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Abstract— This paper presents the central finite-dimensional
H∞ filter for nonlinear polynomial systems, that is suboptimal
for a given threshold γ with respect to a modified Bolza-
Meyer quadratic criterion including the attenuation control
term with the opposite sign. In contrast to the previously
obtained results, the paper reduces the original H∞ filtering
problem to the corresponding optimal H2 filtering problem,
using the technique proposed in [1]. The paper designs the
central suboptimal H∞ filter for the general case of nonlinear
polynomial systems, based on the optimal H2 filter given
in [24]. The central suboptimal H∞ filter is also derived in
a closed finite-dimensional form for third (and less) degree
polynomial system states. Numerical simulations are conducted
to verify performance of the designed central suboptimal filter
for nonlinear polynomial systems against the central suboptimal
H∞ filter available for the corresponding linearized system.

I. INTRODUCTION

Over the past two decades, the considerable attention has

been paid to the H∞ estimation problems for linear and

nonlinear systems. The seminal papers in H∞ control [1]

and estimation [2], [3], [4] established a background for

consistent treatment of filtering/controller problems in the

H∞-framework. The H∞ filter design implies that the resulting

closed-loop filtering system is robustly stable and achieves a

prescribed level of attenuation from the disturbance input to

the output estimation error in L2/l2-norm. A large number

of results on this subject has been reported for systems in

the general situation, linear or nonlinear (see ([5]–[14]). The

sufficient conditions for existence of an H∞ filter, where the

filter gain matrices satisfy Riccati equations, were obtained

for linear systems in [4] and linear systems with state delay

in [15] or with measurement delay in [16]. However, the

criteria of existence and suboptimality of solution for the

central H∞ filtering problems based on the reduction of the

original H∞ problem to the induced H2 one, similar to those

obtained in [1], [4] for linear systems, remain yet unknown

for nonlinear polynomial systems.

Although the general optimal solution of the filtering prob-

lem for nonlinear state and observation equations confused

with white Gaussian noises is given by the equation for the

conditional density of an unobserved state with respect to
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observations [17], there are a very few known examples of

nonlinear systems where that equation can be reduced to a

finite-dimensional closed system of filtering equations for

a certain number of lower conditional moments (see [18]–

[20] for more details). The complete classification of the

”general situation” cases (this means that there are no special

assumptions on the structure of state and observation equa-

tions and the initial conditions), where the optimal nonlinear

finite-dimensional filter exists, is given in [21]. Apart from

the ”general situation,” the optimal finite-dimensional filters

have been designed for certain classes of polynomial system

states over linear observations ([22]–[25]).

This paper presents the central (see [1] for definition)

finite-dimensional H∞ filter for nonlinear polynomial sys-

tems, that is suboptimal for a given threshold γ with respect

to a modified Bolza-Meyer quadratic criterion including the

attenuation control term with the opposite sign. In contrast

to the results previously obtained for linear systems [4], [15],

[16], the paper reduces the original H∞ filtering problem to

the corresponding H2 filtering problem, using the technique

proposed in [1]. To the best authors’ knowledge, this is

the first paper which applies the reduction technique of [1]

to certain classes of nonlinear systems. Indeed, application

of the reduction technique makes sense, since the optimal

filtering equations solving the H2 filtering problems have

been obtained for certain classes of nonlinear polynomial

systems [22], [23], [24]. Designing the central suboptimal H∞

filter for nonlinear polynomial systems presents a significant

advantage in the filtering theory and practice, since (1) it en-

ables one to address filtering problems for non-autonomous

nonlinear polynomial systems, where the LMI technique is

hardly applicable and the HJB equation-based methods fail

to provide a closed-form solution, (2) the obtained H∞ filter

is suboptimal, that is, optimal for any fixed γ with respect

to the H∞ noise attenuation criterion, and (3) the obtained

H∞ filter is finite-dimensional and has the same structure of

the estimate and gain matrix equations as the corresponding

optimal H2 filter.

