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Abstract—We study stability of state feedback switched

systems in which time delays are present in both the

feedback state and the switching signal of the controller.

For switched linear systems with average dwell-time

switching signals, we provide a condition in terms of

upper bounds on the delays and a lower bound on the

average dwell-time to guarantee asymptotic stability of

the closed loop. Our approach employs multiple Lyapunov

functions and the merging switching signal technique. We

then apply our stability results in switched systems to

consensus networks with asymmetric time-varying delays

and switching topologies.

I. INTRODUCTION

Switched systems are dynamical systems represented

by a family of subsystems and a switching signal that

indicates the active subsystem at every time (see, e.g.,

[1] for further background and references on switched

systems). In this paper, we address stability of feedback

switched systems with delays. By a feedback switched

system, we mean a switched plant connected in a closed

loop with a switched feedback controller.

In the ideal case, the controller has instant access to

both the plant’s state and the switching signal. In such

cases, the controller’s switching and the plant’s switching

are synchronized, and the closed loop can be represented

by a single switched system, for which various tools for

analyzing stability are available (e.g., [2], [3]). However,

when delays exist between the plant and the controller

(for example, when the plant and the controller commu-

nicate via a communication channel), there could be both

state delays and switching delays, resulting in the closed

loop system having asynchronous switching signals (one

from the plant and one from the controller) as well as

delayed states (in the controller). It is then of interest

in control research to find conditions on the original

switched system and the delays to guarantee stability

of the closed loop.
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Stability of switched systems with delays is a fairly

new research topic within the control systems commu-

nity and only recently has been treated [4], [5], [6], [7].

Most of the results assume state delays only, without

switching delays. The work [8] has considered stabiliza-

tion of feedback switched systems with switching delays

but without state delays and with dwell-time switching.

In this work, we consider both state delays and switching

delays as well as more general classes of switching

signals (average dwell-time switching signals).

Our contribution is to show that stability of feedback

switched systems with average dwell-time switching is

robust with respect to delays in both the state and the

switching signal, and we provide an explicit quantifi-

cation of such robustness in terms of bounds on the

average dwell-time, the chatter bound, and the delays.

Another contribution is to provide a multiple Lyapunov

functions technique for analyzing stability of switched

systems with delays, building upon the technique to deal

with state delays in [9], the small-gain technique in [9],

[10], and the average dwell-time switching concept [2].

The type of feedback switched systems with delays

described here could find application, for example, in

consensus networks (see Section IV), or in multi-modal

control systems where controller selection takes a finite

amount of time (e.g., controller selection is carried out

by human operators).

The notations in this paper are fairly standard. Denote

by |z| the Euclidean norm of a real vector z. For a matrix

M , denote by ‖M‖ the induced matrix norm. Define

‖f‖D := sups∈D |f(s)|, where D ⊆ [0,∞).

II. PROBLEM FORMULATION

A switched linear control system is of the form

ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t), (1)

where x ∈ R
n is the state, u ∈ R

m is the input,

σ : [0,∞) → P is the switching signal mapping time

to some finite index set P, and Ap ∈ R
n×n, Bp ∈

R
n×m, p ∈ P, are the state and input matrices. The

switching signal σ is a piecewise-constant continuous-

from-the-right function taking values in the index set
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P. The discontinuities of σ are called switching times

or switches. As often assumed in the switched system

literature, no state jump occurs at a switching time, and

there are finitely many switches in every finite interval

(i.e., no Zeno behavior).

Assumption 1 (Ap, Bp) are stabilizable ∀p ∈ P.

Let Kp be matrices such that Ap +BpKp is Hurwitz

∀p ∈ P. The ideal switched state feedback controller is

u = Kσx, (2)

and the closed loop is ẋ = (Aσ + BσKσ)x. Recall [2]

that a switching signal σ is an average dwell-time signal

if the number of switches in any interval [t0, t), denoted

by Nσ(t, t0), satisfies

Nσ(t, t0) 6 N0 +
t − t0

τa
t > t0

for some constant N0 > 1; N0 is called a chatter bound.

