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Abstract— This paper studies the problem of stability analysis
and controller design for discrete-time linear time invariant
(LTI) systems with state saturation. Both full state saturation
and partial state saturation are considered. Firstly, a new
system model is constructed for solving the key problem.
Then, a new method is presented for estimating the domain
of attraction of the origin for a system with state saturation.
Based on this method, an LMI-based ( linear matrix inequality)
iterative algorithms is proposed for determining if a given
ellipsoid is contractively invariant. Moreover, an LMI-based
algorithm is developed for designing dynamic output-feedback
controllers which guarantee that the domain of attraction of
the origin for the closed-loop system is as large as possible.
An example is given to illustrate the efficiency of the design
method.

I. INTRODUCTION

Control systems with state saturation are often encountered

in a variety of applications, including signal processing,

recurrent neural networks and control systems, and have

been studied extensively (see, e.g., [1]-[7], and the references

therein). When there are state saturation in control systems,

most of such systems can be modeled by statespace rep-

resentations with polyhedral or ellipsoidal state constraints,

and global stability of an otherwise stable linear closed-loop

system can not in general be ensured. A few approaches to

the global asymptotic stability of such system were presented

in [7]-[10].

For second order systems with state saturation, necessary

and sufficient conditions for global asymptotic stability were

established in [7] and [9]. For higher order systems, various

sufficient conditions for the global asymptotic stability were

identified (see, e.g., [6], [10], and the references therein).

Under the sufficient condition of [11], any system trajectory

starting from inside the state saturation region will never

reach the boundary of it, i.e., the state never saturates. This

saturation avoidance sufficient condition leads to a degree of

conservatism.

Extensions of the results of [12] and [13] to the situation

involving partial state saturation have been carried out in
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[14] and [15], respectively. This problem was reconsidered

in [16] and a less conservative result was obtained. Using

biconvex programming and static output feedback approach,

H∞ control problem was also considered [17].

This paper revisits the problems of stability analysis and

controller design for discrete-time LTI systems with state sat-

uration. Both full state saturation and partial state saturation

are considered. Firstly, a new system model is constructed

for solving the key problem. Then, a method is presented

for estimating the domain of attraction of the origin for

a system under state saturation. Based on this method, an

LMI-based iterative algorithms is proposed for determining

if a given ellipsoid is contractively invariant. Moreover, an

LMI-based algorithm is developed for designing dynamic

output-feedback controllers which guarantee that the domain

of attraction of the origin for the closed-loop system is as

large as possible.

The paper is organized as follows. Problem statement is

given in Section 2. A condition for set invariance is presented

for discrete-time LTI systems with state saturation in Section

3. In Section 4 the estimation of domain of attraction is

presented. In Section 5 A controller design method based

on LMIs is given. An example is presented in Section 6 to

demonstrate the proposed design method. Finally, the paper

will be concluded in Section 7.

II. PROBLEM STATEMENT AND PRELIMINARIES

In this paper, we will consider two classes of discrete-

time linear systems under state constraints. The first class of

systems are defined as

xp(k +1) = σ [Apxp(k)+Bpu]

y(k) = Cpxp(k) (1)

where xp(k) ∈ Rnp is the plant state, u ∈ Rm is the control

input, y ∈ Rp is the measured output. Ap, Bp, Cp are known

constant matrices of appropriate dimensions.

The state nonlinearity with the consideration of a

piecewise-linear saturation is described as

σ(xi) =

{
xi, |xi| ≤ xmax

i ,
sign(xi)x

max
i , |xi| > xmax

i ,
(2)

for i ∈ I[1,np]. Here we have slightly abused the notation

by using σ to denote both the scalar valued and the vector

valued saturation functions.

System (1) is defined on a closed hypercube as all state

variables are constrained to the hypercube. For this reason,

system (1) is sometimes called as discrete-time LTI systems
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under state saturation, that is, saturation occurs in the state

xi if |xi| > xmax
i .

