
  

Abstract— Knowledge of tire friction force capacity, i.e. 
tire-load frictional coefficient, is important for the control of 
vehicle active safety systems. In this paper we review several 
methods for friction estimation and develop two robust and cost 
effective methods based on a nonlinear least square approach 
and the peak aligning torque. The methods proposed in this 
paper utilize simple vehicle lateral dynamics, steering system, 
and front tire dynamics. The first estimator uses direct 
calculation based on front tire self-aligning torque and the 
second method is based on a nonlinear least square method. 
These estimators are verified with Carsim under various 
conditions. 

I. INTRODUCTION 
IRE-ROAD friction is an important characteristic that 
influences vehicle longitudinal, lateral/yaw and roll 

motions. The tire-road frictional coefficient, if accurately and 
timely acquired, can significantly impact the design and 
performance of active safety systems, because vehicle 
motions are predominantly affected through tire forces, 
governed by road friction and tire normal forces. With the 
exponential growth of hybrid vehicle sales, EPAS (Electric 
Power Assisted Steering) and AFS (Active Front Steering) 
could soon be widely adopted. These advanced chassis 
control systems, similar to ESP (Electronic Stability 
Program), function well only when road friction is known. 
When friction is not known, the control acts only based on 
vehicle response and the designs are usually conservative, 
resulting in reduced performance. In the literature many 
tire-road friction estimation schemes use features of tire/tread 
behavior (e.g., wheel speed, wheel acceleration, aligning 
moment, tire noise) as the basis of the estimation. For 
example, Eichhorn and Roth [1] used optical and noise sensor 
at the front-end of the tire and stress and strain sensors inside 
the tire’s tread to study both “parameter-based” and 
“effect-based” road friction estimation methods. Ito et al. [2] 
used the applied traction force and the resulting wheel speed 
difference between driven and non-driven wheels to estimate 
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the road surface condition. Pal et al. [3] applied the neural 
network based identification technique to predict the road 
frictional coefficient based on steady-state vehicle response 
signals. Pasterkamp [4] developed an online estimation 
method based on lateral force and self-aligning torque 
measurements and the Delft Tire Model. Gustafsson [5] 
developed a model-based approach and used the difference 
between driven and non-driven wheels to detect tire-road 
friction. Liu and Peng [6] applied the special structure of the 
brush tire model and used wheel speed signal to estimate road 
frictional coefficient and cornering stiffness. These friction 
estimation methods identify tire-road characteristics by using 
longitudinal and tire dynamics, which can then be used for the 
adaptations of control-estimation algorithm for both lateral 
and longitudinal directions. Hahn [7] used lateral dynamics to 
estimate frictional coefficient. In particular, his algorithm 
relies on GPS-based vehicle lateral speed. Sierra [8] utilized 
lateral dynamics, including lateral speed and yaw angular 
acceleration to detect cornering stiffness.  

Recently, Toyota published a series of papers [9]-[12] 
based on either measuring the self-aligning torque or lateral 
compliance of the rotational shaft. The experimental results 
presented by Umeno [12] show excellent estimation results 
(less than 5% error of forces up to 2500N) for both lateral 
force and self-aligning torque by using the measurement from 
a resolver mechanism. It is worthwhile to point out that the 
results presented in [9]-[12] do not include extreme cases, 
such as icy roads, high bank angle and high vehicle roll 
motions, which are important for assessing the performance 
of  active safety systems. Hsu [13] introduced an algorithm to 
estimate frictional coefficient using nonlinear least squares. 
The identification method uses self-aligning torque and 
GPS-based sideslip measurements. He also presented a 
nonlinear observer using self-aligning torque and lateral 
acceleration in [14]. Holzmann [15] analyzed texture of 
images taken by camera and classified possible road types. 
Sato [16] and Yamada [17] measured wetness of road by 
detecting reflected light using optical sensors. These optical 
methods are effective in detecting the condition of road, but 
they are seriously affected by the intensity and direction of 
light.  

In Table I, we summarized several approaches mentioned 
above. We ruled out the vision based, the tire force 
measurement based, and the tire tread based methods 
considering cost and technical issues. The wheel motion 
based method was also ruled out because of its weakness to 
high frequency disturbances. We excluded the lateral model 
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based method with GPS sensors because of high cost. We 
eliminated the fuzzy model based and the vehicle model only 
based methods due to the limitation of excitation and 
difficulties in achieving required signals. We decided to use 
vehicle dynamics and steering dynamics for frictional 
coefficient estimation because the information is readily 
available if the vehicle has ESP and EPAS or AFS.  

