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Abstract— This paper is concerned with the quantized H∞

filtering problem for discrete-time systems. The quantizer
considered here is dynamic and composed of a dynamic scaling
and a static quantizer. Motivated by practical transmission
channels requirements, the static quantizer ranges are fully
considered in this paper. A quantized H∞ filter design strategy
is proposed with taking quantizer errors into account, where
a convex optimization method is developed to minimize static
quantizer ranges with meeting H∞ performance requirement
for quantized augmented systems. A numerical example is
given to illustrate the effectiveness of the proposed filter design
method.

I. INTRODUCTION

The recent interest in quantized systems is the involvement
of communication channels of limited bandwidth in data transmis-
sion. In this setting, the signal is quantized and then coded for
transmission. From the controller or filter design point of view, a
fundamental problem is how to design a control strategy composed
of a controller and a quantizer (or a filtering strategy composed of a
filter and a quantizer ) with the minimum information rate in order
to guarantee a given control objective or filtering objective. Filters
are the most essential building blocks of signals processing. And
the problem of filtering with quantized signals has been considered
by several researchers [17], [21], ect.

Many contributions have appeared in the literature examining
the impact of quantization on linear systems. These quantization
policies can be mainly categorized depending on whether the
quantizer is static or dynamic. A static quantizer is a memoryless
nonlinear function, whereas a dynamic quantizer uses memory and
thus can be much more complex and potentially more powerful.

There has been many quantized results using static quantizers,
such as [3], [5]- [9], [12] and [22]. The attraction of static quantizers
is the simplicity of their coding/decoding schemes. However, the
main drawback of static policies is that they require an infinite
number of quantization bits to ensure asymptotic stability [5]. In
contrast, quantization policies with memory (dynamic quantization
policies) have the advantages to scale the quantization levels dy-
namically so that the region of attraction is increased and the steady
state limit cycle is reduced. This is indeed the basic idea behind
[2], [16], [18]-[20]. In fact, it is shown in [16] that stabilization
of an SISO LTI system (in some stochastic sense) can be achieved
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using only a finite number of quantization levels. In this setting,
the dynamic quantizer effectively consists of two parts: an encoder
at the output end and a decoder at the input end [14]. Another type
of dynamic quantizers uses dynamic scaling in conjunction with a
static quantizer. Noticeable work along this line includes [2], [10],
[13], [19], [20]. Note that dynamic scaling is a very popular idea
in signal processing for reducing quantization errors [15] but the
key difference here is that the system stability and performance are
also considered.

Noting that the works outlined above with dynamic quantizers
deal with only stability/stabilization problems, whereas the H∞

control problem has not been addressed in them. As pointed out in
[24] that the control strategies of updating the quantizer’s parameter
are dependent on time in the existing works [2] and [13], and such
control strategies cannot be applied for the case of H∞ control
systems since we do not know the value of the disturbance inputs
and thus cannot drive the state into an invariant region, as done
in [13]. In contrast, in[24], a state or output dependent control
strategy is proposed, and by using which the quantized continuous-
time H∞ control problem is solved. Similarly, the latest work [4]
studies the networked-based H∞ control problem with dynamic
quantizers. But these works do not consider the minimum number
of quantization levels required to assure the H∞ performance
requirements for quantized systems. However, a major question
about the quantized systems concerns the minimum number of
quantization levels required to assure closed loop system stability
and performance, which may have many benefits that include lower
cost, higher reliability, and easier maintenance.

Motivated by the above reasons, this paper is concerned with the
quantized H∞ filtering problem for discrete-time linear systems
with a type of dynamic quantizers, which are conjuncted with
static quantizers via dynamic scalings. By taking quantizer errors
into account, a quantized H∞ filter design strategy is proposed,
where a convex optimization method is developed to minimize static
quantizer ranges. The resulting design guarantees that the quantized
augmented system is asymptotically stable and with a prescribed
H∞ performance bound. The effectiveness of the proposed filter
design method is demonstrated by a numerical example. The orga-
nization of this paper is as follows. Section II presents the problem
under consideration and some preliminaries. Section III gives design
methods of quantized H∞ filtering strategies. In Section IV, an
example is presented to illustrate the effectiveness of the proposed
methods. Finally, Section V gives some concluding remarks.
Notation: Given a matrix E, ET and E−1 denote its transpose, and
inverse when it exists, respectively. The symbol ∗ within a matrix
represents the symmetric entries. For a vector x ∈ Rk, the 2-norm

of x is defined as |x| := (xT x)
1

2 , and for a matrix Q ∈ Rm×n,
‖Q‖, λmax(Q) and λmin(Q) is defined as the largest singular
value, the maximum eigenvalue and the minimum eigenvalue of
matrix Q, respectively. For an appropriate square matrix Y, denote
He(Y ) = Y + Y T .