Denote by Save[τa, N0] the class of switching signals

with average dwell-time τa and chatter bound N0. It

is well-known [2] that if the switching signal σ has

an average dwell-time τa, then there exists a positive

number τ∗
a

(which depends on Ap +BpKp) such that the

switched system ẋ = (Aσ + BσKσ)x is asymptotically

stable for all τa > τ∗
a

.

Now suppose that there is a delay τx between the

plant’s output (which is assumed to be the exact state

in this paper) and the state available to the controller,

i.e. the controller receives the state x(t − τx) at time

t. Because the controller is also switching, there are

two scenarios here: 1) the switching signal available

to the controller is synchronized with the switching

signal σ of the plant, or 2) the controller’s switching

signal is a delayed version of the plant’s switching

signal. The first case is possible, for example, when

the switching signal is generated by timing, and the

plant and the controller use the same clock. The second

case occurs, for example, when information about the

switching signal of the plant has to be sent to the

controller over a communication channel with delay (see

Fig 1a). In the first case, the control signal going into the

plant is u(t) = Kσ(t)x(t − τx), and in the second case,

u(t) = Kσ(t−τs)x(t − τx), where τx is the state delay,

and τs is the switching delay. Another type of delay is

input delay (see Fig 1b), in which case the control signal

going into the plant is u(t) = Kσ(t−τd)x(t − τd).
In general, the control signal going into the plant is

of the following form:

u(t) = Kσ(t−τs)x(t − τx) (3)

for some non-negative constants τs and τx. The formula

(3) also covers the case where input, output, and switch-

ing delays are all present (i.e. superimposing Fig. 1a on

Fig. 1b), in which case u(t) = Kσ(t−τs−τd)x(t−τx−τd)
and, hence, is also of the form (3).

e−sτx

ẋ = Aσx + Bσu

Kσ(t−τs)x(t − τx)

e−sτs

σ

x
ẋ = Aσx + Bσu

Kσx

e−sτd

x

σ

a. Output delay b. Input delay

Fig. 1. Feedback switched systems with delays

For the closed loop system consisting of (1) and (3),

for every initial state x0 : [−τx, 0] → R
n, piecewise

continuous input u : [0,∞) → R
m, and switching signal

σ : [−τs,∞] → P, a solution (or trajectory) x exists for

all time in [0,∞) and is unique in the Caratheodory

sense.

For τx = τs = 0, we have asymptotic stability of

the closed-loop switched system under average dwell-

time switching, and for large enough τx and τs = 0, we

may have instability. Intuitively, for τs = 0, one could

expect to find an upper bound on τx to guarantee closed-

loop stability1 (although, rigorously, even the existence

of such a bound is not apparent for switched systems and

has to be proved). Stability of the closed loop is even

more challenging when there are switching delays, i.e.

τs 6= 0. The main problem is to determine and quantify

if upper bounds on τx and τs for closed loop stability

indeed exist and for which type of switched systems.

Problem: For the switched system (1) with the control

(3), find upper bounds on τx and τs and classes of the

switching signal σ to guarantee asymptotic stability of

the closed loop.

Compared to the case without delays [2], the difficul-

ties in the case with delays are due to: 1) the mismatch

between the states x(t) and x(t− τx) in the control law,

and 2) the mismatch between the indices of σ(t) and

σ(t − τs) when t is near switching times.

III. MAIN RESULT

Our main theorem characterizes the relationship be-

tween the delays and the average dwell-time of the

1An upper bound is a sufficient condition only; it is possible to

have stable non-switched linear systems with arbitrarily large delays.
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plant’s switching signal to guarantee asymptotic stability.

