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Abstract— This paper is concerned with maximal pole place-
ment solutions for the Almost Disturbance Decoupling Problem
(ADDP) by static state feedback. It is shown that, when solving
ADDP by means of high gain state feedback, always are present
some fixed finite poles and poles close to infinity in the closed
loop system, which can not be freely assigned. A class of
“optimal” geometric subspaces with which maximal comple-
mentary pole placement can be achieved is characterized. A
reliable construction algorithm for such an optimal geometric
subspace (resp. the state feedback solution) is also proposed for
a particular class of linear systems. An example is proposed to
illustrate our contributions.

Index Terms— Linear systems; almost disturbance decou-
pling; fixed pole; infinite pole; pole placement.

I. INTRODUCTION

In classical as well as modern control theory, the problem

of (almost) disturbance decoupling occupies a central part.

Several important problems, such as robust, decentralized,

noninteracting, model reference or tracking control etc., are

linked to (almost) disturbance decoupling[1]. Regardless of

where the problem arises from, the basic (almost) disturbance

decoupling problem can be stated as follows: to design a

linear time invariant controller such that the system con-

trolled output is exactly (or approximately in a precise sense)

decoupled from the disturbance input while guaranteeing

the internal stability of the resulting closed-loop feedback

system.

The Almost Disturbance Decoupling Problem by static

state feedback (ADDP) was first introduced in [2]; it is an

alternative to the traditional disturbance decoupling problem

by state feedback (DDP) when this classical DDP is not

solvable. DDP was solved in [3] and [4] in terms of geomet-

ric conditions by introducing the key concept of controlled

invariant subspaces; ADDP has also been intensively studied

in [5] in a theoretical way (without considering numerical

solutions).

In many practical situations, almost (or exact) disturbance

decoupling is not the only control objective. One possible

use of the remaining degrees of freedom is often to add

other requirements such as model matching, particular pole

placement strategies,· · · This paper focuses on the pole
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assignability while solving ADDP (DDP) by static state

feedback. The DDP by state feedback with maximal pole

placement has been solved by introducing the concept of

fixed poles, see [6], [7]. But to the best of our knowledge,

for ADDP by state feedback and pole placement abilities,

there has been no general study, especially for the reliable

numerical solution.

The aim of this paper is to show how to get an optimal

solution of ADDP in the sense of maximal pole placement.

In fact, we will show, using the so-called geometric approach,

that, there also exist some fixed poles in ADDP, i.e. poles

which are present in the closed loop system after applying

any state feedback solution of ADDP. These fixed poles do

not depend on the choice of the control law but precisely on

the fact that this particular problem is being solved.

II. NOTATION AND GEOMETRIC PRELIMINARIES

We shall consider linear time-invariant disturbed systems

Σ(A,B,D,E) described by:

Σ :

{

ẋ(t) = Ax(t) + Bu(t) + Dq(t)

z(t) = Ex(t)

where x, u, q, and z are respectively the state, control

input, disturbance input, and output to be controlled. These

signals belong to the vector spaces X , U , Q, and Z ,

respectively.

Vectors are denoted by lower case letters, matrices/maps

by capitals and subspaces by script capitals. If A is a square

matrix, then σ(A) denotes its spectrum. If A : X 7→ Y and

V ⊆ X , the restriction of the map A to V is denoted by

A|V . If V1 and V2 are A-invariant subspaces and V2 ⊆ V1,

the map induced by A in the quotient space V1/V2 is denoted

by A|V1/V2. To simplify, we sometimes use B in place of

ImB, the image of B and K in place of KerE, the kernel

of E. ⊕ denotes direct sum of subspace, ⊎ denotes union of

sets with common elements repeated.

Let us denote Σ(A,B)x := {x(t) : [0,∞) → X ; x(t)
is a.c.(absolutely continuous), and ẋ(t) − Ax(t) ∈ ImB
a.e.(almost everywhere)}, and similarly Σ(A,[B|D])x :=
{x(t) : [0,∞) → X ; x(t) is a.c., and ẋ(t) − Ax(t) ∈
ImB + ImD a.e.}.