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Quantizer

Firstly, we introduce the quantizer considered in this paper. The
definition of a quantizer is given with general form as in [13]. Let
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z ∈ Rl be the variable being quantized. By a quantizer we mean
a piecewise constant function q : Rl → D, where D is a finite
subset of Rl. This leads to a partition of Rl into a finite number of
quantization regions of the form {z ∈ Rl : q(z) = i}, i ∈ D. These
quantization regions are not assumed to have any particular shapes.
When z does not belong to the union of quantization regions of
finite size, the quantizer saturates. More precisely, we assume that
there exist positive real numbers M and ∆ such that the following
two conditions hold:

|q(z) − z| ≤ ∆, if |z| ≤ M. (1)

|q(z) − z| > ∆, if |z| > M. (2)

Condition (1) gives a bound on the quantization error when the
quantizer does not saturate. Condition (2) provides a way to detect
the possibility of saturation. M and ∆ represent the range and
the quantization error bound of the quantizer q(·), respectively.
Assume that q(x) = 0 for x in some neighborhood of the origin,
i.e., the origin lies in the interior of the set {x : q(x) = 0}. In
the filtering strategy to be developed below, we consider the one-
parameter family of quantizers

qµ(z) = µq(
z

µ
), µ > 0, (3)

where µ is the quantizer’s parameter. The range and the error of this
quantizer is Mµ and ∆µ, respectively. µ can be seen as the “zoom”
variable: increasing µ corresponds to zooming out and essentially
obtaining a new quantizer with larger range and larger quantization
error such that any signals can be adequately measured, while
decreasing µ corresponds to zooming in and obtaining a quantizer
with smaller range but also smaller quantization error such that the
signals can be driven to 0.

B. Problem statement

Consider an LTI model described by

x(k + 1) = Ax(k) + B1ω(k),
z(k) = C1x(k),
y(k) = C2x(k),

(4)

where x(k) ∈ Rn is the state, y(k) ∈ Rp is the measured output,
ω(k) ∈ Rm is the disturbance and z(k) ∈ Rq is the regulated
output, respectively. A, B1, C1 and C2 are known constant matrices
of appropriate dimensions.

With the quantizer defined by (1)-(3), the quantized filter is given
as

ξ(k + 1) = AF ξ + BF qµ1
(y)

= AF ξ + BF µ1q1(
y

µ1
),

zF (k) = CF ξ + DF qµ1
(y)

= CF ξ + DF µ1q1(
y

µ1
),

(5)

where ξ(k) ∈ Rn is the filter state, zF (k) is the estimation of z(k),
and the constant matrices AF , BF , CF and DF are filter matrices
to be designed. qµ1

(·) is a dynamic quantizer defined by (3) and is
composed of dynamic scaling µ1 and static quantizer q1(·) defined
by (1) with range M1 and error ∆1. The main technical difficulty is
that there is no separate communication channel to communicate the
gain value. One approach is that both sides of the communication
channel compute the same µ1 independently. This is possible only
when the gain µ1 can be computed using only the quantized signal
because this signal is available to both sides of the communication
channel.

Applying (5) to (4), the following quantized augmented system is
obtained as

xe(k + 1) = Aexe(k) + Beω(k) + B̄1ē,
ze(k) = Cexe(k) + Deē,

(6)

where xe(k) = [x(k)T , ξ(k)T ]T , ze(k) = z(k) − zF (k) is the
estimation error, and

Ae =

[

A 0
BF C2 AF

]

, Be =

[

B1

0

]

,

Ce =
[

C1 − DF C2 −CF

]

, B̄1 =

(

0
BF

)

,

and De = −DF , ē = µ1e with e = q1(
y

µ1
) − y

µ1
.