Before presenting the theorem, we define some no-

tation and variables. Let Āp,q := Ap + BpKq and

let P2 := P × P. Let P2
s be the set of all indices

in P2 such that ∃ positive definite quadratic functions

Vp,q : R
n → [0,∞) such that

∂Vp,q

∂x
(Āp,qx + v) 6 −λsVp,q + γ|v|2 ∀v ∈ R

n (4)

for all (p, q) ∈ P2
s and for some λs, γ > 0. Let P2

u :=
P2 \ P2

s . From linear system theory, there always exist

positive definite quadratic functions Vp,q : R
n → [0,∞)

such that

∂Vp,q

∂x
(Āp,qx + v) 6 λuVp,q + γ|v|2 ∀v ∈ R

n (5)

for all ∀(p, q) ∈ P2
u and for some λu, γ > 0. Because

Vp,q are quadratic positive definite, there exist α1, α2 >
0, and µ > 1 such that

α1|x|
2

6 Vp,q(x) 6 α2|x|
2 ∀(p, q) ∈ P2 (6a)

Vp1,q1
(x) 6 µVp2,q2

(x) ∀(p1, q1), (p2, q2) ∈ P2. (6b)

It is always possible to set µ = α2/α1, but a smaller µ
may exist, depending on the particular Vj . Define cB :=
sup(p,q)∈P2 ‖BpKq‖ and cA := supp∈P ‖Ap‖. Let c1 :=
cA + cB . Following the notation in [9], define xd(t) :=
‖x‖[t−2τx,t]. We have the following result (see the sketch

of the proof in the Appendix).

Theorem 1 Consider the switched system (1) with the

controller (3). Suppose that the set P2
s 6= ∅, where P2

s

is as in (4), and σ ∈ Save[τa, N0]. Let

τ̄a := τa/2, N0 := 2N0 + τs/τa. (7)

If all of the following conditions hold,

τ̄a >
ln µ

λ
(8a)

τs <
λs − λ

λs + λu
τa (8b)

(τxc1cB)2κ < λ − ln µ/τ̄a (8c)

for some λ ∈ (0, λs), where κ :=

µN0 exp((λs + λu)(N0 + 1)τs)(a2γ/a1), then we

have

|xd(t)|
2

6 (g0e
2λ′τxe−λ′(t−t0)+g1(τx)) |xd(t0)|

2

∀t > t0 > τx
(9)

for some constants λ′, g0 > 0 and function g1 :
[0,∞) → [0,∞) such that g1(τx) → 0 as τx → 0.

Remark 1 The inequality (4) is equivalent to saying

that the systems ẋ = Āp,qx are asymptotically stable for

all (p, q) ∈ P2
s , for which one can have Vp,q = xT Pp,qx,

where Pp,q is the solution to the Lyapunov equation

(Āp,q + λ̄s

2 I)T Pp,q + Pp,q(Āp,q + λ̄s

2 I) = −I , and

−λ̄s/2 is the smallest real part of the eigenvalues of

Āp,q, (p, q) ∈ P2
s , 0 < λs < λ̄s. The set P2

s will contain

at least all the elements (p, p), ∀p ∈ P, but it can contain

other pairs of the form (p, q) where p 6= q. The existence

of a common λs and a common γ in (4) and the existence

of a common λu and a common γ in (5) follow from the

fact that P is finite. Similarly, the existence of a common

γ in both (4) and (5) also follows from the fact that P
is finite.

Remark 2 The condition (8a) gives a lower bound on

τa. The condition (8b) gives an upper bound on τs for a

fixed τa and a lower bound on τa for a fixed τs. The con-

dition (8b) can be rewritten as τs/τx < λs/(λs + λu),
which verbally means that the fraction of the switching

delay compared to the average dwell-time must be less

than the ratio of the stable pole (absolute value) and the

total of the stable pole and the unstable pole (absolute

value). The condition (8c) gives an upper bound on the

state delay τx for fixed τs and τa.

Remark 3 For time-varying delays, i.e. τx and τs are

functions of time, we still have the result claimed in

Theorem 1, in which τx is replaced by a bound τ̄x on

τx such that τx(t) 6 τ̄x for all t, and τs is replaced by

τ̄s such that τs(t) 6 τ̄s for all t.

Remark 4 The result in this section remains the same

if (4), (5), and (6) hold for all x ∈ Ω for some set Ω,

instead of requiring (4), (5), and (6) hold for all x ∈ R
n.

A. Stability

The following result shows robustness of feedback

switched systems with respect to delays.