The other class of systems are discrete-time linear systems

with partial state saturation and are formulated as

xp1(k +1) = σ [Ap11xp1(k)+Ap12xp2(k)+Bp1u(k)]

xp2(k +1) = Ap21xp1(k)+Ap22xp2(k)+Bp2u(k)

y(k) = Cp1xp1(k)+Cp2xp2(k) (3)

where xp1(k) ∈ Rnp1 is the plant state with sate saturation,

xp2(k) ∈ Rnp−np1 is the plant state without state saturation,

u ∈ Rm is the control input, y ∈ Rp is the measured output.

Ap11, Ap12, Ap21, Ap22, Bp1, Bp2, Cp1, Cp2 are known constant

matrices of appropriate dimensions. Notes that all the state

variables are under state saturation if np1 = np, in which case,

system (3) reduces to system (1).

The following definitions and lemma will be used in the

sequel.

Definition 1: For a vector x, define

℘(n,np) = {x ∈ Rn : |xi| ≤ xmax
i , i ∈ I[1,np], n ≥ np},

then ℘(n,np) is the state saturation region.

Definition 2: For a matrix M ∈ Rnp1×(np+nc), denote the

ith row of M as Mi, define

ℑ(M) = {ξ ∈ Rnp+nc : |Miξ | ≤ xmax
i , i ∈ I[1,np1]},

For x(0) = x0 ∈ Rn, denote the state trajectory of system

(1) as ψ(k,x0). Then the domain of attraction of the origin

is

ℓ := {x0 ∈ Rn : limk→∞ψ(k,x0) = 0}.

Consider the following two systems




xa1(k +1) = σ [ f1(xa1(k), xa2(k))+g1(ua(k))],
xa2(k +1) = f2(xa1(k), xa2(k))+g2(ua(k)),
ya(k) = Cp1xa1(k)+Cp2xa2(k),
xca(k +1) = f3(xca(k))+g3(ya(k)),
ua(k) = f4(xca(k))+g4(ya(k)),

(4)





xb1(k +1) = f1(σ [xb1(k)], xb2(k))+g1(ub(k)),
xb2(k +1) = f2(σ [xb1(k)], xb2(k))+g2(ub(k)),
yb(k) = Cp1σ [xb1(k)]+Cp2xb2(k),
xcb(k +1) = f3(xcb(k))+g3(yb(k)),
ub(k) = f4(xcb(k))+g4(yb(k)),

(5)

where, fi(·) and g j(·), i ∈ I[1,4], j ∈ I[1,2] are linear

functions. Denote the state trajectory of system (4) as

ψa(t,xa(0)), and denote the state trajectory of system (5) as

ψb(t,xb(0)). Let xa(k) =




xa1(k)
xa2(k)
xca(k)


, xb(k) =




xb1(k)
xb2(k)
xcb(k)


, then

the following lemma is given

Lemma 1: For any initial state xa(0) = xb(0) ∈℘(n,np1),
the following two statements are equivalent.

(I) limk→∞ ψa(k,xa(0)) = 0

(II) limk→∞ ψb(k,xb(0)) = 0

Proof:

xa(0) = xb(0) ∈℘(n,np1) ⇒





xa1(0) = σ [xb1(0)]
xa2(0) = xb2(0)
xca(0) = xcb(0)

For k = 0,1,2, . . . ,∞,




xa1(k) = σ [xb1(k)]
xa2(k) = xb2(k)
xca(k) = xcb(k)

⇒





f1(xa1(k),xa2(k)) = f1(σ [xb1(k)], xb2(k))
f2(xa1(k), xa2(k)) = f2(σ [xb1(k)], xb2(k))

ya(k) = yb(k)
ua(k) = ub(k)

⇒





f1(xa1(k),xa2(k))+g1(ua(k))
= f1(σ [xb1(k)], xb2(k))+g1(ub(k))

f2(xa1(k), xa2(k))+g2(ua(k))
= f2(σ [xb1(k)], xb2(k))+g2(ub(k))

xca(k +1) = xcb(k +1)

⇒





xa1(k +1) = σ [xb1(k +1)]
xa2(k +1) = xb2(k +1)
xca(k +1) = xcb(k +1)

In addition, we have

lim
k→∞

xb1(k) = 0 ⇒ lim
k→∞

σ(xb1(k)) = 0 ⇒ lim
k→∞

xa1(k) = 0

and

lim
k→∞

xa1(k) = 0 ⇒ lim
k→∞

σ(xb1(k)) = 0 ⇒ lim
k→∞

xb1(k) = 0.