If X is a normed vector space, with norm ‖.‖, and L a

subspace of X , then for any x ∈ X , its distance to L is

denoted as: d(x,L ) := infy∈L ‖x − y‖.

For any measurable function, say W : [0,∞) → X , we
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say that W ∈ Lp[0,∞) if ‖W‖Lp

< +∞, where:

‖W‖Lp

:=

{

(∫ ∞

0
‖W (t)‖

p
dt

)1/p
for 1 ≤ p < ∞

ess supt≥0 ‖W (t)‖ for p = ∞

The reachable space of Σ (by the control u) is denoted by

〈A|B〉 := B + AB + A2B + · · ·+ An−1B, where n is the

dimension of X .

A subspace V ⊂ X is called (A,B) (or controlled)-

invariant if there exists F : X → U such that (A +
BF )V ⊂ V . F is called a friend of V and we denote

F (V ) the set of all such F .

A subspace R ⊂ X is called an (A,B) controllability

subspace if there exist F : X → U , and G : Y → U ,

with Y ⊂ U , such that: R := 〈A + BF |Im(BG)〉.
A subspace Va ⊂ X is called an almost (A,B) (or

controlled)-invariant subspace if for any x0 ∈ Va and for

any ǫ > 0 there exists a state trajectory xǫ ∈ Σ(A,B)x with

the properties that xǫ(0) = x0 and d(xǫ(t),Va) ≤ ǫ, for any

t ≥ 0.

A subspace Ra ⊂ X is called an almost (A,B) con-

trollability subspace if for any x0 ∈ Ra, and any x1 ∈ Ra

there exists T > 0 such that, for any ǫ > 0 there exists

a state trajectory xǫ ∈ Σ(A,B)x with the properties that

xǫ(0) = x0, xǫ(T ) = x1 and d(xǫ(t),Ra) ≤ ǫ,∀t ≥ 0.

The supremal (A,B) (or controlled)-invariant subspace

contained in K is denoted by V ∗, or by V ∗(K ). It is the

limit of the following non increasing algorithm, see [4], [3]:
{

V 0 = X

V i+1 = K ∩ A−1
(

ImB + V i
)

Similarly, R∗, or R∗(K ), the supremal (A,B) controlla-

bility subspace contained in K , is the limit of the following

non decreasing algorithm, see [3]:
{

R0 = 0

Ri+1 = V ∗ ∩
(

ARi + ImB
)

R∗
a , or R∗

a(K ), the supremal almost (A,B) controllabil-

ity subspace contained in K , is the limit of the following

non decreasing algorithm, see [2]:
{

R0
a = 0

Ri+1
a = K ∩

(

ARi
a + ImB

)

V ∗
a , or V ∗

a (K ), the supremal almost (A,B) controlled-

invariant subspace contained in K , satisfies: V ∗
a = V ∗+R∗

a ,

see [2]:

S ∗ is usually introduced in the context of (K , A) invari-

ance (dual to (A,B) invariance). In our present context, we

prefer to handle it through its almost controllability proper-

ties, as established in [2], and namely: S ∗ = AR∗
a + ImB

and R∗
a = K ∩ S ∗.

Note that all these notions of exact/almost controlled

invariance or controllability properties, can easily be defined,

similarly, for the “composite” system (let Bc := [B,D]) , say

Σ(A,Bc, 0, E), i.e. with U ⊕ Q in place of U . They will

be denoted, respectively, V ∗
c ,R∗

c ,R∗
ca,S ∗

c .

Definition 1: ADDP, the almost disturbance decou-

pling problem, is said to be solvable if the following holds:

∀ǫ > 0, ∃F : X 7→ U such that in the closed loop

system with x(0) = 0, ‖z(t)‖Lq

≤ ǫ ‖q(t)‖Lp

for all Lp

measurable disturbance input q(t) and for all 1 ≤ p ≤
q ≤ ∞, see [2]. Equivalently, as shown in [5], ADDP is

solvable if: ∀ǫ > 0, there exists a sequence {Fǫ} such that
∥

∥Ee(A+BFǫ)tD
∥

∥

Lp

ǫ→0
−→ 0 for p = 1 and ∞.