It should be commented that the proposed design of the

central suboptimal H∞ filters for nonlinear polynomial sys-

tems with integral-quadratically bounded disturbances natu-

rally carries over from the design of the optimal H2 filters for

nonlinear polynomial systems with unbounded disturbances

(white noises). The entire design approach creates a complete

filtering algorithm of handling the nonlinear polynomial

systems with unbounded or integral-quadratically bounded

disturbances optimally for all thresholds γ uniformly or for

any fixed γ separately. A similar algorithm for linear systems

was developed in [1].
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The paper presents the central suboptimal H∞ filter for the

general case of nonlinear polynomial systems, based on the

optimal H2 filter given in [24]. The central suboptimal H∞

filter is also derived in a closed finite-dimensional form for

third (and less) degree polynomial system states. In doing

so, the standard H∞ filtering conditions of stabilizability,

detectability, and noise orthonormality (see [4]) are assumed.

Finally, to relax the standard conditions, the paper presents

the generalized version of the designed H∞ filter in the

absence of the noise orthonormality, using the technique of

handling non-orthonormal noises carried over from [16].

Numerical simulations are conducted to verify perfor-

mance of the designed central suboptimal filter for nonlinear

polynomial system against the central suboptimal H∞ filter

available for the corresponding linearized system. The sim-

ulation results show a definite advantage in the values of

the noise-output transfer function H∞ norm in favor of the

designed filter.

The paper is organized as follows. Section 2 presents the

H∞ filtering problem statement for nonlinear polynomial sys-

tems. The central suboptimal H∞ filter for nonlinear polyno-

mial systems is designed in Section 3. An example verifying

performance of the H∞ filter designed in Section 3 against the

central suboptimal H∞ filter available for the corresponding

linearized system is given in Section 4. The obtained results

are generalized to the case of non-orthonormal noises in

Section 5. Section 6 presents conclusions to this study.

II. H∞ FILTERING PROBLEM STATEMENT FOR

POLYNOMIAL SYSTEMS

Consider the following continuous-time polynomial sys-

tem:

S1 : ẋ(t) = f (x, t)+B(t)ω(t), (1)

y(t) = C(t)x(t)+D(t)ω(t), (2)

z(t) = L(t)x(t), (3)

x(t0) = x0, (4)

where x(t) ∈ R
n is the state vector, z(t) ∈ R

q is the signal

to be estimated, y(t) ∈ R
m is the measured output, ω(t) ∈

L
p

2 [0,∞) is the disturbance input. B(·), C(·), D(·), and L(·)
are known continuous functions.

The nonlinear function f (x, t)∈Rn is considered a polyno-

mial of n variables, components of the state vector x(t)∈ Rn,

with time-dependent coefficients. Since x(t)∈ Rn is a vector,

this requires a special definition of the polynomial for n > 1.

In accordance with [24], a p-degree polynomial of a vector

x(t) ∈ Rn is regarded as a p-linear form of n components of

x(t)

f (x, t)= α0(t)+α1(t)x+α2(t)xxT +. . .+αp(t)x . . .p times . . .x,

where α0(t) is a vector of dimension n, α1 is a matrix of

dimension n×n, α2 is a 3D tensor of dimension n×n×n, αp

is an (p + 1)D tensor of dimension n× . . .(p+1) times . . .× n,

and x × . . .p times . . .× x is a pD tensor of dimension n ×
. . .p times . . .×n obtained by p times spatial multiplication of

the vector x(t) by itself (see [24] for more definition). Such

a polynomial can also be expressed in the summation form

fk(x, t) = α0 k(t)+∑
i

α1 ki(t)xi +∑
i j

α2 ki j(t)xix j + . . .

+ ∑
i1...ip

αp ki1...ip
(t)xi1 . . .xip , k, i, j, i1, . . . , ip = 1, . . . ,n.

For the system (1)–(4), the following standard conditions

(see [4] for linear systems) are assumed:

• the state x(t) governed by (1) is uniformly stabilizable;

(C1)
• the state x(t) governed by (1) is uniformly detectable

through the observations y(t) satisfying (2); (C2)
• D(t)BT (t) = 0 and D(t)DT (t) = Im. (C3)

Here, Im is the identity matrix of dimension m × m. The

definitions of uniform stabilizability and detectability for

nonlinear systems can be found in [26]. As usual, the first

two conditions ensure that the estimation error, provided by

the designed H∞ filter, converge to zero ([27]). The last noise

orthonormality condition is technical and corresponds to the

condition of independence of the standard Wiener processes

(Gaussian white noises) in stochastic filtering problems [28].

Now, consider a full-order H∞ filter in the following form

(S2):

S2 : ẋ f (t) = f (x f , t)+K f (t)[y(t)−C(t)x f (t)], (5)

z f (t) = L(t)x f (t), (6)

where x f (t) is the filter state. The gain matrix K f (t) is to be

determined.