Corollary 1 Consider the switched system (1) with the

controller (3). Suppose that the set P2
s 6= ∅, where P2

s

is as in (4), and σ ∈ Save[τa, N0]. Suppose that

τa > 2
ln µ

λs

. (10)

There exist positive numbers τ̄x and τ̄s such that for all

τx < τ̄x and τs < τ̄s, we have

|xd(t)|
2

6 (g2e
−λ′(t−t0) + g3)|xd(t0)|

2 ∀t > t0 > τx
(11)
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for some g2, λ
′ > 0 and g3 ∈ (0, 1).

Remark 5 The inequality (11) implies asymptotic sta-

bility such that x is Lyapunov stable and |x(t)| → 0 as

t → ∞. To see this result, let ǫ > 0 be a number such

that g3 + ǫ < 1, and let T > 0 be a number such that

g2e
−λT 6 ǫ. Then |xd(T + t0)|

2 6 (g3 + ǫ)|xd(t0)|
2.

Because (11) is true for all t > t0 + τx and T > τx,

we also have |xd(2T + t0)|
2 6 (g3 + ǫ)2|xd(T + t0)|

2.

It follows that |xd(kT + t0)|
2 6 (g3 + ǫ)k|xd(t0)|

2 for

all k = 1, . . . . Because g3 + ǫ < 1, we have that

|xd(kT + t0)| → 0 as k → ∞. Because |xd(kT + t0 +
t)|2 6 (g3+g2)|xd(kT+t0)|

2 for all t ∈ [0, T ), it follows

that xd(t) is bounded for all t > t0, and |xd(t)| → 0
as t → ∞. In view of the fact that |x(t)| 6 |xd(t)|, we

conclude that the system is asymptotically stable.

B. Special case: switching delay and no state delay

Corollary 2 Consider the switched system (1) with the

controller (3). Suppose that τx = 0. Suppose that the set

P2
s 6= ∅, where P2

s is as in (4), and σ ∈ Save[τa, N0].
Let τ̄a be as in (7). If (8a) and (8b) hold for some λ ∈
(0, λs), then we have

|x(t)|2 6 g1e
−λ′(t−t0) |x(t0)|

2 ∀t > t0 > 0 (12)

for some positive constants λ′, g1.

Remark 6 If there is no unstable mode even in the case

of switching mismatch, then λu = 0. Thus, if τs = 0, a

strict upper bound on τs can be as large as τa, and as

τa → ∞, we can have τs → ∞.

C. Special case: state delay and no switching delay

For the special case τs = 0, with a little tweak in

the proof of Theorem 1, we have the following stronger

result (compare (13a) with (10)).

Corollary 3 Consider the switched system (1) with the

controller (3). Suppose that τs = 0. Suppose that the set

P2
s 6= ∅, where P2

s is as in (4), and σ ∈ Save[τa, N0]. If

τa >
ln µ

λ
(13a)

(τxc1cB)2κ < λ − ln µ/τa (13b)

for some λ ∈ (0, λs), where κ := µN0a2γ/a1, then we

have

|xd(t)|
2

6 (g1e
−λ′(t−t0) + g2)|xd(t0)|

2 ∀t > t0 > τx
(14)

for some g1, λ
′ > 0 and g2 ∈ (0, 1).

Note that (14) implies asymptotic stability (see Re-

mark 5). Corollary 3 shows that with no switching delay,

asymptotic stability of switched linear systems with

average dwell-time switching [2] (which uses exactly the

same condition as (13a)) is robust to small state delays.

Remark 7 When a common Lyapunov function exists

among Āp,q, (p, q) ∈ P ′
s, where Āp,q are as in (4), then

µ = 1, and the average dwell-time τa can be arbitrary

small (the righthand side of (13a) is zero).

Remark 8 The inequality (13b) implies that τx → 0 as

τa → ln µ/λ, and τx → τx
∗ as τa → ∞, where τx

∗ :=
1/(c1cB

√

µN0a2γ/(a1λ)). The inequality (τxc1cB)2κ <
λ− lnµ/τa can be rewritten as λs(τx/τ∗

x
)2 +lnµ/τa <

λ, from which the relationship between τx and τa can

be visualized as the shaded area in Fig. 2 (in the figure,

τ∗
a

= λ/ ln µ). We can calculate that in order to have

τx > (1 − ǫ)τ∗
x

, we need τa > τ∗
a
/ǫ.