It is well known [2] that ADDP is solvable by static state

feedback if and only if:

ImD ⊂ V ∗
a (1)

Definition 2: If Va is an almost invariant subspace, the

class of all the static state feedbacks Fǫ : X 7→ U such that,

for any x0 ∈ Va and for any t ≥ 0, d(e(A+BFǫ)tx0,Va) ≤ ǫ,

is denoted by Fǫ(Va). We call Fǫ ∈ Fǫ(Va) an ǫ-distance

friend of the almost invariant subspace Va.

Some particular system structures play a key role in the

solution of control problems, among them are the invariant

zeros. The finite invariant zeros of Σ(A,B, 0, E), i.e. from u
to z, are equal to the dynamics1 of the system in the quotient

space V ∗/R∗:

Z(A,B,E) := σ(A + BF |(V ∗/R∗)),

for any F ∈ F (V ∗).

III. POLE ASSIGNABILITY OF ALMOST INVARIANT

SUBSPACE

It is well known, since the seminal paper from [2], that any

almost controlled-invariant subspace, say Va, can be written

as the direct sum of a controllability subspace, say R, plus a

coasting subspace2, say C , plus a sliding subspace3, say J .

Moreover, J can be seen as the limit, say when ǫ tends to

zero, of a family of controlled-invariant subspaces Jǫ, on

which the dynamics are infinitely fast as ǫ tends to zero.

Lemma 1: Let Va be an almost invariant subspace,

V ∗(Va) and R∗(Va) denote, respectively, the supremal

(A,B) controlled-invariant (resp. controllability subspace)

included in Va. For any given spectra of ad-hoc lengths, say

Λ1 and Λ2, for any ǫ > 0 there always exists an ǫ-distance

friend of Va, say Fǫ, such that:

- the spectrum of (A + BFǫ) in R∗(Va) equals Λ1 (free)

- the spectrum of (A+BFǫ) in (Va + 〈A|B〉)/Va equals Λ2

(free)

- the spectra of (A + BFǫ) in V ∗(Va)/R∗(Va) and in

X /(Va + 〈A|B〉) are fixed (the same for any Fǫ)

- the spectrum of (A+BFǫ) in Va/V ∗(Va) is “infinite” but

stable, in the sense that Va/V ∗(Va) can be identified with

1Which indeed are fixed, after having applied any state feedback, say F ,
i.e. replacing A by A + BF . They are also invariant after any change of
basis in X , U and Z as well as any output rejection L : Z → X , i.e.
when replacing A by A + LE.

2a controlled-invariant subspace C is called a coasting subspace if and
only if R∗(C ) = {0}, i.e. the supremal controllability subspace in C is 0

3an almost controlled-invariant subspace J is called a sliding subspace if
and only if V ∗(J ) = {0}, i.e. the supremal controlled-invariant subspace
in J is 0
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a sliding subspace for which on any approximation Jǫ , all

the dynamics tend to “minus infinity” as ǫ tends to zero.

Proof: See [8] and [9].

REMARK 1: The key point used in the proof is how

to construct an ǫ-distance friend of Va, which comes from

a sequence of feedback maps {Fn}. The idea is first to

decompose Va into a direct sum of V ∗(Va) and an almost

controllability subspace Ra (in fact, this Ra is a sliding

subspace). Then decompose Ra into the direct sum of

singly generated almost controllability subspaces.4 Each of

these subspaces is approximated by a sequence of controlled

invariant subspaces L(n), as showed in REMARK 2. On

each of these approximates we define a feedback. Finally,

these are used to define a sequence of feedbacks {Fn} on

X which turn out to have the desired properties.