Upon transforming the model (1)-(3) to include the states

of the filter, the following filtering error system is obtained

(S3):

S3 : ė(t) = f̄ (x,x f , t)+B(t)ω(t)−K f (t)ỹ(t), (7)

ỹ(t) = C(t)e(t)+D(t)ω(t), (8)

z̃(t) = L(t)e(t), (9)

where e(t) = x(t) − x f (t), ỹ(t) = y(t) −C(t)x f (t), z̃(t) =
z(t)−z f (t), and f̄ (x,x f , t) = f (x, t)− f (x f , t). Note that since

the function f (x, t) is polynomial, the equality f̄ (x,x f , t) = 0

holds, if x = x f . In other words, f̄ (z,z, t) = 0.

Therefore, the problem to be addressed is as follows:

develop a robust H∞ filter of the form (5)-(6) for the polyno-

mial system (S1), such that the following two requirements

are satisfied

1) The resulting filtering error dynamics (S3) is robustly

asymptotically stable in the absence of disturbances,

ω(t) ≡ 0;

2) The filtering error dynamics (S3) ensures a noise

attenuation level γ in an H∞ sense. More specifically,

for all nonzero ω(t) ∈ L
p

2 [0,∞), the inequality

‖z̃(t)‖2
2 < γ2

{

‖ω(t)‖2
2 + xT (t0)Rx(t0)

}

(10)

holds, where ‖ f (t)‖2
2 :=

∫ T1
t0

f T (t) f (t)dt, T1 is the

rightmost point of a time interval where the solution
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of (7) exists and is bounded, R is a positive definite

symmetric matrix, and γ is a given real positive scalar.

Remark 1. Hereinafter, the formulated H∞ filtering prob-

lem is considered in a time interval [t0,T1], where the solution

of the error equation (7) still exists and is bounded. Note that

although the solution of the nonlinear state equation (1) may

diverge to infinity as T1 approaches an escape time T ∗ for the

system (1), the solution of the error equation (7) may remain

bounded in any interval [t0,T1], where T1 < T ∗. Thus, the H∞

filtering problem still makes sense for the nonlinear state (1)

in [t0,T1], T1 < T ∗.

III. DESIGN OF CENTRAL H∞ FILTER FOR POLYNOMIAL

SYSTEMS

The proposed design of the central H∞ filter (see Theorem

4 in [1]) for polynomial systems is based on the general

result (see Theorem 3 in [1]) reducing the H∞ controller

problem to the corresponding optimal H2 controller problem.

In this paper, only the filtering part of this result, valid for

the entire controller problem, is used. Then, the optimal filter

of the Kalman-Bucy type for polynomial systems ([24]) is

employed to obtain the desired result, which is given by the

following theorem.

Theorem 1. The central H∞ filter for the unobserved

state (1) over the observations (2), ensuring the H∞ noise

attenuation condition (10) for the output estimate z f (t), is

given by the equations for the state estimate x f (t) and the

output estimate z f (t)

ẋ f (t) = f̂ (x f , t)+P(t)CT (t)[y(t)−C(t)x f (t)], (11)

z f (t) = L(t)x f (t), (12)

with the initial condition x f (t0) = 0, and the equation for the

filter gain matrix P(t)

dP(t) = ĝ(x f , t)+B(t)BT (t)− (13)

P(t)[CT (t)C(t)− γ−2LT (t)L(t)]P(t))dt,

with the initial condition P(t0) = R−1. The structure of the

functions f̂ (x, t) and ĝ(x, t) depend on the degree of the

polynomial f (x, t) in (1). The functions f̂ (x, t) and ĝ(x, t)
corresponding to lower degrees of f (x, t) can be obtained

from the functions f̂ (x, t) and ĝ(x, t) corresponding to higher

degrees of f (x, t) upon setting to zero the coefficients cor-

responding to the excessive superior degrees. In particular,

the functions f̂ (x, t) and ĝ(x, t) corresponding to the third

degree polynomial

f3(x, t) = a0(t)+a1(t)x+a2(t)xxT +a3(t)xxxT ,

where x is an n-dimensional vector, a0(t) is an n-dimensional

vector, a1(t) is a n× n-dimensional matrix, a2(t) is a 3D

tensor of dimension n × n × n, a3(t) is a 4D tensor of

dimension n×n×n×n, are given by

f̂3(x f , t) = a0(t)+a1(t)x f +a2(t)x f xT
f +a2(t)P(t)+ (14)

3a3(t)x f P(t)+a3(t)x f x f xT
f ,

ĝ3(x f , t) = a1(t)P(t)+P(t)aT
1 (t)+2a2(t)x f P(t)+ (15)

2(a2(t)x f P(t))T +3(a3(t)[P(t)P(t)+ x f xT
f P(t)])+

3(a3(t)[P(t)P(t)+ x f xT
f P(t)])T .

