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Abstract— This paper mainly investigated a sampled-data
control approach to deal with the stabilization problem of
Networked Control Systems (NCSs) with packet losses and
bounded time varying delays. A new Lyapunov-Krasovskii
functional candidate is constructed to analyze the stability of
the overall system with bounded random packet losses and time
varying delays. As a result, corresponding stabilizing sampled-
data controller is designed based on the stability conditions.
A real-time network measurement system has been developed
based on MATLAB applications. Instrument Control toolbox
was used to implement communications between two computers
with MATLAB applications via the internet. Experiments were
done to demonstrate the real network properties. A real-time
networked control system has been constructed to test the
stabilizing ability of the controller design in a real network
environment. Experimental results illustrate the effectiveness
of the proposed approach, a good combination of the theory
and the real applications.

I. INTRODUCTION

NCSs are feedback control systems with control loops

closed via digital communication channels. Advantages of

NCSs include low cost, high reliability, less wiring, easy

system set-up and maintenance [1]. The study of NCSs

raises new interesting and challenging problems such as time

delays, packet losses and communication bandwidth: [3]-[8].

In [3], the issue of data packet loss is modelled as a

Markovian process, it dealt with the delay which is less than

one sampling time interval. In [1], the maximum packet-

loss rate under which the overall system remains stable

was investigated. In [5], the NCS has been formulated as

a Markovian jump system with known packet loss rate,

the techniques developed for Markovian jump systems are

applied in the work. [4] presented a solution to stabilization

of NCSs with the effect of one sampling delay and arbitrary

switching packets dropout. In [8], the packet loss process

has been defined as the sequence of the time intervals

between consecutively successfully transmitted data. In their

design one-step time delay has been considered, analysis and

synthesis methods are provided based on pure discrete-time

model. The literatures reviewed above have not pay enough

attention to incorporate the real network properties into the

works.

In this paper, the effects of both Markovian packet loss

and time varying delays occurring in both channels are con-

sidered. In many practical systems, such as computer-based
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control systems, the continuous-time system is controlled by

a sampled-data controller with sample and hold devices [12],

the control objective of this work is to design a sampled-data

controller to stabilize the system via communication channels

with Markovian packet losses and bounded time varying

delays. A real-time network induced delay and packet loss

measurement system was built to study the real network

property. With the experimental measurement, we figure out

the characters of time varying delays and packet losses

in the real network, which was applied to the stochastic

stabilization analysis. The delays and packet losses that were

measured during the network experiments are firstly replayed

for the simulation. A real-time networked control system

has been built based on MATLAB application to test the

stabilizing ability of the controller. The experimental results

illustrate that the controller works well under real situation.

Notations: λ(D) denotes the eigenvalue of the matrix

D, where D ∈ Rn×n. E(·) is the expectation. ρ(A) =
√

λmax(AT A).

II. PROBLEM FORMULATION

NCSs with pure Markovian packet-loss are considered first

in this section. Specially, a linear continuous-time system is

studied,

ẋ(t) = Ax(t) + Bu(t), (1)

where x(t) ∈ ℜn and u(t) ∈ ℜm represent the system state

and control input, respectively. x0 = x(0) is the initial state.

A and B are two known constant matrices of appropriate

dimensions, A is invertible.

Let ℓ = {n1, n2, . . .} be a subsequence of 1, 2, 3, . . .,

which denote the sequence of time points of successful

data transmissions from the sampler to the actuator. S =
maxnJ∈ℓ(nJ+1 − nJ ) is the maximum packet-loss upper

bound. The following mathematical models are first intro-

duced.

Definition 1: Packet-loss process in the communication

channel is modelled as

η(nJ) = nJ+1 − nJ : nJ ∈ ℓ, (2)

which takes values in the finite state space ζ = {1, 2, . . . S}
where S is a positive integer.

Definition 2: [8] Packet-loss process (2) is said to be

Markovian if it is a discrete-time homogeneous Markov chain

on a complete probability space, and takes values in ζ with

known transition probability matrix Π = (πij) ∈ ℜS×S ,

where

πij = Pr(η(nJ+1) = j|η(nJ ) = i) ≥ 0 (3)
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for all i, j ∈ ζ, and
∑S

j=1 πij = 1 for each i ∈ ζ.