Due to the effect of quantization errors, the problem addressed in
this paper is as follows:
Quantized H∞ Filtering Problem: Find a method to optimize
the static quantizer range M1, and then design a quantized H∞

filtering strategy with the minimized quantizer range such that the
augmented system (6) is asymptotically stable and with a prescribed
H∞ performance bound.

C. Preliminaries

The following lemma presented will be used in this paper.
Lemma 1: Let γ > 0 be a given constant. Then the following

statements are equivalent:
(i) there exists a symmetric positive matrix X > 0 such that the
following LMI holds

He(Ω1) < 0; (7)

where

Ω1 =













−X
2

0 AT
e X CT

e 0

0 − γ2I

2
BT

e X 0 BT
e X

0 0 −X
2

0 0
0 0 0 − I

2
0

0 0 0 0 −X
2













.

(ii) there exist a nonsingular matrix T , and a symmetric matrix
P > 0 with

P =

[

Y N
N −N

]

, (8)

such that the following LMI holds

He(Ω2) < 0, (9)

where

Ω2 =













−P
2

0 AT
eaP CT

ea 0

0 − γ2I

2
BT

eaP 0 BT
eaP

0 0 −P
2

0 0
0 0 0 − I

2
0

0 0 0 0 −P
2













,

with

Aea =

[

A 0
BFaC2 AFa

]

, Bea =

[

B1

0

]

,

Cea =
[

C1 − DFaC2 −CFa

]

, (10)

and

AFa = T−1AF T, BFa = T−1BF , CFa = CF T. (11)
Proof: Due to the limit of the space, it is omitted.

III. QUANTIZED H∞ FILTERING STRATEGY DESIGN

In this section, firstly, taking quantizer errors into account, a
quantized H∞ filtering strategy design method is presented in sub-
section A without the consideration of optimizing static quantizer
ranges. Then, in subsection B, a convex optimization method is
developed to optimize static quantizer ranges, and a quantized H∞

filtering strategy is proposed to solve the Quantized H∞ Filtering
Problem.
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A. Quantized H∞ filter design without considering static

quantizer ranges

Firstly, taking quantizer errors into account, the following lemma
is presented to design filters and matrix variables P, Q, which will
be used in the sequel.

Lemma 2: For plant (6), γ > 0 is a given scalar, assume that
there exist matrices FA, FB , CF , DF and S > 0, N < 0 such that
the following LMI holds

He(Ω3) < 0, (12)

where

Ω3 =

























−S
2

0 0 0 0
−S −S+N

2
0 0 0

0 0 − γ2I

2
0 0

SA SA SB1 −S
2

0
Γ1 Γ3 (S − N)B1 −S −S+N

2
Γ2 Γ4 0 0 0
0 0 SB1 0 0
0 0 (S − N)B1 0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
− I

2
0 0

0 −S
2

0
0 −S −S+N

2























,

with

Γ1 = (S − N)A + FBC2 + FA,

Γ2 = C1 − DF C2 − CF , Γ4 = C1 − DF C2,

Γ3 = (S − N)A + FBC2. (13)

Denote
AF = N−1FA, BF = N−1FB ,
CF = CF , DF = DF .

(14)

Then there exist two positive definite matrices P > 0 and

Q =

[

Q11 Q12

∗ Q22

]

> 0, (15)

such that the following LMI holds
[

Θ1 + Q11 AT
e PBe + Q12

BT
e PAe + QT

12 Θ2 + Q22

]

< 0, (16)

where Θ1 = AT
e PAe − P + CT

e Ce, Θ2 = 2BT
e PBe − γ2I, and

Ae, Be, Ce are defined in (6).
Proof: Due to the limit of the space, it is omitted.

Remark 1: It is well-known that the standard H∞ filter design
for discrete-time systems is reduced to solving the following
inequality

[

Θ1 AT
e PBe

BT
e PAe −γ2I + BT

e PBe

]

< 0. (17)

Compare (16) with (17), except the added matrix variable Q, the
block (2, 2) in the left of inequality (16) is with an additional term
BT

e PBe, which reflects the effectiveness of the quantization errors.

To facilitate the presentation of Theorem 1, the following algorithm
is given first based on Lemma 2.

Algorithm 1:
Step 1. By using Lemma 2, design the filter gains AF , BF , CF , DF

and matrix variables P, Q satisfying (16).