The functions f̂ (x f , t) and ĝ(x f , t) corresponding to the

second or first degree polynomials f (x, t) are obtained setting

to zero a3 or both, a3 and a2, respectively.

Proof. First of all, note that the filtering error system (7)-

(9) already has the structure used in Theorem 3 from [1],

where a linear term is replaced by a polynomial function

f̄ (x,x f , t). Hence, according to Theorem 3 from [1], the

H∞ filtering part of this H∞ controller problem would be

equivalent to the H2 optimal filtering problem, where the

worst disturbance wworst(t) = γ−2BT (t)Q(t)e(t) is realized,

and Q(t) is the solution of the equation for the corresponding

H2 optimal control gain. Therefore, the system, for which the

equivalent H2 optimal filtering problem is stated, takes the

form

S4 : ė(t) = f̄ (e(t)+ x f (t),x f (t), t) (16)

+ γ−2B(t)BT (t)Q(t)e(t)−K f (t)ỹ(t),

ỹ(t) = C(t)e(t)+ γ−2D(t)BT (t)Q(t)e(t), (17)

z̃(t) = L(t)e(t). (18)

Note that f̄ (e(t)+x f (t),x f (t), t) is a polynomial function of

the estimation error e(t) = x(t)−x f (t), and e(t) = 0 implies

f̄ (0+ x f (t),x f (t), t) = 0.

As follows from Theorem 3 from [1] and Theorem 1 in

[24], the H2 optimal estimate equations for the error states

(16) and (18) are given by

S5 : ė f (t) = ¯̂f (e(t)+ x f (t),x f (t), t) (19)

− K f (t)ỹ(t)+P(t)CT (t)[ỹ(t)−C(t)e f (t)],

z̃ f (t) = L(t)e f (t), (20)

where e f (t) and z̃ f (t) are the H2 optimal estimates for e(t)

and z̃(t), respectively. The function ¯̂f (e(t)+x f (t),x f (t), t) is

the H2 optimal estimate for f̄ (e(t) + x f (t),x f (t), t), whose

specific forms for polynomials f (x, t) of various degrees can

be obtained following the procedure established in [24]. In

case of a third degree polynomial f3(x, t) defined in the

theorem statement, the function ¯̂f 3(x,y, t) is given by

¯̂f 3(x,y, t) = a0(t)+a1(t)(x− y)+a2(t)xxT −a2(t)yyT−
(21)

3a3(t)(x− y)P(t)+a3(t)xxxT −a3(t)yyyT .

In the equations (19),(21), P(t) is the solution of the equa-

tion for the corresponding H2 optimal filter gain, where,

according to Theorem 3 from [1], the observation matrix

C(t) should be changed to C(t)− γ−1L(t).
It should be noted that, in contrast to Theorem 3 from [1],

no correction matrix Z∞(t) = [In − γ−2P(t)Q(t)]−1 appears

in the last innovations term in the right-hand side of the

equation (19), since there is no need to make the correction

related to estimation of the worst disturbance wworst(t) in the

error equation (16). Indeed, as stated in ([4]), the desired

estimator must be unbiased, that is, z̃ f (t) = 0. Since the

same output error z̃(t) stands in the criterion (10) and should
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be minimized as much as possible, the worst disturbance

wworst(t) in the error equation (16) should be plainly rejected

and, therefore, does not need to be estimated. Thus, the

corresponding H2 optimal filter gain would not include any

correction matrix Z∞(t). The same situation can be observed

in Theorems 1–4 in [4]. However, if not the output error z̃(t)
but the output z(t) itself would stand in the criterion (10),

the correction matrix Z∞(t) = [In−γ−2P(t)Q(t)]−1 should be

included.