An illustrative example of data flow with packet loss is

shown in Fig.1.

Fig. 1. Data flow diagram of the Markovian Packet loss

Definition 3: For system (1) with Markovian packet-loss

process (2), the equilibrium point 0 of x is stochastically

stable if, for every initial state x0, the following holds:

E{

∞
∑

J=0

x
T (nJ )x(nJ )|η(n0)} < ∞. (4)

Throughout this paper, the sampled-data controller is de-

signed as a state-feedback controller

u(t) = u(nJTs) = Kx(nJTs), (5)

where K ∈ ℜm×n is designed as constant matrix with

suitable dimension. The initial control input is set to zero:

u(0) = 0. Then the closed-loop system becomes

ẋ(t) = Ax(t) + BKx(nJTs), nJ ∈ ℓ. (6)

Definition 4: System (1) with Markovian packet-loss pro-

cess (2) is stochastically stable if, for every initial condition

x0 and u0, there exists a sampled-data linear feedback

control law u(t) = u(nJTs) = Kx(nJTs) such that the

closed-loop system

ẋ(t) = Ax(t) + BKx(nJTs), nJ ∈ ℓ, (7)

is stochastically stable.

Lemma 1: - Jensen Inequality [9] For any constant matrix

E ∈ Rn×n, E = ET > 0, vector function ω : [0, τ ] → Rn

such that the integrations concerned are well defined, then,

τ

∫ τ

0

ω
T (s)Eω(s)ds

≥

[
∫ τ

0

ω(s)ds

]T

E

[
∫ τ

0

ω(s)ds

]

. (8)

The control objective is to design the controller (5) so

that the system (6) with Markovian packet-loss process (2)
is stochastically stable.

III. CONTROLLER DESIGN AND STABILITY ANALYSIS

A. NCSs with Markovian Packet Losses

Now we analyze the stability property of NCSs. For NCSs

with Markovian packet-loss process, the stability condition

is established by analyzing the theory from Markovian jump

linear systems. The conditions are given in the following

theorem.

Theorem 1: Consider the NCS (6) with Markovian

packet-loss process (2), u(0) = 0 and x(n0Ts) = x(0).
If there exist symmetric positive definition matrices Pi =
P = PT , i ∈ ζ, matrices Q > 0, S > 0, X and Y , scalar

β > 0 such that
[

XT AT + AX BY

Y T BT −R

]

< 0, (9)

and








−X ∗ ∗ ∗
Φ X − G ∗ ∗
Φ 0 −X ∗
X 0 0 −β−1I









< 0, (10)

with Φ =
∑S

i=1 πij · j · BY + X , X = P−1, R =
XT SX , G = XT A−T QA−1X , hold, then the system is

stochastically stable with the controller gain designed as

K = Y X−1.

Proof: Given that x(n0Ts) = x(0) and n1 − n0 = i,

from the system (6) we have

x(n1Ts) − x(n0Ts) =

∫ n1Ts

n0Ts

ẋ(s)ds

= A

∫ n1Ts

n0Ts

x(s)ds + BK · x0 · iTs, (11)

then we can get the difference between the system state and

its expectation as,

E[x(nJTs)|nJ−1 − nJ−2 = i] − x(nJ−1Ts)

= A

∫ nJTs

nJ−1Ts

x(s)ds + ΣS
j=1πij · jTsBKx(nJ−1Ts). (12)

Now take the packet-loss dependent Lyapunov functional

candidate as

V1(t) = x
T (t)Pix(t) + (nJ+1Ts − t)xT (nJTs)

Sx(nJTs), (13)

where Pi = P ∈ ℜn×n are singular positive definition

matrices, and S ∈ ℜn×n > 0. Then the derivative of V1(t)
becomes

V̇1(t) =

[

x(t)
x(nJTs)

]T [

AT Pi + PiA PiBK

KT BT Pi − S

]

[

x(t)
x(nJTs)

]

< 0. (14)

The inequality above holds if the following inequality is

satisfied:
[

AT Pi + PiA PiBK

KT BT Pi − S

]

< 0, (15)

for symmetric positive definite matrices Pi = P, P = PT .

Define X = P−1, M = diag(X,X) and Y = KX . Then

by pre-multiplying the inequality in (15) by MT and post-

multiplying by M , we can obtain the following inequality,
[

XAT + AX BY

Y T BT − R

]

< 0, (16)
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where R = XT SX. If (16) holds, then the closed loop

system (6) is asymptotically stable.