Step 2. Compute the value of
η‖C2‖∆1

λmin(Q)
, where η = φ +

√

φ2 + ϕλmin(Q) with φ = ‖AT
e PB̄1 + CT

e De‖ and ϕ =
‖2B̄T

1 PB̄1 + DT
e De‖.

Now, the following result for H∞ filtering is proposed based on
Algorithm 1 without the consideration of optimizing static quantizer
ranges, which guarantees that system (6) is global asymptotic
stability and with the H∞ performance attenuation level γ.

Theorem 1: Consider system (4), assume that M1 is chosen
large enough such that

M1 >
η‖C2‖∆1

λmin(Q)
. (18)

Then, filtering strategy (5) with the designed filter gains
AF , BF , CF , DF and with the dynamic scaling

µ1 =
2|y|

M1 + η∆1‖C2‖
λmin(Q)

, (19)

renders the augmented system (6) asymptotically stable and with
the H∞ disturbance attenuation level γ.

Proof: By using the properties of (1) for the quantizer q1(·),
it is easy to check that whenever |y| ≤ M1µ1,

|ē| = µ1|q1(
y

µ
) − y

µ1
| ≤ µ1∆1. (20)

Then consider the Lyapunov function candidate V (k) =
xT

e (k)Pxe(k) for the quantized augmented system (6), and by us-
ing (16), the difference of V (k) along solutions of (6) is computed
as

∆V (k) = V (k + 1) − V (k)
= (Aexe + Beω + B̄1ē)

T P (Aexe + Beω + B̄1ē)
− xT

e Pxe

≤ γ2ωT ω − zT
e ze + xT

e (AT
e PAe − P + CT

e Ce)xe

+ 2xT
e AT

e PBeω + 2xT
e (AT

e PB̄1 + CT
e De)ē

+ 2ωT BT
e PBeω + ēT (2B̄T

1 PB̄1 + DT
e De)ē

− γ2ωT ω

≤ −zT
e ze + γ2ωT ω −

[

xe

ω

]T

Q

[

xe

ω

]

+ 2|xe|φ|ē| + |ē|2ϕ
≤ −zT

e ze + γ2ωT ω − λmin(Q)|xe|2
+ 2|xe|φ|ē| + |ē|2ϕ

≤ −zT
e ze + γ2ωT ω − λmin(Q)(|xe| − η|ē|

λmin(Q)
)

×(|xe| − (φ−
√

φ2+ϕλmin(Q))|ē|

λmin(Q)
)

(21)

According to (18), there always exists a sufficiently small scalar
ε ∈ (0, 1) such that

M1 >
η‖C2‖∆1

λmin(Q)(1 − ε)
. (22)

Combining (22) with (19), we obtain that there always exists a
sufficiently small scalar ε ∈ (0, 1) such that the following holds

η‖C2‖∆1

λmin(Q)(1 − ε)
µ1 ≤ |y|

= (M1 +
η‖C2‖∆1

λmin(Q)
)µ1/2 ≤ M1µ1. (23)

In other words, if we always choose µ1 satisfying (23), then (21)
holds and thus

∆V (k) ≤ −zT
e ze + γ2ωT ω − ε

λmin(Q)

‖C2‖
|xe||y|. (24)

By setting ω = 0, obviously, ∆V (k) < 0, i.e., the system is
asymptotically stable.
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In addition, for any k > 0, we can obtain

V (k) − V (0) ≤ −
n

∑

k=0

(zT
e (k)ze(k) − γ2ωT (k)ω(k)). (25)

Using V (k) ≥ 0, ∆V (k) < 0 and zero initial condition, the
following is obtained

‖ze(k)‖2
2 < γ2‖ω(k)‖2

2, (26)

which implies that the H∞ disturbance attention level γ is achieved.