This completes the proof.

Problem 1: The design problem under consideration is to

find a controller such that, the domain of asymptotic stability

is enlarged as possible for closed-loop system with state

saturation.

III. A CONDITION FOR SET INVARIANCE

In this section, we will establish new sufficient conditions

for global asymptotic stability for both systems (1) and (3).

Because all the state variables are under state saturation if

np1 = np, in which case, system (3) reduces to system (1),

we need only to consider system (3). To this end, we first

establish a new system as follows.

xp1(k +1) = Ap11σ [xp1(k)]+Ap12xp2(k)+Bp1u(k)

xp2(k +1) = Ap21σ [xp1(k)]+Ap22xp2(k)+Bp2u(k)

y(k) = Cp1σ [xp1(k)]+Cp2xp2(k) (6)

which can be rewritten as

xp(k +1) = Ap

[
σ(xp1(k))

xp2(k)

]
+Bpu(k)

y(k) = Cp

[
σ(xp1(k))

xp2(k)

]

where

Ap =

[
Ap11 Ap12

Ap21 Ap22

]
, Bp =

[
Bp1

Bp2

]
,

Cp =
[

Cp1 Cp2

]
,
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and xp(k) ∈ Rnp is the plant state, xp1(k) ∈ Rnp1 is the plant

state with sate saturation, xp2(k) ∈ Rnp−np1 is the plant state

without state saturation, u ∈ Rm is the control input, y ∈ Rp is

the measured output. Ap, Bp, Cp are known constant matrices

of appropriate dimensions.

To formulate the corresponding LMIs, we need to intro-

duce additional notation which corresponds to representing

the closed-loop system in a compact way. Then, the follow-

ing equation is given

q(k) = xp1(k)−σ(xp1(k)) (7)

Then, we have

xp(k +1) = Apxp(k)−Ap1q(k)+Bpu(k)

y(k) = Cpxp(k)−Cp1q(k)

where Ap1 =

[
Ap11

Ap21

]
.

The controller structure is chosen as

xc(k +1) = Akxc(k)+Bky(k)

u(k) = Ckxc(k)+Dky(k) (8)

Next, define the overall state variable x ∈ Rn, where n =
np +nc, as

x = [xT
p xT

c ]T

which allows the linear dynamics of the plant and controller

to be combined and written as

x(k +1) = Aex(k)+Beq(k) (9)

where

Ae =

[
Ap +BpDkCp BpCk

BkCp Ak

]

Be =

[
−Ap1 −BpDkCp1

−BkCp1

]

Remark 1: When full state saturation is considered,

system (9) can be replaced by the following system

x(k +1) = Aex(k)+Beq(k) (10)

where

Ae =

[
Ap +BpDkCp BpCk

BkCp Ak

]

Be =

[
−Ap −BpDkCp

−BkCp

]

Definition 4: Let P ∈ Rn×n be a positive-define matrix.

Denote

ε(P,δ ) = {x ∈ Rn : xT Px ≤ δ}.

Assume that the standard dynamic output feedback con-

troller has been designed. Then, for system (6) controlled by

designed controller (8), the following lemma is presented to

estimate the domain of attraction of the origin.

Lemma 2: For system (6) given a ellipsoid ε(P,1), P ∈
Rn×n, if there exist matrices Q > 0, U > 0, G such that




−Q (Q

[
I

0

]
−GT ) QAT

e

∗ −2U UBT
e

∗ ∗ −Q


 < 0 (11)

for ε(P,1) ⊂ ℑ(M), i.e., |Mix| ≤ xmax
i for all x ∈ ε(P,1), i ∈

I[1,np1], then ε(P,1) is a contractively invariant set.