REMARK 2: The convergence of subspaces has to be

understood in the usual Grassmannian sense. The conver-

gence algorithm comes from [10], see also [5]: Suppose

L = span{b, AF b, · · · , Ak−1
F } is a singly generated sliding

subspace, where b ∈ B. Without any loss of generality, we

can assume that the vectors b, AF b, · · · , Ak−1
F are linearly

independent. For n ∈ N sufficiently large, the mapping

(I + 1
nAF ) is non-singular. Define sequences of vectors

xi(n), i = 1, 2, · · · , k, recursively by










x1(n) := (I +
1

n
AF )−1b

xi+1(n) := (I +
1

n
AF )−1AF xi(n)

Define L (n) := span{x1(n), x2(n) · · · , xk(n)}, then for

any n ∈ N, L (n) is an (A,B)-invariant subspace, L (n) ⊂
〈A|B〉, and L (n) → L as n → ∞. Assume b := Bu,

where u ∈ U , then define a sequence Fn : L (n) 7→ U by:

Fnxi(n) := −niu, i = 1, 2, · · ·

Fn then turns out to make L (n) invariant under A + BFn,

and it may be seen that σ(A+BFn|L (n)) = {−n,−n, · · · }.

The pole placement freedom related to any almost invari-

ant subspace Va is summarized in Fig.1.

IV. POLE ASSIGNABILITY OF ADDP

Equation (1) means that ADDP is solvable if and only

if there exists an almost controlled-invariant subspace Va

included in K such that: ImD ⊂ Va. Since Va ⊂ K , it is

obvious that, any ǫ-distance friend of Va can be used as a

state feedback such that the system state trajectory that starts

from any state in ImD can be restricted within the ǫ-distance

to subspace K , namely, such an ǫ-distance friend of Va

solves ADDP. Lemma 1 shows that, ǫ-distance friend of Va

always exists and furthermore, the system dynamics depend

on the choice of the almost controlled-invariant subspace Va.

With such a Va, we can use the algorithm introduced in

Lemma 1 to find state feedback solutions of ADDP with

4An almost controllability subspace L is called singly generated if it can

be noted as L := span{b, AF b, · · · , Ak−1

F
b}, where b ∈ B, dim(b) =

1, AF := A + BF and k ≤ n, a non negative integer.

X

Va + 〈A|B〉

fixed finite (uncontrollable)

Va

free finite

V ∗(Va)

infinite (but stable)

R∗(Va)

fixed finite

0

free finite

Fig. 1. Pole placement freedom related to Va

desired properties. We call such a Va a geometric solution

of ADDP.

Definition 3: Let Va be an almost (A,B) invariant

subspace, Fǫ ∈ Fǫ(Va). Then the closed loop system

exhibits some finite fixed poles, independently of the choice

of Fǫ in Fǫ(Va). We call them finite fixed poles of the almost

(A,B) invariant subspace Va, σfinite
fixed (Va).

Based on Lemma 1, σfinite
fixed (Va) is given by:

σfinite
fixed (Va) :=σ

(

A + BFǫ

∣

∣

∣

∣

X

Va + 〈A|B〉

)

⊎ σ

(

A + BFǫ

∣

∣

∣

∣

V ∗(Va)

R∗(Va)

) (2)

where V ∗(Va) and R∗(Va) denote, respectively, the supre-

mal (A,B) controlled-invariant (resp. controllability) sub-

space contained in Va.

Definition 4: Suppose that ADDP is solvable for

Σ(A,B,D,E). Then the finite fixed poles of ADDP are

defined as:

σADDP

fixed (A,B,D,E) :=
⋂

i

σfinite
fixed (Vai)

where { Vai, i = 1, 2, · · · } is the set of all almost

disturbance invariant subspace contained in K .

R∗
ca plays a key role in the characterization of

σADDP

fixed (A,B,D,E), because of lack of place, we give the

following theorems without proofs, they are developed in [9].

Theorem 2: Assume that ADDP is solvable,

- Any feedback solution of ADDP contains a set of finite

fixed poles, σADDP
fixed (A,B,D,E).