Remark 2: Theorem 1 offers a quantized H∞ filtering strategy
for discrete-time systems such that the required H∞ performance
can be guaranteed. A similar result for continuous-time state
feedback systems has been obtained in [24]. The difference
between them is that in [24], the controller gain used in the
quantized control strategy is firstly designed by the standard
state-feedback H∞ controller design, whereas in this paper, the
filter gains used in the quantized filtering strategy of Theorem 1 is
firstly designed by Lemma 2 with the consideration of the effect of
the quantization errors. In fact, the additional term BT

e PBe in the
block (2, 2) of inequality (16) compared to (17), which has been
mentioned in Remark 1, is resulted from the term 2ωT BT

e PB̄1e
in (21) by using 2ωT BT

e PB̄1e ≤ ωT BT
e PBeω + eT B̄T

1 PB̄1e,
which renders the effect of the quantization errors involved in the
proposed design conditions.

Remark 3: In Theorem 1, the static quantizer range M1 for the
existence condition of the quantized H∞ filtering strategy is given
based on Algorithm 1. But the static quantizer range achieved by
this method may be very large and does not accord with practical
communication channel requirements. In the following subsection,
a method will be developed to minimize the static quantizer ranges.

B. Quantized H∞ filter design with considering static quan-

tizer ranges

In this subsection, we will develop a convex optimization method
to optimize M1, and further, give a quantized H∞ filtering strategy
to solve the Quantized H∞ Filtering Problem.
According to (18), we can minimize M1 by minimizing the value

of
η‖C2‖∆1

λmin(Q)
. For the fact that

η‖C2‖∆1

λmin(Q)
is complicated because it

depends on design parameters ‖CT
e De + AT

e PB̄1‖, λmin(Q) and
‖2B̄T

1 PB̄1 + DT
e De‖. In the sequel, we aim to optimize these

parameters, and consequently minimize M1 indirectly.
Let β1 > 0, β2 > 0, α > 0, δ > 0 and ε > 0 be scalars and

‖AT
e P

1

2 ‖ < β1, (27)

‖P 1

2 B̄1‖ < β2, (28)

‖CT
e ‖ < α, (29)

‖De‖ < δ, (30)

‖2B̄T
1 PB̄1 + DT

e De‖ < ε. (31)

Then, according to (27)-(31), we can optimize the values of

‖AT
e P

1

2 ‖, ‖P 1

2 B̄1‖, ‖CT
e ‖, ‖De‖ and ‖2B̄T

1 PB̄1 + DT
e De‖ by

optimizing scalars β1, β2, α, δ and ε, respectively. Obviously, in-
equalities (27)-(31) are, respectively, equivalent to

[

−β2
1I AT

e P
PAe −P

]

< 0, (32)

[

−β2
2I B̄T

1 P
PB̄1 −P

]

< 0, (33)

[

−α2I Ce

CT
e −I

]

< 0, (34)

[

−δ2I DT
e

De −I

]

< 0, (35)

[

−ε2I Θ3

Θ3 −I

]

< 0, (36)

where Θ3 = 2B̄T
1 PB̄1 + DT

e De, and Ce, B̄1 and De are defined
in (6).

Now, in order to solve the Quantized H∞ Filtering Problem, we
need to solve inequalities (32)- (36) combined with (16). However,
inequalities (16), (32), (33) and (36) are not convex and cannot be
solved directly. Thus, the following lemma is presented to convert
them to convex ones.

Lemma 3: Let γ > 0 be a given scalar, for scalars β1 >
0, β2 > 0, α > 0, δ > 0 and ε > 0, matrix variables
FA, FB , CF , DF , S > 0, N < 0 and Q with structure

Q =





Q11 Q12 Q13

QT
12 Q22 Q23

QT
13 QT

23 Q33



 > 0, (37)

the following statements hold:

(i) (32) holds if and only if the following LMI holds

He(Ω4) < 0 (38)

where

Ω4 =











−β2

1
I

2
0 0 0

0 −β2

1
I

2
0 0

SA 0 −S
2

0
(S − N)A + FBC2 FA −S −S+N

2











.

(ii) (33) holds if and only if the following LMI holds





−β2
2I 0 F T

B

0 −S −S
FB −S −S + N



 < 0. (39)

(iii) (36) holds if the following LMI holds

He(Ω5) < 0 (40)

where

Ω5 =























− ε2I
2

0 0 0 0
0 − I

2
0 0 0

0 0 −S 0 0
2FB 0 −2S −S + N 0
−DF 0 0 0 − I

2
0 0 0 0 0
0 2FB 0 0 0
0 −DF 0 0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
−S 0 0
−2S −S + N 0

0 0 − I
2























.