Taking into account the unbiasedness of the estimator (19)-

(20), it can be readily concluded that the equality K f (t) =
P(t)CT (t) must hold for the gain matrix K f (t) in (5). Thus,

applying the procedure from [24] to derive specific forms

of f̂ (x, t) for higher degree polynomials f (x, t) in (1), the

filtering equations (5)-(6) take the final form (11)-(12), with

the initial condition x f (t0) = 0, which corresponds to the

central H∞ filter (see Theorem 4 in [1]). In case of a third

degree polynomial f3(x, t) defined in the theorem statement,

the function f̂3(x, t) is given by (14). It is still necessary to

indicate the equations for the corresponding H2 optimal filter

gain matrix P(t). In accordance with Theorem 1 from [24],

the filter gain matrix P(t) is given by the equation (13), with

the initial condition P(t0) = R−1, which corresponds to the

central H∞ filter (see Theorems 3 and 4 in [4]). Note that

the observation matrix C(t) is changed to C(t)− γ−1L(t)
according to Theorem 3 from [1]. Specific forms of the

function ĝ(x, t) in (13) for higher degree polynomials f (x, t)
in (1) are derived applying the indicated procedure from

[24]. In case of a third degree polynomial f3(x, t) defined

in the theorem statement, the function ĝ3(x, t) is given by

(15). Validity of the statement that ”the functions f̂ (x, t) and

ĝ(x, t) corresponding to lower degrees of f (x, t) can be ob-

tained from the functions f̂ (x, t) and ĝ(x, t) corresponding to

higher degrees of f (x, t) upon setting to zero the coefficients

corresponding to the excessive superior degrees” also follows

from Theorem 1 in [24]. ¥

Remark 2. The boundedness of the system state x(t)
and its estimate x f (t), as well as the filter gain matrix

P(t), is determined by the definiteness of the most superior

polynomial term in the right-hand side of (13). If this

term is stable, then x(t), x f (t), and P(t) remain bounded

for all t ∈ [t0,∞). The filter gain matrix P(t) also remains

positive definite, provided that the initial condition matrix

R is positive definite. In the latter case, it makes sense to

consider the H∞ noise-output attenuation problem with a

certain level γ in the infinite interval [t0,∞). Otherwise, if

the most superior polynomial term in (13) is unstable, then

x(t), x f (t), and P(t) diverge to infinity for a finite time and

the designed filter does not work properly for all t ∈ [t0,∞).
However, even in this case, the designed central suboptimal

H∞ filter for polynomial systems yields the least possible

value of the output H∞ norm in those finite time intervals

where the solution of (7) exists and is bounded.

Remark 3. According to the comments in Subsection V.G

in [1], the obtained central H∞ filter (11)–(13) presents a

natural choice for H∞ filter design among all admissible H∞

filters satisfying the inequality (10) for a given threshold γ ,

since it does not involve any additional actuator loop (i.e.,

any additional external state variable) in constructing the

filter gain matrix. Moreover, the obtained central H∞ filter

(11)–(13) has the suboptimality property, i.e., it minimizes

the criterion

J = ‖z̃(t)‖2
2 − γ2

{

‖ω(t)‖2
2 + xT (t0)Rx(t0)

}

for such positive γ > 0 that the inequality CT (t)C(t) −
γ−2LT (t)L(t) > 0 holds.

Remark 4. Following the discussion in Subsection V.G in

[1], note that the complementarity condition always holds

for the obtained H∞ filter (11)–(13), since the positive

definiteness of the initial condition matrix R implies the

positive definiteness of the filter gain matrix gain P(t) as

the solution of (13). Therefore, the stability failure is the

only reason why the obtained filter can stop working.

IV. EXAMPLE: CENTRAL H∞ FILTER FOR POLYNOMIAL

SYSTEM

This section presents an example of designing the central

H∞ filter for a third degree polynomial state over linear obser-

vations and comparing it to the central H∞ filter available for

the corresponding linearized system, that is the filter obtained

in Theorems 3 and 4 from [4].

Let the unmeasured state x(t) = [x1(t),x2(t)]∈ R2 be given

by

ẋ1(t) = x2(t), (22)

ẋ2(t) = 0.1x2
2(t)+(0.1+0.1sin(50t))x3

2(t)+w1(t),

with an unknown initial condition x(0) = x0 = [x10,x20], the

scalar observation process satisfy the equation

y(t) = x1(t)+w2(t), (23)

and the output z(t) = [z1(t),z2(t)] ∈ R2 be represented as

z1(t) = x1(t), (24)

z2(t) = x2(t).