- The finite fixed poles of ADDP are characterized as

σADDP
fixed (A,B,D,E) = σ

(

A + BΦ
∣

∣

X

S ∗

c
∩V ∗+〈A|B〉

)

⊎

σ
(

A + BΦ
∣

∣

S
∗

c
∩V

∗

R∗

)

, where Φ is any map which makes

S ∗
c ∩ V ∗ (A + BΦ) invariant.

- When using ǫ-distance friends of R∗
ca, poles tending to −∞

occur as σ∞
stable = limǫ→0(σ(A + BFǫ|Jǫ)) , where Fǫ is

any map which makes Jǫ (A + BFǫ) invariant, and where

Jǫ is a controlled-invariant approximation of the sliding part

R∗
ca/(S ∗

c ∩ V ∗).
- It is possible to find particular feedback solutions for which
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X

V ∗
c + S ∗

c = V ∗ + S ∗

S ∗
c V̂ ∗

c = V̂ ∗ = V ∗
a

S ∗ R̂∗
c = R∗

ca V ∗
c

R̂∗ = R∗
a R∗

c V ∗

� S ∗
∩ V ∗

c S ∗
c ∩ V ∗

-

�

Z(A
,B

c
, E

) -

σ∞
stable

�

R∗

-

�

σ
A

D
D

P

fix
ed

-

Z(A
,B

,E
)

�
-

0 �
-

Fig. 2. Lattice properties and location of Fixed Poles of ADDP when
ADDP is solvable

all the other finite poles, other than the finite fixed poles of

ADDP, can be placed freely.

Theorem 3: Assume that ADDP is solvable, and

(A,B) is controllable, the finite fixed poles of ADDP, are

characterized as follows:

Z(A,B,E) =σADDP
fixed (A,B,D,E) ⊎ Z(A,Bc, E)

When ADDP is solvable, the lattice properties and location

of poles of ADDP are summarized in Fig.2.

From now on, we shall assume, for shortness, that (A,B)

is controllable.

Assume that Va is a geometric solution of ADDP, then

the number of fixed poles of Va equals the dimension of

the maximal coasting subspace contained in Va, the number

of infinite poles equals the dimension of maximal sliding

subspace contained in Va. In order to get the maximal

freedom in the assignment of the system dynamics, we must

choose a geometric solution that makes the above two parts

as small as possible.

When the condition (1) holds, in [2] a general procedure

to solve the ADDP has been given. Then in [5], [10], the

authors described in a more detailed way how to get state

feedback solutions Fǫ for ADDP, but all based on V ∗
a ,

the supremal almost (A,B) controlled-invariant subspace

contained in K . According to the above analysis, this V ∗
a

is not the best geometric solution with respect to pole

placement (for both the finite and infinite parts). On the

contrary. it can be a rather conservative geometric solution

with respect to pole placement, since the coasting and sliding

parts inside this subspace are both maximal, so it will lead

to the minimum freedom when choosing closed-loop system

dynamics.

V. OPTIMAL GEOMETRIC SOLUTION OF ADDP

Our objective is to solve ADDP and simultaneously place

the maximal number of poles in the closed loop system.

From the previous analysis this amounts to finding a class

of optimal geometric solutions of ADDP that holds minimal

fixed finite and infinite poles. To characterize such a class, we

go through the following steps: first it will be shown that the

pole assignability of any geometric solution of ADDP can be

improved by adding R∗ in the sense of the minimization of

fixed finite and infinite poles, namely, the optimal geometric

solutions of ADDP must contain R∗. Next, we will show

that any geometric solution of ADDP that contains R∗

must also contain S ∗
c ∩ V ∗, which as shown in [11] is

an (A,B)-invariant subspace contained in K and contains

minimal fixed poles of ADDP. Also we will show that the

minimization of infinite poles can not be achieved at the

cost of the deterioration of finite pole assignability when a

geometric solution already contains S ∗
c ∩ V ∗. Finally, we

give the characterization of optimal geometric solutions of

ADDP.

Lemma 4: In order to minimize the number of infinite

poles while solving ADDP, an optimal geometric solution of

ADDP must contain R∗, the supremal (A,B) controllability

subspace contained in K , where K is the kernel of the

output matrix .