Proof: Choose the following Lyapunov function

V (k) = x(k)T Px(k)

Let M = GQ−1, W =U−1, P = Q−1. We have inequality (11)

is equivalent to



−Q (Q

[
I

0

]
−QMT ) QAT

e

∗ −2W−1 W−1BT
e

∗ ∗ −Q


 < 0

⇔


 −P (

[
I

0

]
−MT )W

∗ −2W




+

[
AT

e

BT
e

]
PP−1P

[
Ae Be

]
< 0

⇔


 AT

e PAe −P AT
e PBe +

[
I

0

]
W −MTW

∗ BT
e PBe −2W


 < 0

⇒

[
x

q

]T [
AT

e PAe −P

∗

AT
e PBe +(

[
I

0

]
−MT )W

BT
e PBe −2W




[
x

q

]
< 0

⇔V (k +1)−V (k)

+qTW ([I 0]x−Mx−q)+([I 0]x−Mx−q)TWq < 0

By equation (7) we have that, if |Mix| ≤ xmax
i i ∈

I[1, np1],

qTW ([I 0]x−Mx−q)+([I 0]x−Mx−q)TWq ≥ 0

By employing the S -procedure, it is shown that for any

given symmetric positive definite matrix W , if

{Aex+Beq}T P{Aex+Beq}− xT Px

+qTW ([I 0]x−Mx−q)+([I 0]x−Mx−q)TWq < 0

|Mix| ≤ xmax
i i ∈ I[1, np1]

then

{Aex+Beq}T P{Aex+Beq}− xT Px < 0

Thus, the proof is completed. By using Lemma 1 and Lemma

2, the following theorem is given.

Theorem 1: For the closed-loop system of system (3) and

controller (8), given a ellipsoid ε(P,1), P ∈ Rn×n, if there

exist matrices Q > 0, U > 0, G such that inequality (11) holds

for ε(P,1) ⊂ ℑ(M), i.e., |Mix| ≤ xmax
i for all x ∈ ε(P,1), i ∈
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I[1,np1], then ℘(n,np1)
⋂

ε(P,1) is a contractively invariant

set.

Proof: By Lemma 2, we have that for any initial state

x(0)∈ (℘(n,np1)
⋂

ε(P,1)), the state of system (6) can be at-

tracted to zero. Obviously, (℘(n,np1)
⋂

ε(P,1)) ⊂℘(n,np1).
Then, by Lemma 1, we have that for any initial state x(0) ∈
(℘(n,np1)

⋂
ε(P,1)), the state of system (3) can be attracted

to zero.

IV. ESTIMATION OF THE DOMAIN OF ATTRACTION

From Theorem 1, we can obtain various sets satisfying

the set invariance condition. So, how to choose the largest

one of them becomes an interesting problem. Because the

set ℘(n,np1) is given, we need only to enlarge the domain

ε(P,1) as possible for estimating the largest domain of

attraction. In this section, we will give a method to find the

largest set.

The following definition will be used in the sequel.

Definition 5: Define XR is a prescribed bounded convex

set. XR = ε(R,1) = {x ∈ Rn×n : xT Rx ≤ 1}, R > 0 or

XR = co{x1,x2, ...,xl}. For a set S ∈ Rn, αR(S) = sup{α >
0 : αXR ⊂ S}.

With the above shape reference sets, we can choose one

from all the ε(P,1)′s that satisfies the condition of Theorem 1

such that the quantity αR(ε(P,1)) is maximized. The problem

can be formulated as follows

sup α

s.t. (a) (11),

(b) ε(P,1) ⊂ ℑ(M),

(c) αXR ⊂ ε(P,1) (12)

Condition (b) is equivalent to

1

xmax
i

MiP
−1(

1

xmax
i

Mi)
T ≤ 1 ⇔

[
1 1

xmax
i

MiP
−1

∗ P−1

]
≥ 0 (13)

for all i ∈ I[1,np1], where Mi be the jth row of M.