(τx, τa)

τ∗
x

τ∗
a

τx

τa

Fig. 2. Relationship between τx and τa.

IV. APPLICATION

Consensus networks with switching topology and delay

Consider a network of n agents with an undirected

communication topology G (G is represented by a

graph), whose agents’ dynamics are ẋi = ui, i =
1, . . . , n, and without loss of generality, assume that

xi ∈ R. Suppose that each agent employs the consensus

protocol ui =
∑

j∈Ni
xj − xi, where Ni is the neigh-

borhood of the node i of the graph G (which is the set

of nodes of G that have edges with the node i). The

reader is referred to, for example, [11] for background

on graph theory. If a time-varying communication delay

τx(t) is present when information is transmitted between

two agents, the actual control signals are

ui(t) =
∑

j∈Ni

xj(t − τx(t)) − xi(t) (15)

(there is no state delay for information from the same

agent). The work [12] considers the network ui(t) =
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∑

j∈Ni
xj(t−τx)−xi(t−τx) with the delay τx but without

topology switching, under which the collective dynamics

are a non-switched linear system with delays and can

be analyzed using well-known techniques (Nyquist cri-

terion) for time-delay linear systems. Such an approach

is not applicable when the topology is time-varying.

With the protocol (15), the collective dynamics will

be of the form of a switched system with delay as we

shall see. Let x = (x1, . . . , xn) be the collective state of

the network. The dynamics of the network are

ẋ(t) = −Dσ(t)x(t) + Aσ(t)x(t − τx),

where Ap is the adjacency matrix of Gp, Dp is the

degree matrix of Gp, and σ(t) := i : G(t) = Gp, p =
1, . . . ,m. Define δ(t) := x(t)− 1

n
(1T x(t))1 =: F (x(t)),

where 1 ∈ R
n is the vector of all ones. Then 1

T δ = 0.

The vector δ is known as the disagreement vector [12].

Assumption 2 For every p = 1, . . . ,m, Gp is kp-

regular2 for some kp.

For a kp-regular graph Gp, we have 1
T Ap =

kp1
T and Ap1 = kp1, and so (1T Apx)1 =

Ap(1
T x)1 = kp(1

T x)1. The foregoing equality implies

that F (Aσ(t)x(t − τx)) = Aσ(t)F (x(t − τx)). Then

δ̇(t) = −kσ(t)δ(t) + Aσ(t)δ(t − τx) (16)

in view of δ(t − τx) = F (x(t − τx)). The system (16)

can be cast as the feedback switched system

δ̇ = −kσδ + u

u = Aσδ(t − τx).
(17)

Now, for every i ∈ {1, . . . ,m}, we have Ap − kpI =
−Li, where Li is the Laplacian of the graph Gp.

For any undirected graph G, the graph Laplacian LG

has the following property (see, e.g., [12]): δT LGδ >

λ2(LG)|δ|2 ∀δ : 1
T δ = 0, where λ2(LG) is the

smallest nonzero eigenvalue of LG. Then the quadratic

function V = δT δ satisfies the following property:

for every i ∈ {1, . . . ,m}, along the trajectory of

δ̇ = −Liδ + v, we have V̇ = −2δT (Liδ + v) 6

−(2λ2(LGp
)−ǫ)V +1/ǫ|v|2 for some ǫ ∈ (0, 2λ2(LGp

)).
The foregoing inequality shows that V satisfies the

condition (4) with λs := mini 2λ2(LGp
)−ǫ and γ = 1/ǫ

for some ǫ ∈ (0,mini 2λ2(LGp
)). Therefore, the set P2

s

as in (4) is nonempty because P2
s contains (p, p) for all

p = 1, . . . ,m.

From Corollary 3 and Remark 5, if σ ∈ Save[τa, N0]
and τa > ln µ/λs, then τ̄x exists such that for all initial

2Recall that a graph is k−regular if every node has degree k.

states and all delays τx < τ̄x, we have δ(t) → 0 as

t → ∞. From the definition of δ, we have xi(t) →
1
n

∑n
j=1 xj(t) as t → ∞ for all i, and hence, network

consensus is asymptotically achieved. This result is true

for arbitrary small τa because V = δT δ is a common

Lyapunov function, and so µ = 1 (see Remark 7).