Proof: Suppose Va is a geometric solution of ADDP, i.e. Va

is an almost (A,B) controlled-invariant subspace contained

in K and containing ImD. Obviously Va + R∗ is also a

geometric solution of ADDP, since being an almost (A,B)

controlled-invariant subspace contained in K and containing

ImD. Then to prove this Lemma, we just need to show that

the dimension of maximal sliding subspaces inside Va +R∗

is less than that of Va, where Va is any almost invariant

subspace contained in K . This directly comes from the

fact that the dimension of the maximal sliding subspaces

contained in J + R∗ is less than that of J , where J is

any sliding subspace contained in K .

Indeed, let J be any sliding subspace contained in K ,

define J := J ⊕ (J ∩ R∗), we claim that J is a

supremal sliding subspace contained in J + R∗. To show

this, note that R∗ is the supremal (A,B) controllability

subspace contained in K , it is thus the supremal (A,B)

controllability subspace contained in J + R∗.

dim

(

J + R∗

R∗(J + R∗)

)

= dim

(

J ⊕ R∗

R∗

)

= dim
(

J
)

≤ dim (J )

Lemma 5: Suppose Va is a geometric solution of

ADDP, i.e. Va is an almost controlled-inavriant subspace

such that ImD ⊂ Va ⊂ K , the following property holds:

Va + R∗ ⊃ (S ∗
c ∩ V ∗)

where R∗, S ∗
c and V ∗ are defined above.

Proof: The proof is by contradiction. To simplify the

notation, let V 1
a := Va + R∗, Va := V 1

a + R∗
a .

If V 1
a 6⊃ (S ∗

c ∩ V ∗), we conclude that V ∗(V 1
a ) 6⊃

(S ∗
c ∩V ∗), since V ∗(V 1

a ) is the supremal (A,B)-invariant

subspace contained in V 1
a and (S ∗

c ∩V ∗) is also an (A,B)-

invariant subspace [9].
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Using suitable bases, we have:

V ∗
a = V ∗ + R∗

a := V ∗ ⊕ R̂∗
a =

[

V1 0
0 S

]

(3)

where V ∗ := Im

[

V1

0

]

, R̂∗
a := Im

[

0
S

]

, and R̂∗
a is a

sliding subspace contained in K .

Thanks to [2], we can let Va := V 1
a +R∗

a = V ∗(V 1
a )⊕R̃∗

a ,

where R̃∗
a = R̂∗

a . Moreover V ∗(V 1
a ) ⊂ V ∗ and (S ∗

c ∩
V ∗) ⊂ V ∗, since these two subspaces are (A,B)-invariant

contained in K and V ∗ is the supremal. With the assumption

V ∗(V 1
a ) 6⊃ (S ∗

c ∩ V ∗), we get immediately thanks to

Equation (3):

Va = V ∗(V 1
a ) ⊕ R̃∗

a 6⊃ (S ∗
c ∩ V ∗) (4)

Va being a geometric solution of ADDP, obviously Va :=
V 1

a + R∗
a = Va + R∗

a is also a geometric solution of ADDP

and contains R∗
a . We have shown in [9] that R∗

ca is the

infimum of all geometric solutions of ADDP that contain

R∗
a , hence Va ⊃ R∗

ca ⊃ (S ∗
c ∩ V ∗), see Fig.2. Since this

conflicts with Equation (4), we conclude that the assumption

is not correct.

We have shown in [11] that to minimize the number of

fixed poles while solving ADDP, we can use Va+R∗ instead

of Va as a new geometric solution of ADDP. With the result

of Lemma 4, we conclude that an optimal geometric solution

of ADDP must contain R∗ for maximal pole assignability to

be obtained (i.e. to also minimize the number of both fixed

finite and infinite poles). Thanks to Lemma. 5, such a Va

must contain S ∗
c ∩ V ∗.