Here, w(t) = [w1(t),w2(t)] is an L2
2 disturbance input. It can

be readily verified that the noise orthonormality condition

(see Section 2) holds for the system (22)–(24).

The filtering problem is to find the H∞ estimate for the

linear state with delay (22) over direct linear observations

(23), which satisfies the noise attenuation condition (10)

for a given γ , using the designed H∞ filter (11)–(15) for

third degree polynomial states. Note that the third degree

coefficient in (22) is positive, i.e., the superior polynomial

term is unstable (see Remark 1 in Section 3). The filtering

horizon is set to T = 1.4, prior to the escape time for the

system state (22).

The filtering equations (11)–(15) take the following par-

ticular form for the system (22),(23)

ẋ f1(t) = x f2(t)+P11(t)[y(t)− x f1(t)], (25)

ẋ f2(t) = 0.1x2
f2
(t)+(0.3+0.3sin(50t))P22(t)x f2(t)+

0.1P22(t)+(0.1+0.1sin(50t))x3
f2
(t)
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+P12(t)[y(t)− x f1(t)],

with the initial condition x f (0) = 0,

Ṗ11(t) = 2P12(t)− (1− γ−2)P2
11(t), (26)

Ṗ12(t) = P22(t)+(0.3+0.3sin(50t))x2
f2
(t)P12(t)

+0.2x f2(t)P12(t)+(0.3+0.3sin(50t))P22(t)P12(t)

−(1− γ−2)P11(t)P12(t),

Ṗ22(t) = 1+(0.6+0.6sin(50t))x2
f2
(t)P22(t)

0.4x f2(t)P22(t)+(0.6+0.6sin(50t))P2
22(t)−(1−γ−2)P2

12(t),

with the initial condition P(0) = R−1.

The estimates obtained upon solving the equations

(25),(26) are compared to the central H∞ linear filter esti-

mates given by Theorems 3 and 4 in [4]. The central H∞

linear filter, applied to the linearized system (22), yields the

following equations:

ṁK1(t) = mK2(t)+PK11(t)[y(t)−mK1(t)], (27)

ṁK2(t) = 0.2m2
K2(t)+(0.3+0.3sin(50t))m3

K2(t)

+PK12(t)[y(t)−mK1(t)],

with the initial condition m f (0) = 0,

ṖK11(t) = 2PK12(t)− (1− γ−2)P2
K11(t), (28)

ṖK12(t) = PK22(t)+0.2mK2(t)PK12(t)

+(0.3+0.3sin(50t))m2
K2(t)PK12(t)

−(1− γ−2)PK11(t)PK12(t),

ṖK22(t) = 1+0.4mK2(t)PK22(t)

+(0.6+0.6sin(50t))m2
K2(t)PK22(t)− (1− γ−2)P2

K12(t),

with the initial condition P(0) = R−1.

Numerical simulation results are obtained solving the

systems of filtering equations (25),(26), and (27),(28). The

obtained estimate values are compared to the real values of

the state vector x(t) in (22). For each of the filters (25),(26),

and (27),(28) and the reference system (22) involved in

simulation, the following initial values are assigned: x10 = 1,

x20 = 1, R = I2 = diag[1 1]. The L2 disturbance w(t) =
[w1(t),w2(t)] is realized as w1(t) = 1/(1 + t)2, w2(t) =
2/(2+ t)2. The attenuation level value is set to γ = 1.05.

The following graphs are obtained: graphs of the output

H∞ estimation error z(t)−z f (t) corresponding to the estimate

x f (t) satisfying the equations (25),(26); graphs of the output

H∞ estimation error z(t)−z f (t) corresponding to the conven-

tional estimate mK(t) satisfying the equations (27),(28) (Fig.

1). The graphs of the output estimation errors are shown

in the entire simulation interval from t0 = 0 to T = 1.4.

Figure 1 also demonstrates the dynamics of the noise-output

H∞ norms corresponding to the shown output H∞ estimation

errors in each case.

The following values of the noise-output H∞ norm

‖Tzw‖
2 = ‖z(t) − z f (t)‖

2
2/(‖ω(t)‖2

2 + xT (t0)Rx(t0)) are ob-

tained at the final simulation time T = 1.4: ‖Tzw‖ = 0.952

for the H∞ estimation error z(t)− z f (t) corresponding to the

estimate x f (t) satisfying the equations (25),(26); ‖Tzw‖ =
1.079 for H∞ estimation error z(t) − z f (t) corresponding

to the conventional estimate mK(t) satisfying the equations

(27),(28).