In order to achieve the condition for stochastic stability

of the closed loop system (6), here take another packet-loss

dependent Lyapunov function as

V2(t) = x
T (t)Pix(t) + (nJ+1Ts − t)

∫ nJ+1Ts

nJTs

x
T (s)Qx(s)ds, (17)

where Pi are the same matrices as in V1(t), and Q ∈ ℜn×n

is a symmetric positive definiton matrix. Then from (12) and

Lemma 1, if the following inequality holds,

[

Z1

Z2

]T [

∆ + βI ΞT PjA

AT PjΞ AT PjA − Q

] [

Z1

Z2

]

< 0, (18)

where

Ξ =

S
∑

j=1

πij · j · BK + I

∆ = [

S
∑

j=1

πij · j · BK + I]T Pj [

S
∑

j=1

πij · j · BK + I]

−Pi

Z1 = x(nJTs), Z2 = [

∫ nJ+1Ts

nJTs

x(s)ds], (19)

then it means

E[V2(nJ+1Ts)|nJ − nJ−1 = i] − V2(nJ )

< −βx
T (nJTs)x(nJTs). (20)

Then the inequality (18) can be represented as the form

in (10) by Schur complement.

If (20) holds, we have

E[V2(nJ+1Ts)|nJ − nJ−1 = i] − V2(nJTs)

V2(nJTs)

≤
−βx

T (nJTs)x(nJTs)

V2(nJTs)
. (21)

Define 0 < α = 1 − β min{ 1
λ max(Pi)

} < 1, it is obvious

Fig. 2. Data flow diagram of NCSs with time varying delay and packet
loss

that

−βx
T (nJTs)x(nJTs)

x
T (nJTs)Pix(nJTs)

≤ −β min{
1

λ max(Pi)
}. (22)

From (21), there exist a positive γ with α ≤ γ < 1, such

that

E[V2(nJ+1Ts)|nJ − nJ−1 = i] − V2(nJTs)

V (nJTs)
≤ γ − 1. (23)

Then










E[V (nJ+1Ts)|nJ − nJ−1 = i] ≤ γV (nJTs),
...

E[V (n1Ts)|η(n0) = i] ≤ γV (n0Ts).

(24)

Taking the expectation E[·|η(n0) = i] on both sides of (24)
we have

E[V2(n2Ts)|η(n0) = i] ≤ γ2V2(n0Ts). (25)

By iterative derivation,

E[V2(nJ+1Ts)|η(n0) = i] ≤ γE[V2(nJTs)|η(n0)

= i] ≤ . . . ≤ γJ+1V2(n0Ts). (26)

From (26), the summation of E[V2(·)|η(n0) = i] when J =
0 ∼ N becomes

E[
N

∑

J=0

V2(nJ+1Ts)|η(n0) = i] ≤
1 − γN

1 − γ
V2(n0Ts).

As a result,

lim
N→∞

E[

N
∑

J=0

V2(nJ+1Ts)|η(n0) = i]

≤
1

1 − γ
V2(n0Ts). (27)

From (27), we obtain that

lim
N→∞

E[

N
∑

J=0

x
T (nJ+1Ts)x(nJ+1Ts)|η(n0) = i]

≤
1

max ρ(Pj)(1 − γ)
V2(n0Ts). (28)

The limit of the expectation in (28) is bounded, this com-

pleted the proof for the stochastic stability of the closed loop

system.

In the next section, network induced time varying delays

are taken into account too.

B. NCSs with Bounded Delays and Stochastic Packet Losses

The system considered here is assumed to be a simple

linear continuous-time system with time varying delay of

the form,

ẋ(t) = Ax(t) + Bu(t − d2(t)), (29)

d2(t) is the controller to actuator varying delay with a certain

bound. S = maxnJ∈ℓ(nJ+1 − nJ) is the maximum packet-

loss upper bound. In Fig.2, the data flow of NCSs with time

varying delay and packet loss is shown with d1(t − d2(t))
being the sampler to controller delay.