The combination of Theorem. 2 and Lemma. 5 imme-

diately yields the following: an optimal geometric solution

of ADDP with respect to the minimization of the number

of fixed poles will be an almost (A,B) controlled-invariant

subspace containing ImD, that is the sum of S ∗
c ∩V ∗ and of

a sliding subspace contained in K , namely, such an optimal

geometric solution of ADDP can be chosen on the track

between R∗
ca and S ∗

c ∩V ∗, as shown in Fig.2. Furthermore,

when ADDP is solvable, such an optimal geometric solution

of ADDP always exists, since R∗
ca is always a geometric

solution of ADDP. In the sequel, we will show that this

also holds with respect to the minimization of the number

of infinite poles of ADDP.

Let us first give the following lemma:

Lemma 6: let V 2
a be an optimal geometric solution

of ADDP with respect to the minimization of the number of

infinite poles, i.e. V 2
a is an almost (A,B) controlled-invariant

subspace contained in K and containing S ∗
c ∩V ∗. Let V 2

a

be denoted as V 2
a := V 2 ⊕ J2, where V 2 is the supremal

(A,B) controlled-invariant subspace contained in V 2
a , J2 is

a sliding subspace contained in K . Then V 1
a := R∗

ca∩V 2
a =

S ∗
c ∩ V ∗ + J2 will also be an optimal geometric solution

of ADDP with respect to the minimization of the number of

infinite poles, furthermore S ∗
c ∩V ∗ +J2 ⊂ R∗

ca. See Fig.3

for the corresponding lattice properties.

Proof: Since V 2 is the supremal (A,B) controlled-invariant

subspace contained in V 2
a , it obviously contains S ∗

c ∩ V ∗

R∗
ca V 2

a V ∗

H
H

H ©
©

© H
H

H
J2

©
©

©

V 1
a V 2

H
H

H ©
©

©

S ∗
c ∩ V ∗

©
©

©

R∗

0

Fig. 3. Lattice properties of optimal geometric solution

thanks to S ∗
c ∩ V ∗ ⊂ V 2

a and S ∗
c ∩ V ∗ is an (A,B)

controlled-invariant subspace; since J2 is a sliding subspace

contained in K , we obviously have J2 ⊂ R∗
ca; because

S ∗
c ∩ V ∗ ⊂ V 2 and J2 ∩ V 2 = 0, we get (S ∗

c ∩ V ∗) ∩
J2 = 0. Based on the above results, we get immediately

R∗
ca ∩ V 2

a = S ∗
c ∩ V ∗ + J2 =: V 1

a , obviously V 1
a is an

almost (A,B) controlled-invariant subspace contained in K .

In [9], we have shown that when ADDP is solvable R∗
ca

is a geometric solution of ADDP, i.e. ImD ⊂ R∗
ca, we

conclude V 1
a := R∗

ca ∩ V 2
a ⊃ ImD since ImD ⊂ V 2

a .

Now we conclude that V 1
a is an almost (A,B) controlled-

invariant subspace contained in R∗
ca and contains ImD,

moreover it is an optimal geometric solution of ADDP with

respect to the minimization of the number of infinite poles.

To conclude this section, we note that the following

characterization of the class of optimal geometric solutions

of ADDP with respect to maximal pole placement is now

available, the simple proof is omitted.

Theorem 7: Assume that ADDP is solvable and (A,B)

is controllable, optimal (in the sense of maximal pole as-

signment) geometric solutions of ADDP, say Va, can be

constructed as the sum of the (A,B) controlled-invariant

subspace S ∗
c ∩ V ∗ and a sliding subspace contained in

K with minimal dimension, say J , such that ImD ⊂
S ∗

c ∩ V ∗ + J .

VI. ALGORITHM FOR OPTIMAL GEOMETRIC SOLUTION

IN A PARTICULAR CASE

As shown in [12],[13],[5], a subspace Ra is almost (A,B)

controlled-invariant if and only if there exist a map F : X 7→
U and a chain5 {Bi}

k
i=1 in B such that

Ra = B1 + (A + BF )B2 + · · · + (A + BF )k−1Bk

Trentelman has shown in [8],[5] that a sliding subspace J
can be obtained as

J = B̃1 ⊕ (A + BF )B̃2 ⊕ · · · ⊕ (A + BF )k−1B̃k

, where {B̃i}
k
i=1 is a chain in B̃, B := (B ∩ V ∗) ⊕ B̃.