It can be concluded that the central suboptimal H∞ fil-

ter (25),(26) provides reliably convergent behavior of the

output estimation error, yielding very small values of the

corresponding H∞ norm, even in comparison to the assigned

threshold value γ = 1.05, and almost zero difference in the

output values in the final time. In contrast, the conventional

central H∞ filter (27),(28) provides divergent behavior of

the output estimation error, yielding a larger value of the

corresponding H∞ norm, which exceeds the assigned thresh-

old. Thus, the simulation results show definite advantages

of the designed central suboptimal H∞ filter for polynomial

systems, in comparison to the previously known conventional

H∞ filter.
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Fig. 1. Above. Graphs of the output H∞ estimation error ‖z(t)− z f (t)‖
corresponding to the estimate x f (t) satisfying the equations (25),(26) (thick
line) and the estimate x f (t) satisfying the equations (27),(28) (thin line), in
the simulation interval [0,1.4]. Below. Graph of the noise-output H∞ norm
corresponding to the shown output H∞ estimation errors corresponding to the
estimate x f (t) satisfying the equations (25),(26) (thick line) and the estimate
x f (t) satisfying the equations (27),(28) (thin line), in the simulation interval
[0,1.4].

V. GENERALIZATIONS

As shown in [16], the noise orthonormality condition (C3),

third standard condition from Section 2 (see also [1], [4]),

can be omitted. This leads to appearance of additional terms

in all H∞ filtering equations. The corresponding general-

ization of the obtained H∞ filter is given in the following

propositions.

Corollary 1. In the absence of the noise orthonormality

condition (C3), the central H∞ filter for the unobserved

state (1) over the observations (2), ensuring the H∞ noise

attenuation condition (10) for the output estimate z f (t), is

given by the following equations for the state estimate x f (t)
and the output estimate z f (t)

ẋ f (t) = f̂ (x f , t)+ [P(t)CT (t)+B(t)DT (t)]× (29)
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(D(t)DT (t))−1[y(t)−C(t)x f (t)],

z f (t) = L(t)x f (t), (30)

with the initial condition x f (θ) = 0 for ∀θ ∈ [t0 −h, t0], and

the equation for the filter gain matrix P(t)

dP(t) = (ĝ(x f , t)+B(t)BT (t)− (31)

[P(t)CT (t)+B(t)DT (t)](D(t)DT (t))−1×

[D(t)BT (t)+C(t)P(t)]+ γ−2P(t)LT (t)L(t)P(t))dt,

with the initial condition P(t0) = R−1. In particular, the

functions f̂ (x, t) and ĝ(x, t) corresponding to the third degree

polynomial f3(x, t) = a0(t) + a1(t)x + a2(t)xxT + a3(t)xxxT ,
where x is an n-dimensional vector, a0(t) is an n-dimensional

vector, a1(t) is a n× n-dimensional matrix, a2(t) is a 3D

tensor of dimension n × n × n, a3(t) is a 4D tensor of

dimension n×n×n×n, are given by

f̂3(x f , t) = a0(t)+a1(t)x f +a2(t)x f xT
f +a2(t)P(t)+ (32)

3a3(t)x f P(t)+a3(t)x f x f xT
f ,

ĝ3(x f , t) = a1(t)P(t)+P(t)aT
1 (t)+2a2(t)x f P(t)+ (33)

2(a2(t)x f P(t))T +3(a3(t)[P(t)P(t)+ x f xT
f P(t)])+

3(a3(t)[P(t)P(t)+ x f xT
f P(t)])T .

Proof. The proof is straightforwardly delivered using the

technique of handling the H∞ filtering problems for systems

with non-orthonormal noises, which can be found in [16].

Remark 5. Since the H∞ filter designed in Corollary 1

is based on the corresponding H2 optimal filter, which is

optimal with respect to mean square criteria, Remarks 2–4

remain valid.

VI. CONCLUSIONS

This paper designs the central finite-dimensional H∞ filter

for nonlinear polynomial systems, that is suboptimal for a

given threshold γ with respect to a modified Bolza-Meyer

quadratic criterion including the attenuation control term

with the opposite sign. The specific form of the central

suboptimal H∞ filter for third (and less) order polynomial

systems is derived explicitly. Finally, the generalized version

of the H∞ filter is obtained in the absence of the standard

noise orthonormality condition.
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