Theorem 2 Consider a multi-agent network with the

protocol (15) and a switching topology G : [0,∞) →
{G1, . . . , Gm}, where Gp are kp-regular undirected

graphs for some kp, p = 1, . . . ,m. For every τa > 0
and N0 > 0, there exists a number τ̄x > 0 such that if

the switching signal of the switching topology belongs

to Save[τa, N0], and the delay τx(t) < τ̄x ∀t, then the

network of agents will asymptotically reach a consensus

for all initial states.

V. CONCLUSIONS

In this work, we addressed stability of feedback

switched systems with state and switching delays. We

provided conditions in terms of upper bounds on the

delays and lower bounds on the average dwell-time

of the plant’s switching signal to guarantee asymptotic

stability. We applied our results in switched systems to

study stability of multi-agent dynamics networks with

delays and switching topologies. Future work aims to

extend the results here to the output feedback case, to

switched nonlinear systems, and to other classes of slow

switching signals (as in [13]).
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Birkhäuser, 2003.

[2] J. P. Hespanha and A. S. Morse, “Stability of switched systems

with average dwell-time,” in Proc. 38th IEEE Conf. on Decision

and Control, 1999, pp. 2655–2660.

[3] D. Liberzon, J. P. Hespanha, and A. S. Morse, “Stability

of switched systems: a Lie-algebraic condition,” Systems and

Control Lett., vol. 37, pp. 117–122, 1999.

[4] X. Sun, J. Zhao, and D. J. Hill, “Stability and L2-gain anal-

ysis for switched delay systems: A delay-dependent method,”

Automatica, vol. 42, pp. 1769–1774, 2006.

[5] X. Sun, G. M. Dimirovski, J. Zhao, and W. Wang, “Exponential

stability for switched delay systems based on average dwell

time technique and Lyapunov function method,” in Proc. of the

2006 American Control Conference, 2006.

[6] Y. G. Sun, L. Wang, and G. Xie, “Stability of switched systems

with time-varying delays: Delay-dependent common Lyapunov

functional approach,” in Proc. of the 2006 American Control

Conference, 2006.

[7] X. Sun, D. Wang, W. Wang, and G. Yang, “Stability analysis

and L2-gain of switched delay systems with stable and unstable

subsystems,” in Proc. of the 22nd IEEE International Sympo-

sium on Intelligent Control, 2007.

1758



[8] G. Xie and L. Wang, “Stabilization of switched linear systems

with time-delay in detection of switching signal,” J. Math. Anal.

Appl., vol. 305, pp. 277–290, 2005.

[9] D. Liberzon, “Quantization, time delays, and nonlinear stabi-

lization,” IEEE Trans. Auto. Control, vol. 51, no. 7, pp. 1190–

1195, 2006.

[10] A. R. Teel, “Connections between Razumikhin-type theorems

and the ISS nonlinear small gain theorem,” IEEE Trans. Autom.

Control, vol. 43, no. 7, pp. 960–964, 1998.

[11] R. Diestel, Graph Theory, 3rd ed., ser. Graduate Texts in

Mathematics. Springer-Verlag, 2005, vol. 173.

[12] R. Olfati-Saber and R. M. Murray, “Consensus problems in

networks of agents with switching topology and time-delays,”

IEEE Trans. Automat. Control, vol. 49, pp. 1520–1533, 2004.

[13] J. P. Hespanha, “Uniform stability of switched linear systems:

Extensions of LaSalle’s invariance principle,” IEEE Trans.

Automat. Control, vol. 49, no. 4, pp. 470–482, 2004.

[14] L. Vu and K. A. Morgansen, “Stability of feedback

switched systems with state and switching delays,” Preprint.

http://vger.aa.washington.edu/∼linhvu/research/switched

feedback delay.pdf .

[15] G. Zhai, B. Hu, K. Yasuda, and A. N. Michel, “Stability analysis

of switched systems with stable and unstable subsystems: an

average dwell time approach,” in Proc. of the American Control

Conference, 2000, pp. 200–204.

