and LMPC 2 are 3.19 s and 4.53 s,

respectively. From this set of simulations, we see that the

computation time needed to solve the centralized LMPC is

larger than the sum of the values for LMPC 1 and LMPC 2
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Fig. 5. State trajectories of system (15) under the distributed LMPC scheme
(10) with limited (solid lines) and unconstrained (dashed lines) evaluation
time.
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Fig. 6. Input trajectories of system (15) under the distributed LMPC scheme
(10) with limited (solid lines) and unconstrained (dashed lines) evaluation
time.

even though the closed-loop performance in terms of the total

performance cost is comparable to the one of the distributed

LMPC scheme (10). This is because the centralized LMPC

has to optimize both the inputs u1 and u2 in one optimization

problem and the distributed LMPC has to solve two smaller

(in terms of decision variables) optimization problems.

Following Remark 4, we have also carried out a set of

simulations to illustrate that the optimization processes of

LMPC 1 and LMPC 2 can be terminated at any time to get

sub-optimal solutions without loss of the closed-loop stabil-

ity. In this set of simulations, we assume that the allowable

evaluation times of LMPC 1 and LMPC 2 at each sampling

time are 1 s and 2 s, and we terminate the optimization

processes of LMPC 1 and LMPC 2 when they have been

carried out for 1 s and 2 s, respectively. The closed-loop state

and input trajectories under the distributed LMPC scheme

(10) with limited and unconstrained computation time are

shown in figures 5 and 6. From figure 5, we see that the

distributed LMPC scheme (10) with limited evaluation time

can stabilize the closed-loop system but the state responses

are slower, leading to a higher cost (57778) compared

with the one (47117) obtained under the distributed LMPC

scheme (10) with unconstrained computation time.

REFERENCES

[1] E. B. Ydstie, “New vistas for process control: Integrating physics and
communication networks,” AIChE Journal, vol. 48, pp. 422–426, 2002.

[2] J. F. Davis, “Report from NSF Workshop on Cyberinfrastructure

in Chemical and Biological Systems: Impact and Directions, (see

http://www.oit.ucla.edu/nsfci/NSFCIFullReport.pdf for the pdf file of
this report),” 2007.

[3] P. Neumann, “Communication in industrial automation - what is going
on?” Control Engineering Practice, vol. 15, pp. 1332–1347, 2007.

[4] P. D. Christofides, J. F. Davis, N. H. El-Farra, D. Clark, K. R. D.
Harris, and J. N. Gipson, “Smart plant operations: Vision, progress
and challenges,” AIChE Journal, Perspective article, vol. 53, pp. 2734–
2741, 2007.

[5] J. F. Davis and T. F. Edgar, “Report from NSF Roadmap De-

velopment Workshop on Zero-Incident, Zero-Emission Smart Man-

ufacturing, (see http://www.oit.ucla.edu/nsf-evo-2008/program/SPM-
Workshop-Report.pdf for the pdf file of this report),” 2008.
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