(iv) (16) holds if and only if the following LMI holds

He(Ω6) < 0 (41)

where
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Ω6 =

























Ξ1

2
0 0 0

ΞT
2

Ξ3

2
0 0

QT
13 + QT

23 QT
13

−γ2I+Q33

2
0

SA SA SB1 −S
2

ΓT
1 ΓT

3 (S − N)B1 −S
ΓT

2 ΓT
4 0 0

0 0 SB1 0
0 0 (S − N)B1 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

−S+N
2

0 0 0
0 − I

2
0 0

0 0 −S
2

0
0 0 −S −S+N

2























,

with Γ1, Γ2, Γ3, Γ4 are defined by (13) and

Ξ1 = −S + Q11 + Q12 + QT
12 + Q22

Ξ2 = −S + Q11 + Q12,

Ξ3 = −S + N + Q11.

Proof: Due to the limit of the space, it is omitted.

Let ρ = c0β
2
1 + c1β

2
2 + c2α

2 + c3δ
2 + c4ε

2, where c0, c1, c2, c3

and c4 are constants to be chosen. Then, based on Lemma 3, by
optimizing ρ, the following algorithm is presented to give a convex
optimization method to design the filter gain matrices and matrix
variables P, Q with the consideration of system performance and
quantizer ranges at the same time.
Denote

Q(ξ) =





Q11 − ξ Q12 Q13

∗ Q22 − ξ Q23

∗ ∗ Q33 − ξ



 > 0, (42)

Algorithm 2:
Step 1. Solving the following optimization problem

min ρ

FA, FB ,CF , DF , S, N, β1, β2, α, δ, ε,

ξ, Q11, Q12,Q13, Q22, Q23, Q33

subject to (34), (35), (38)-(42), output the optimal solutions as
N = Nopt, S = Sopt, FA = FAopt, FB = FBopt, CF =
CFopt, DF = DFopt, Qopt.

Step 2. Compute

AFopt = N−1
optFAopt, BFopt = N−1

optFBopt,
CFopt = CFopt, DFopt = DFopt,

Popt =

[

Sopt − Nopt Nopt

Nopt −Nopt

]

, B̄1opt =

[

0
BFopt

]

.
(43)

The resulting AFopt, BFopt, CFopt and DFopt will form the opti-
mized filter gains, and Popt, Qopt are optimized matrices.

Step 3. Compute the value of
ηopt‖C2‖∆1

λmin(Qopt)
, where

ηopt = φopt +
√

φ2
opt + ϕoptλmin(Qopt) with

φopt = ‖AeoptP
1

2

opt‖‖P
1

2

optB̄1opt‖ + ‖CT
eopt‖‖Deopt‖ and

ϕopt = ‖2B̄T
1optPB̄1opt + DT

eoptDeopt‖.
Remark 4: Because λmin(Q) has a significant effect on the

value of
η‖C2‖∆1

λmin(Q)
, condition (42) is introduced to restrict the value

of λmin(Q), such that λmin(Q) ≥ ξ.
Remark 5: Algorithm 2 presents a convex optimization method

to design the filter gains AF , BF , CF , DF and matrix variables

P, Q with the consideration of optimizing the value of
η‖C2‖∆1

λmin(Q)

(realized by conditions (34), (35), (38), (39), (40), (42)) as well as
guaranteeing the H∞ performance (realized by condition (41)).
Now, based on Algorithm 2, the following corollary similar to
Theorem 1 can be obtained:

Corollary 1: Consider system (4), assume that M1min is cho-
sen large enough such that

M1min >
ηopt‖C2‖∆1

λmin(Qopt)
. (44)

Then, filtering strategy (5) with the designed filter gains
AFopt, BFopt, CFopt, DFopt and with the dynamic scaling

µ1 =
2|y|

M1min +
ηopt∆1‖C2‖

λmin(Qopt)

, (45)

solves the Quantized H∞ Filtering Problem.

IV. EXAMPLE

To illustrate the effectiveness of the proposed optimized H∞

filtering strategy, using MATLAB via the LMI Control Toolbox
[11], an example is given to provide a comparison between our
design method with the consideration of optimizing M1 and the
design method without the consideration of optimizing M1.