APPENDIX

Due to the space limitation, the proofs of the lemmas

below are omitted, and the reader is referred to the full

version of this paper [14].

Merging switching signals

A key technique used in this paper to deal with

mismatched switching signals σ and σc is to merge those

switching signals. The idea is to create a (virtual) new

switching signal σ′ : [0,∞) → P ×P as follows:

σ′(t) := (σ(t), σc(t)). (18)

The merging action is denoted by ⊕ such that σ′ =
σ ⊕ σc.

Lemma 1 If σ1 ∈ Save[τa1
, N1] and σ2 ∈ Save[τa2

, N2],
then σ1 ⊕σ2 ∈ Save[τa, N1 + N2], where τa := (1/τa1

+
1/τa2

)−1.

Delayed average dwell-time switching signals

In the case σc = σ(t − τs) for some constant τs,

if σ ∈ Save[τa, N0], then it follows immediately that

σc ∈ Save[τa, N0]. For the case of time varying τs, using

Lemma 1, we have the following lemma.

Lemma 2 Let σ1 ∈ Save[τa, N0] and σ2(t) := σ1(t −
τs(t)) for some positive function τs. Suppose that τs(t) 6

τ̄s for all t, and τ̄s < τa. Then σ2 ∈ Save[τa, N0+ τ̄s/τa].

Lemma 3 Let σ1 ∈ Save[τa, N0] and σ2(t) := σ1(t −
τs(t)) for some positive function τs. For an interval

(t0, t), let mt0,t be the total time at which σ1(t) = σ2(t),
and m̄t0,t := t−t0−mt0,t. Suppose that τs(t) 6 τ̄s ∀t. If

τ̄s(λm + λm̄) 6 (λm − λ)τa (19)

for some λm > 0, λm̄ > 0, and λ ∈ [0, λm], then

−λmmt0,t+λm̄m̄t0,t 6 cT −λ(t − t0) ∀t > t0, (20)

where cT := (λm + λm̄)(N0 + 1)τ̄s.

SKETCH OF THE PROOF OF THEOREM 1

We outline the key ideas and steps behind the proof

(for details, see [14]). The proof comprises five steps:

• Step 1: Obtain the closed loop as a switched system

with a single switching signal, using the merging

switching signal technique:

ẋ(t) = Āσ′(t)x(t) + B̄σ′(t)(x(t−τx)−x(t)),

where Āp,q = Ap + BpKq, B̄p,q = BpKq, and

σ′(t) := σ(t) ⊕ σ(t − τs).

• Step 2: Bound the difference between x and the de-

layed version of x in terms of τ̄x and x: |x(tsk+1
)−

x(tsk
)| 6 (tsk+1

− tsk
)‖ẋ‖[tsk

,tsk+1
) 6 (tsk+1

−
tsk

)c1‖x‖[tsk
−τx,tsk+1

] 6 (tsk+1
− tsk

)c1‖x‖[t−2τx,t],

where c1 = supp∈P ‖Ap‖+supp,q ‖BpKq‖.

• Step 3: Construct the candidate Lyapunov function

V (t) := Vσ′(t)(x(t)), where Vj are as in (5).

Then bound V using Lemma 2 and Lemma 3. The

technique in this step is similar to the technique

in the original average dwell-time paper [2] and in

the extension [15] for mixed stable and unstable

subsystems. The result in [15] is not directly appli-

cable here because the dynamics in this paper are

feedback systems, and there are state and switching

delays, whereas in [15], the system is a switched

system, and no delay is present.

• Step 4: Bound the Lyapunov function in Step 3

in terms of the initial state and the current sate,

utilizing (8a), (8b), and Lemma 2:

V (T ) 6 µN0ecT e−λ′(T−t̄0)α2|x(t̄0)|
2

+ (µN0ecT γ(τxcBc1)
2/λ′)‖xd‖

2
[t̄0,T ) ∀T > t̄0.

• Step 5: Bound the state using a small-gain tech-

nique, utilizing the condition (8c) in the theorem:

|x(T )|2 6

(

g0e
−λ′(T−t̄0) + g1(τx)

)

|xd(t̄0)|
2.
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