Estimation methods based on vehicle motion are 
fundamentally more robust compared with those using tire 
behaviors because a tire has smaller inertia and its behavior is 
influenced by road roughness, ABS operation, tire pressure 
and tread variations, tire carcass non-uniformities, and 
vehicle roll/pitch/vertical motions. Therefore, tire motion 
tends to be much more oscillatory and contain higher 
frequency components. Separating the effects of these 
disturbances from those of tire-road friction is difficult. 
Another benefit of using lateral/yaw dynamics for frictional 
coefficient estimation is that the related signals (such as 
steering angle, yaw rate, lateral acceleration and vehicle 
forward speed) are readily measured for other purposes. 
Therefore, incremental hardware cost is low. We suggest a 
robust and cost-effective vehicle lateral/yaw based estimation 
algorithm in this paper.  

II. SYSTEM MODELS 

A. Vehicle Model 
The basis of our estimation methods is the bicycle vehicle 

model, which describes the vehicle lateral and yaw dynamics 
of a two-axle, one-rigid body ground vehicle, represented in 
Fig. 1. Assuming pure lateral slip, derivation of the equations 
of motion for the bicycle model follows from the force and 
moment balance: 
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where u is the vehicle forward speed, v is the vehicle lateral 
speed, r is the yaw rate, m is the vehicle mass, Iz is the yaw 
moment of inertia. Fyf and Fyr are the lateral forces at the front 
and rear axles, respectively. δ is the front wheel steering 
angle, and a and b are the distance from vehicle center of 
gravity to front and rear axles. Using small angle 
approximations, the slip angles αf and αr of front and rear tires 
in terms of u, v, and r are: 
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B. Tire Model 
Under pure-slip conditions, the lateral force and 

self-aligning torque generated between the tires and the road 
are nonlinear functions of the tire slip angle. As shown in Fig. 
2, tire lateral force increases linearly initially, and , eventually 
the force reaches saturation due to the limited friction 
potential between the tire and road. Tire aligning torque also 
shows a linear relationship to tire slip angle when the slip 
angle is small. Then it reaches a peak and goes down to zero 
as tire slip angle increases, because the pneumatic trail 
decreases whereas tire lateral force increases as the tire slip 

TABLE I 
COMPARISON OF SEVERAL ESTIMATION APPROACHES 

Category Special 
sensors 

Non-measure
able Signal 

Method to 
get the 
Signal 

Sensor 
reliability Vulnerability Output Cost Reference 

Vision based Optical 
Sensors    Snow/Ice Qualitative High [1], [15]-[17] 

Tire force 
measurement 

Force 
Sensors     Quantitative High [4] 

Tire tread based Stress/Strain 
Sensors     Quantitative High [1] 

Wheel motion based  
    High freq. 

disturbance Quantitative  [2], [5], [6] 

Vehicle Motion 
(Dynamic Model) D-GPS V Measured 

with GPS 
Weak to 

obstruction  Quantitative High [7], [13] 

Vehicle Motion 
(Fuzzy Model)  V No   Quantitative  [3] 

Vehicle motion only 
(Dynamic Model)  

v  
r  

Estimation 
No   Quantitative  [8] 

Vehicle Motion 
(Vehicle + Steering)  α Estimation   Quantitative  [14] 

v : vehicle lateral speed, r : Yaw acceleration, α: tire slip angle, The critical disadvantages of each approach are highlighted. 
 

 
Fig. 1.  Vehicle bicycle model. 
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angle increases.  
 If we assume that a tire consists of a row of elastic bristles 

that touches the road plane and can deflect in a direction 
parallel to the road surface as described in [18], the tire lateral 
force (fy) and tire aligning torque (τa) can be modeled by 
simple equations, e.g. brush model. Tire brush model is 
proper for estimation or control purposes because it has fewer 
parameters compared with many other tire models [19]-[21].  

 The pure-slip lateral tire force model is 
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and the tire self-aligning torque model is  
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where γ=:θyσy, αsl=:tan-1(1/θy), θy=:Cαf/(3µFz), σy=:tan(α), t is 
the half of tire contact length, α is the tire slip angle, µ is the 
tire-road frictional coefficient, Fz is the tire normal force, and 
Cαf is the cornering stiffness of the tire. 

C. Steering System Model 
The steering system shown in Fig. 3 is described by the 

following differential equation: 
 

,eff eff a s m fJ bδ δ τ τ τ τ+ = + + −                   (5) 
 

where Jeff is the effective moment of inertia and beff is the 
effective damping of the steering system at the road wheels. τa, 
τs, τm, and τf, represent the self-aligning torque, steering wheel 
torque, motor torque, and frictional torque at the road wheel, 
respectively.  

We can measure τs with a torque sensor installed at steering 
column and can predetermine τf from a Coulomb friction 
model. The motor torque, τm, is expressed as the following 
equation:  

 
,m m effK iτ =                                     (6) 

 
where Km is the motor constant and ieff is the effective motor 
current considering the gear ratio and the efficiency. 