The actuator and controller considered in this work are

both time driven and d1(t − d2(t)) + d2(t) = mJTs where
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mJ ∈ {1, 2, ...Mb} with a known positive integer Mb. The

sampled-data controller is designed as a static state-feedback

controller and it can be represented as

u(t − d2(t)) = Kx[t − d2(t) − d1(t − d2(t))]

= Kx(nJTs − mJTs), (30)

where K ∈ ℜm×n is to be designed. The initial control

input is set to be zero: u(0) = 0. Ts is the sampling time

of the sampled-data controller. Then the closed-loop system

becomes

ẋ(t) = Ax(t) + BKx(nJTs − mJTs), nJ ∈ ℓ. (31)

The objective is to design the controller (30) so that the

closed loop system (31) with Markovian packet-loss process

(29) is stochastically stable.

Theorem 2: Consider the system (31) with Markovian

packet-loss process (2), u(0) = 0 and x(n0) = x(0).
If there exists symmetric positive definition matrice S >

0, P =

[

P1 P2

PT
2 P3

]

> 0, Q =

[

Q11 0
0 Q22

]

> 0,

R =

[

R11 0
0 R22

]

> 0, matrices Pi = P̂ = P̂T ∈

ℜ+, i ∈ ζ, Q̂ = Q̂T > 0, Ŝ > 0, X and Y with appropriate

dimensions and scalars β > 0, Mb > 0 such that the

following two inequalities holds,













H11 ∗ ∗ ∗ ∗ ∗ ∗ ∗

H21 H22 ∗ ∗ ∗ ∗ ∗ ∗

H31 H32 H33 ∗ ∗ ∗ ∗ ∗

H41 H42 H43 H44 ∗ ∗ ∗ ∗

H51 H52 H53 H54 H55 ∗ ∗ ∗

H61 H62 H63 0 0 H66 ∗ ∗

H71 H72 H73 H74 H75 H76 H77 ∗

H81 H82 H83 H84 H85 H86 H87 H88













< 0, (32)

where

H11 = Q11 − MT
1 A − AT M1 + MbTsR11,

H21 = PT
2 + N1 − MT

2 A H22 = N2 + NT
2 + S,

H31 = P1 + M1 − MT
3 A, H32 = NT

3 + M2

H33 = Q22 + MbTsR22 + MT
3 + M3,

H41 = −MT
4 A − PT

2 H42 = NT
4 , H43 = M4,

H44 = −Q11, H51 = −MT
5 A H52 = P3 + NT

5 ,

H53 = PT
2 + MT

5 , H54 = −P3, H55 =
−1

MbTs

R11

H88 = −S − NT
8 − N8 − M8BK − KT BT M8

H66 =
−1

MbTs

R22 H71 = −N1 − MT
7 A,

H72 = −N2 + NT
7 , H73 = −N3 + MT

7

H74 = −N4, H75 = −N5, H77 = −NT
7 − N7

H76 = −N6, H81 = −N1 − MT
8 A − KT BT M1,

H82 = NT
8 − N2 − KT BT M2 H61 = −MT

6 A,

H83 = −N3 + MT
8 − KT BT M3,

H84 = −N4 − KT BT M4 H62 = NT
6 , H63 = MT

6 ,

H85 = −N5 − KT BT M5, H86 = −N6 − KT BT M6,

H87 = −NT
8 − N7 − KT BT M7, (33)

and




−X ∗ ∗ ∗
∑

S

i=1
πij · j · BY + X X − Ê ∗ ∗

∑

S

i=1
πij · j · BY + X 0 −X ∗

X 0 0 −β−1I



 < 0, (34)

with Ê = XT A−T Q̂A−1X , then the system is stochastically

stable with the controller gain K = Y X−1.

Proof: The proving process has been elided due to the

page limitation.