In the particular case of systems with dim( B

B∩V ∗
) = 1,

i.e. dim(B̃) = 1, obviously Ra can be denoted as Ra =
B1 + AB2 + · · · + Ak−1Bk (resp. J can be denoted as

5A sequence of subspaces {Li}
k
i=1

is call a chain if L1 ⊃ L2 ⊃ · · ·
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J = B̃⊕AB̃⊕· · ·⊕Ak−1B̃). It gives us a simple way to

find the sliding subspace J with minimal dimension such

that ImD ⊂ S ∗
c ∩ V ∗ + J , as required in Theorem.7.

VII. ILLUSTRATIVE EXAMPLE

Let us consider the system Σ(A,B,D,E) with:

A =















0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0















B =















0

0

0

−1

0

1















D =















0

0

−1

1

0

0















E =
[

−1 0 0 0 0 0
]

we get:

R∗

=















0

0

0

0

0

0















V ∗

=















0 0

0 0

0 0

0 0

1 0

0 1















S ∗

c ∩ V ∗

=















0

0

0

0

−1

1















R∗

ca =















0 0 0 0

−1 0 0 0

1 −1 0 0

0 1 −1 0

0 0 1 −1

0 0 0 1















Va =















0 0 0

0 0 0

0 0 −1

0 −1 0

−1 0 1

1 1 0















where Va is an optimal geometric subspace of ADDP.

Since, ImD 6⊂ V ∗ + ImB, ImD ⊂ V ∗
a , DDP is not

solvable by state feedback (possibly with disturbance feed-

forward), while ADDP is solvable by high gain state feed-

back. Because Z(A,B,E) = {−1, 1} and Z(A,Bc, E) =
{1}, we get immediately σADDP

fixed = {−1}, namely: to

solve ADDP, in the closed-loop system, we must have a

fixed pole set {−1}, and the number of fixed poles is

[dim(S ∗
c ∩ V ∗) − dim(R∗)] = 1, the number of infinite

poles is [dim(Va) − dim(S ∗
c ∩ V ∗)] = 2, our maximal

freedom in pole placement is d = dim(X ) − dim(Va) +
dim(R∗) = 3, since (A,B) is controllable. If we were using

V ∗
a as the geometric solution, our freedom in pole placement

would be smaller: d = dim(X )−dim(V ∗
a )+dim(R∗) = 1.

Let us arbitrarily choose three finite poles, e.g.

{−2, −3, −4}. Using the method introduced in this

paper, we can easily find a state feedback Fp =
[−24 p2, 48 p − 50 p2, −24 + 100 p − 59 p2, −50 +
118 p−60 p2, −59+120 p−60 p2, −60+120 p−60 p2]
such that with u = Fpx, the system closed-loop poles are

{−4, −3, −2, −1, p, p}. With MAPLE R©, let ǫ := − 1
p ,

we can verify that
∥

∥Ee(A+BFp)tD
∥

∥

L1

ǫ→0
−→ 0 and

∥

∥Ee(A+BFp)tD
∥

∥

L∞

ǫ→0
−→ 0, namely, sequence {Fp}

solves ADDP. See also Fig.4.

VIII. CONCLUSION

Thanks to the study of the fixed finite and infinite poles

of ADDP, when ADDP is solvable, the optimal geometric

subspaces with which ADDP can be solved and maximal

pole placement can be achieved are characterized. For the

Fig. 4. Disturbance impulse response G(t)

first time, we construct a simple but reliable numerical

algorithm for such an optimal geometric subspace solution

(resp. the state feedback solution) for a particular class

of linear systems where dim( B

B∩V ∗
) = 1. An example

illustrates the feasibility.

Our objective is now to construct a reliable algorithm for

finding the above optimal geometric subspaces (resp. the

state feedback solutions) in the general case.
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