III. TIRE ALIGNING TORQUE OBSERVER 
It is difficult to acquire tire aligning torque data in 

traditional passenger cars. However, if the car has EPAS or 
AFS, then steering wheel angle, steering wheel torque, and 
assisting motor torque are available. Thus it is possible to get 
the tire aligning torque indirectly using (3), (4), and the 
signals, through a linear steering system model, as shown (7) 
and (8). The states are steering angle, steering angle speed, 
and tire aligning torque. The measurement is steering wheel 
angle. Finally, the system inputs are effective motor current 
(ieff) and steering wheel torque (τs). We assume the 
self-aligning torque is disturbance as shown in [3]. 
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We constructed a Luenberger observer based on the linear 

system.  By selecting an appropriate observer gain L, we can 
ensure asymptotic convergence of the estimation error. 
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IV. MAXIMUM TORQUE METHOD 
As the friction coefficient between tire and road changes, a 

tire aligning torque curve, as well as the peak point of the 

Fig. 2.  Characteristics of simple tire brush model. 
        

Fig. 3.  Steering system dynamics 
      

Fig. 4.  Block diagram of estimation process 
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curve vary. Therefore, we can detect the frictional coefficient 
if the peak aligning torque is measured. The relationship 
between frictional coefficient (µ) and the peak value is found 
by calculating the extremum of aligning torque, ignoring sign 
of τa and sign of σy for convenience of calculation: 

 
2(1 4 )(1 ) 0a

z y y y y y
y

F cτ μ θ θ σ θ σ
σ

∂
= − − =

∂
                   (9) 

 
There are two extrema when σy =1/(4θy) and σy=1/θy. The 

aligning curve reaches a peak point in the first case and the 
curve returns to the zero in the second case. From the 
definition of σy and θy, we have two equations. 
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These two equations tell us that if we know the tire slip 

angle or the aligning torque when the curve reaches the peak 
point we can calculate the frictional coefficient directly. 
Eq.(11) is more useful than (10) because tire slip angle is 
difficult to acquire.  

The problem of this method is that detecting the peak point 
is possible only when (i) lateral excitation is strong, and (ii) 
the measurement data batch size is large to include the peak 
aligning torque value. However this method is still valuable 
in that, if we have a batch of aligning torque data, we can 
calculate the lower bound of frictional coefficient by 
detecting maximum value among the aligning torque data as 
follows: 

 

( ),max
,max [ , ]

256 ,   max ( ) .
27 h

a
lower bound a at t t

zF c τ

τ
μ τ τ τ

∈ −
= =      (12) 

 

V. NONLINEAR LEAST SQUARE METHOD 

A. Basic Equations 
Hsu [11] used nonlinear least squares to identify frictional 

coefficient. He only used self-aligning torque with 
GPS-based sideslip measurements. In this section, we 
introduce a nonlinear least square method that uses both 
vehicle model and tire model. The basic information for the 
method is the vehicle lateral acceleration (from 
accelerometer) and the self-aligning torque, obtained using 
the tire aligning torque observer described in the previous 
section. Vehicle lateral force is the sum of lateral directional 
tire forces, as described in (1). We can easily calculate the 

vehicle lateral force by multiplying lateral acceleration, ay, 
and the vehicle mass, m: 

 
( , ) cos ( , ),y y r y rma f fα μ δ α μ= +                   (13) 

 
where fy is a tire lateral force, which is a function of tire slip 
angle and frictional coefficient, as described in (3). Rear tire 
slip angle αr is determined by (2) if front tire slip angle αf is 
known and u, r, δ are measured. As a result, the left side of 
(13) is determined by measurement and the right side is a 
function of αf and µ.  

Tire self-aligning torque is a function of αf and µ, as 
expressed in (4):  
 

( , ),a a fτ τ α μ=                               (14) 
 
and the tire self-aligning torque can also be determined by the 
aligning torque observer. Therefore, we have the second 
relationship: 

 
, ( , ),a obs a fτ τ α μ=                            (15) 

 
where τa,obs is the observed tire self aligning torque.  Finally, 
we have two unknowns, αf and µ, and two equations, (13) and 
(15) so that we are theoretically able to determine two 
unknowns. Nevertheless, the two equations are nonlinear so it 
is difficult to solve the equations directly. Nonlinear least 
square methods are used to find the best candidates of the 
unknowns ensuring the smallest error in the sense of least 
square. 