Note that the LMI condition in (32) is non-convex and

hence the following theorem is proposed to be the sufficient

condition of (32).
Theorem 3: For given scalars θi, i = 1, 2, ..., 8, and a

given upper bound of the time varying delay MbTs, if there

exist symmetric positive definite matrices S̄ > 0, P̄ =
[

P̄1 P̄2

P̄T
2 P̄3

]

> 0, Q̄ =

[

Q̄11 0
0 Q̄22

]

> 0, R̄ =
[

R̄11 0
0 R̄22

]

> 0, matrices X̄ and Ȳ with appropriate

dimensions such that the following inequality holds,














H̄11 ∗ ∗ ∗ ∗ ∗ ∗ ∗

H̄21 H̄22 ∗ ∗ ∗ ∗ ∗ ∗

H̄31 H̄32 H̄33 ∗ ∗ ∗ ∗ ∗

H̄41 H̄42 H̄43 H̄44 ∗ ∗ ∗ ∗

H̄51 H̄52 H̄53 H̄54 H̄55 ∗ ∗ ∗

H̄61 H̄62 H̄63 0 0 H̄66 ∗ ∗

H̄71 H̄72 H̄73 H̄74 H̄75 H̄76 H̄77 ∗

H̄81 H̄82 H̄83 H̄84 H̄85 H̄86 H̄87 H̄88















< 0, (35)

where

H̄11 = Q̄11 − θ1AX̄ − θ1X̄
T AT + MbTsR̄11

H̄21 = P̄T
2 + N̄1 − θ2AX̄, H̄22 = N̄2 + N̄T

2 + S̄

H̄31 = P̄1 + θ1X̄
T − θ3AX̄, H̄32 = N̄T

3 + θ2X̄
T

H̄33 = Q̄22 + MbTsR̄22 + θ3X̄
T + θ3X̄,

H̄41 = −θ4AX̄ − P̄T
2 H̄42 = N̄T

4 , H̄43 = θ4X̄,

H̄44 = −Q̄11, H̄51 = −θ5AX̄ H̄52 = P̄3 + N̄T
5 ,

H̄53 = P̄T
2 + θ5X̄, H̄54 = −P̄3, H̄55 =

−1

MbTs

R̄11

H̄61 = −θ6AX̄, H̄62 = N̄T
6 , H̄63 = θ6X̄,

H̄66 =
−1

MbTs

R̄22 H̄71 = −N̄1 − θ7AX̄ H̄76 = −N̄6

H̄72 = −N̄2 + N̄T
7 , H̄73 = −N̄3 + θ7X̄ H̄75 = −N̄5

H̄74 = −N̄4, H̄77 = −N̄T
7 − N̄7

H̄81 = −N̄1 − θ8AX̄ − θ1Ȳ
T BT , H̄82 = N̄T

8 − N̄2

−θ2Ȳ
T BT H̄83 = −N̄3 + θ8X̄ − θ3Ȳ

T BT ,

H̄84 = −N̄4 − θ4Ȳ
T BT , H̄85 = −N̄5 − θ5Ȳ

T BT

H̄86 = −N̄6 − θ6Ȳ
T BT ,

H̄87 = −N̄T
8 − N̄7 − θ7Ȳ

T BT

H̄88 = −S̄ − N̄T
8 − N̄8 − θ8BȲ − θ8Ȳ

T BT

and (34) is satisfied. Then under the static controller with

gain obtained by

K = Ȳ X̄−1. (36)

then the system is stochastically stable.

2987



Proof: In order to transform the nonconvex LMI in

(32) into a solvable LMI, assume that Mi = θiM0 where θi

is known and given. Define X̄ = M−1
0 ,

Ŵ = diag(X̄, X̄, X̄, X̄, X̄, X̄, X̄, X̄)

and Ȳ = KX̄ . Then by pre-multiplying the inequality in

(32) by ŴT and post-multiplying by Ŵ , we can obtain the

inequality (35).

IV. EXPERIMENTAL STUDIES

In order to study the network property in the real envi-

ronment, a real-time network induced delay and packet loss

measurement system has been developed based on MATLAB

applications.

A. Experimental Setup

Fig. 3. Real-time network measurement system

With Instrument Control Toolbox in MATLAB, two com-

puters located in different places can communicate with each

other via networks following UDP protocols directly from

MATLAB. The delay and packet loss information could be

recorded and saved in MATLAB for further analysis.

B. Network Induced Delays and Packet Losses

During one measurement, 6,000 data packets were trans-

mitted between the client and the server once per hour the av-

erage delay of each measurement is very close, Fig.4. When

Fig. 4. Histogram of average time delay vs hour index

the information of delays recorded in one measurement has

been drawn in Fig.5, the minimum time delay value is 10

ms and up to 93% of packets can be received in 50 ms.

The packet loss rates in four different cases were recorded

and analyzed as shown in the pie chart Fig.6. In order to

vary the case of the network, FlashGet has been used to

download and upload data files from an internet web service.