Example 1: Consider a linearized model of an F-404 engine
from [1], which is also studied in [7] and [23]. Using the zero-
order hold equivalent method, with a sample period T = 0.1s, a
discrete-time model of the system is obtained as

x(k + 1) =





0.8673 0 0.2022
0.0293 0.9763 −0.0301
0.0259 0 0.8032



 x(k)

+





0.1 0
0.5 0
−0.2 0



 ω(k),

z(k) =
[

0 0 4
]

x(k),
y(k) =

[

1 0 0
]

x(k).

(46)

A. Quantized filter design by Algorithm 1

In this part, we design a quantized H∞ filtering strategy based
on Algorithm 1 without the consideration of optimizing M1.
By using Lemma 2, we design a filter with the scalar γini =
3.3175.
By Algorithm 1 with the designed filter parameters, and ξ =
0.001, ∆1 = 0.01 for γ = 3.9875 and γ = 3.8875, respectively,

we obtain
η‖C2‖∆1

λmin(Q)
= 2799.2 and

η‖C2‖∆1

λmin(Q)
= 2796.2. For

these two cases, by Theorem 1, let M1 = 2799.3 > 2799.2
and M1 = 2796.3 > 2796.2, respectively, filtering strategy (5)
guarantees the H∞ filtering objective.

B. Quantized filter design by Algorithm 2

In this subsection, we design a quantized H∞ filtering strategy
based on Algorithm 2 with the consideration of optimizing M1.
Let c0 = 1, c1 = 0.1, c2 = 1, c3 = 0.001, c4 = 0.1. For one case,
let γ = 3.9875, by Algorithm 2 with ξ = 0.001 and ∆1 = 0.01,
we obtain the filter parameters and matrices Popt, Qopt.

It is easy to compute
ηopt‖C2‖∆1

λmin(Qopt)
= 91.3768. By Corollary 1,

let M1min = 91.5 > 91.3768, then, filtering strategy (5) with the
corresponding filter parameters and dynamic scaling (45) solves the
Quantized H∞ Filtering Problem.
For the second case, let γ = 3.8875, we obtain the filter parameters

and matrices Popt, Qopt. It is easy to compute
ηopt‖C2‖∆1

λmin(Qopt)
=

135.9763. For this case, by Corollary 1, let M1min = 136.1 >
135.9763, then filtering strategy (5) with the corresponding filter
parameters and dynamic scaling (45) solves the Quantized H∞

Filtering Problem.
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C. Comparison

Table 1 is given to compare the quantizer ranges obtained based on
Algorithm 1 and the optimization method given in Algorithm 2.

Algorithm 1 Algorithm 2

M1(γ = 3.9875) 2796.3 91.5
M1(γ = 3.8875) 2799.3 136.1

TABLE I

COMPARISON OF THE QUANTIZER RANGES

From this table, we can see that compared with the quantizer ranges
obtained based on Algorithm 1, the optimized quantizer ranges
obtained based on Algorithm 2 are much more improved. This
phenomenon shows the effectiveness of our optimization method.
On the other hand, for the example, we see that the tighter the H∞

performance bound to γini is, the larger quantizer range is needed.

D. Simulation

Given initial condition x0 =
[

0.5 −0.5 0.5
]T

, ξ0 =
[

−0.5 0.5 1
]T

, for γ = 3.9875, let the disturbance ω(k) be

ω(k) =

{

2sin(k), 50 ≤ k ≤ 60,
0, otherwise.

Then Figure 1 shows the estimation error responses of system
(6) with the quantized H∞ filtering strategies designed with the
consideration of optimizing M1 (solid curve) and without the
consideration of optimizing M1 (deashed curve), respectively.
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Fig. 1. Trajectories of estimation errors.

This example shows the superiority and the necessity of our design
method with the consideration of optimizing static quantizer ranges.

V. CONCLUSION

The quantized H∞ filtering problem of discrete-time LTI systems
has been investigated. In particular, the static quantizer ranges are
fully considered for their practical importance. By taking quantizer
errors into account, a quantized H∞ filter design strategy is
proposed, where a convex optimization method is developed to
minimize static quantizer ranges. The resulting design guarantees
that the quantized augmented system is asymptotically stable and
with a prescribed H∞ performance bound. A numerical example
has been presented to illustrated the effectiveness of the proposed
H∞ filtering strategy.
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