B. Solving with single datum 
The process of solving the two nonlinear equations is the 

same as finding the optimal of αf and µ which minimize the 
errors between the measured force/torque and the calculated 
force/torque using tire model. 
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We introduce a blended cost function as follows. 
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The force terms and torque terms are normalized to consider 

equivalent effects on the cost function. 
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C. Solving with multiple data 
Even though we can solve the nonlinear equation described 

in the previous section, the result will be vulnerable to 
measurement noise or observer error in ay and τa,obs. 

To be robust against the noise and model uncertainties, we 
use a nonlinear least square method with n length of 
measurement data. The cost function to be minimized is 
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We assume µ is constant among the data set whereas slip 

angles are not constant. As a result, we have n+1 unknowns 
(n αfs and a µ) and 2n equations (n force equations and n 
torque equations). These nonlinear equations are 
over-determined and we obtain more robust results.  

D. Initial Value of Nonlinear Least Squares 
Nonlinear least square method starts from an initial guess 

and search for better results iteratively. Therefore, it is not 
guaranteed to converge to the global optimum and the results 
depend on the initial guess. Choice of appropriate initial αf 
and µ in the each time step is important. The optimal values of 
the previous time step are generally used as the initial values. 
Indeed, if we offer a more probable candidate for the initial 
values then we can reduce iteration time and improve 
accuracy. Also, if there are several local minima in the cost 
function, offering a plausible initial value is very helpful. The 
most plausible candidates for the parameters can be projected 
with their dynamics. We can obtain the dynamics of αf from 
(2) and dynamics of µ by assuming it is constant. 
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VI. SIMULATION RESULTS 
We verify the performance of the two algorithms with 

Carsim with three levels of frictional coefficient with a 
vehicle speed of 60 km/h and a steer input of 0.25Hz sine 

wave with a magnitude of 0.04 rad.  
Maximum Torque method shows poor quality in 

estimating frictional coefficient and does not estimate slip 
angle. However, as mentioned previously, the frictional 
coefficient estimated by the maximum torque method is the 
low bound of real frictional coefficient, in fact, the coefficient 
estimated by the maximum torque method (the green lines in 
Fig. 5, Fig. 6, and Fig. 7) is always under the real coefficient 
(yellow lines).  

Even though the maximum torque method is not useful to 
estimate the coefficient accurately, it can provide the lower 
limit for the frictional coefficient for other estimators. In fact, 
the other methods considered in this paper use this 
underestimated frictional coefficient as the lower bound. As 
shown Figs. 5-7, friction coefficients estimated by the other 
methods are always higher than that of maximum torque 
method. 

We use a damped Gauss-Newton method to solve the 
nonlinear problem. The required computational time for 
multiple data approach is 0.015sec, using the hardware Intel 
Core2 Duo CPU at 2GHz and the software Matlab 2007a. 
Both nonlinear least square methods show acceptable 
estimation result when the real friction coefficient is high 
(1.0).  However nonlinear least square method with single 
datum underestimates the coefficient at µ =0.5, whereas 
nonlinear least square method with multiple data shows better 
estimation results. When the friction coefficient is low (0.2), 
nonlinear least square method with single datum present 
completely an incorrect result because it fails to find the 
global minimum. This problem can happen in any nonlinear 
least square method, but if we have enough information and 
appropriate excitation, then the possibility of reaching the 
global minimum increases. In the verification, the length of a 
data set is 40, equivalent to a time horizon of 0.8 sec. In the 
process of nonlinear least square method with 40 data, the 
estimator tries to find 40 different optimal slip angles and one 
frictional coefficient with 80 given conditions, so the 
estimated frictional coefficient is as averaged value within the 

Fig. 5.  Simulation result when frictional coefficient is 1.0. NLS Single is 
Nonlinear least square method with single datum, NLS Multi is Nonlinear 
least square method with several data, and Max τa Method is Maximum 
torque method.  
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past 0.8 seconds.  As a result, nonlinear least square method 
with several data is more stable than with single datum.  

VII. CONCLUSION 
This paper presents three estimators for the coefficient of 

friction. Maximum torque method always underestimates 
frictional coefficient, but it does not require tire slip angle and 
it is valuable because provides a lower bound for frictional 
coefficient estimation. Nonlinear least square method with 
single datum shows acceptable performance on high friction 
surface, but it fails on low friction roads. Nonlinear least 
square method with multiple data points shows the best 
performance and stable estimation, but its performance is not 
guaranteed. Better performance is achieved by increasing the 
size of the data set and guessing good initial values. However, 
using a long data set induces delay and increases computation 
load. The optimal length of the data set was determined 
empirically.   

Further study on robustness of the observers against 
uncertainties and development of effectively fast nonlinear 
least square algorithm for calculation time reduction will be 
conducted. 
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Fig. 6.  Simulation result when frictional coefficient is 0.5. 

 

 
Fig. 7.  Simulation result when frictional coefficient is 0.2. 
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