The measurement in Case 1 was processed without running

FlashGet. In Cases 2, 3 and 4 the FlashGet was used to

Fig. 5. Time delay vs numbers of data packet

Fig. 6. Pie chart of packet loss rate

download date files with the rate of 60 KB/s, 100 KB/s and

400KB/s respectively.

In the pie chart, the slices which present the packet loss

rates in four cases were pulled out. It is clear that the

packet loss rate increases as the download rate increases.

For the rest two slices, the small one presents the rate of the

packets which have been received but exceeded the bounded

delay value, and the big one presents the rate of the packets

received in a shorter time than the bound delay value.

C. Bounded Delays and Bounded Packet Losses

The time delay distribution in one measurement can help

us to establish the upper bound of delays. In Fig.7 (a), it

Fig. 7. Bounded delay and packet lost

shows the delay distribution in one measurement. Since the

minimum delay is 10 ms and over 90% packets arrived in

50 ms, the upper and lower bound of delays were chosen

as 50 ms and 10 ms respectively. The packets exceed the

bounded delay were dropped and the new delay distribution

under bounded delay was shown in Fig.7 (b). In the pie chart

Fig.7 (c), the slice marked with 1% presents the original

packet loss rate, the small slice 6% in the rest two presents

the rate of packets which exceed the bounded delay and were

dropped. The big slice shows us the data rate received in the

bounded delay.
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D. Markov Chains

As we discussed in Section II, in this work the packet

loss process is governed by a Markov Chain. The order of

the MC is determined due to the upper bound of the packet

loss amount between two successful transmissions. From the

results obtained from experiments (Fig.6), the upper bounds

of the packet loss in Case 1 and Case 4 are both three packets.

For each case, there are two different MC transition matrixes,

they are calculated before and after dropping the packets

which exceed the bounded delay. Only the transition matrices

in Case 4 (Fig.6) are listed here as an example and those

transition matrices are applied in the simulation example in

subsection IV-E.

Case 4, before dropping the packets exceed the bounded

delay:

∏

=





0.9426 0.0553 0.0021
0.9159 0.0779 0.0062
0.9231 0.0769 0



. (37)

Case 4, after dropping the packets:

∏

=





0.9128 0.0788 0.0084
0.8984 0.0831 0.0185
0.92 0.08 0



. (38)

E. Simulations

Consider the following nominal continuous-time system

which is controlled through networks with packet losses and

time varying delays recorded in the experiment:

ẋ(t) =

[

−3 −0.001
−1 0.001

]

x(t) +

[

0
1

]

u(t − d2(t)), (39)

with x(0) = [0.5,−0.5]T . The continuous system is

Fig. 8. The state response with bounded delays and packet losses

open loop unstable with eigenvalues of A as -3.0013 and

0.0013. The plant is sampled with a sampling period Ts =
0.01 seconds. The packet-loss upper bound is S = 3. The

transition probability matrix (38) was used to represent the

packet losses in this example. The time varying delay is set to

be mJTs, mJ ∈ {1, 2, 3, 4, 5}. The sampled-data controller

is designed as in (30), applying Theorem 3 with β = 3, we

obtain a networked controller gain

K = Y X−1 =
[

0.1078 − 1.7060
]

.

Fig.8 shows the state response of the system. Since the

control gain was well designed, the system can be stochas-

tically stabilized in around 5 seconds. In next subsection,

a real-time networked control system based on MATLAB

applications will be introduced.

F. Real-Time NCSs Experiment

Fig. 9. The state response of real-time networked control system

We simulate the example in IV-E through real-time net-

work channel based on MATLAB application. The experi-

ment setup is as same as shown in Fig.3. Fig.9 shows that

the system can be stochastically stabilized in 3 second due

to the proper design of the controller.

V. CONCLUSIONS

This paper mainly dealt with the stabilization problem

of NCSs with bounded time varying delays and Markovian

packet loss via sampled-data control approach. The system

can be stochastically stabilized according to the proper

design of the static feedback controller. Lyapunov method

and LMI techniques were applied to ensure the stochastic

stability of the networked control systems. A real-time net-

work induced delay and packet loss measurement system

has been built and experiments were shown to study the real

network characters.
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