If the given shape reference set XR is a polyhedron as

defined in Definition 5, then Constraint (c) is equivalent to
[

1
α2 xT

j

∗ P−1

]
≥ 0, j ∈ I[1, l] (14)

If XR is a ellipsoid ε(R,1), then (c) is equivalent to

R

α2
≥ P ⇔

[
(1/α2)R I

I P−1

]
≥ 0. (15)

If XR is a polyhedron, then from (13), (14), the optimiza-

tion problem (12) is equivalent to

Algorithm 1:

inf
Q>0,G

γ

s.t. (a1) (11)

(b1)

[
1 1

xmax
i

gi

∗ Q

]
≥ 0, i ∈ I[1,np1]

(c1)

[
γ xT

j

x j Q

]
≥ 0, j ∈ [1, l]

where γ = 1/α2, Q = (P
ρ )−1 and G = MQ. Let gi be the ith

row of G. It is easy to see that all constraints are given in

LMIs. If XR is an ellipsoid, we need only to replace (c1)

with

(c2)

[
γR I

I Q

]
≥ 0.

V. CONTROLLER DESIGN

In this section we will design a dynamic output feedback

controller (8) such that the estimated domain of attraction is

maximized with respect to XR.

Lemma 3: For matrix variables Q > 0, U > 0, G and K,

constraint (11) is equivalent to constraint (16) as follows



T1 T2 QAT QC̄T

∗ T3 UBT UD̄T

∗ ∗ T4 B̄K

∗ ∗ ∗ −I


 < 0 (16)

where

T1 = −Q−QC̄TC̄Q0 −Q0C̄TC̄Q+Q0C̄TC̄Q0

T2 = Q[I 0]T −GT −QC̄T D̄U0 −Q0C̄T D̄U +Q0C̄T D̄U0

T3 = −2U −UD̄T D̄U0 −U0D̄T D̄U +U0D̄T D̄U0

T4 = −Q− B̄KKT
0 B̄T − B̄K0KT B̄T + B̄K0KT

0 B̄T

A =

[
Ap 0

0 0

]
,B =

[
−Ap1

0

]
,K =

[
Ak Bk

Ck Dk

]
,

B̄ =

[
0 Bp

I 0

]
,C̄ =

[
0 I

Cp 0

]
, D̄ =

[
0

−Cp1

]

Proof: Obviously, constraint (11) can be rewritten as

follows

T +




0 0 Q(B̄KC̄)T

∗ 0 U(B̄KD̄)T

∗ ∗ 0


 < 0

where

T =




−Q Q[I 0]T −GT QAT

∗ −2U UBT

∗ ∗ −Q




Then, inequality (11) is equivalent to

T +




0

0

B̄K


[

C̄Q D̄U 0
]

+(




0

0

B̄K


[

C̄Q D̄U 0
]
)T < 0

⇔ T +(




0

0

B̄K


+




QC̄T

UD̄T

0


)(




0

0

B̄K


+




QC̄T

UD̄T

0


)T

−




0

0

B̄K


[

0 0 KT B̄T
]

−




QC̄T

UD̄T

0


[

C̄Q D̄U 0
]

(17)
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In addition, as is known to all that for any matrix V , there

always exists a matrix V0 such that the following inequality

holds

(V −V0)(V −V0)
T ≥ 0 (18)

Thus, there exist Q0, K0 and U0 such that (16) is equivalent

to (17). On one hand, according to (18), if (17) holds, then

(16) holds. On the other hand, when Q0 = Q, K0 = K and

U0 =U , (17) holds if (16) holds. Thus, the proof for Lemma

3 is completed.

Remark 2: When full state saturation is considered, only

two matrices defined in Lemma 3 should be replaced with

B =

[
−Ap

0

]
, D̄ =

[
0

−Cp

]
.

By solving inequalities (11), (b1), (c1), we can solve

Problem 1. But constraint (11) is not an LMI, we cannot

solve them directly. To overcome this difficulty, we will give

the following algorithm by Lemma 3.

Algorithm 2:

Step 1 For system (1), design a standard dynamic output

feedback controller such that system (1) is asymptotic stable

without considering saturation.

Step 2 Based on the designed controller K∗ in Step 1,

find a feasible set (Q∗,U∗,G∗,γ∗) by solving Algorithm 1.

Let η = 0.

Step 3 If γ∗− γ̃ < τ or η > N, where N and τ > 0 are

prescribed numbers, let γ∗ = γ̃ and exit.

Step 4 Let γ∗ = γ̃ , Q0 = Q∗, U0 = U∗, K0 = K∗. Solve the

following LMI problem

min γ

s.t. (a2) (16),

(b1),

(c1) or (c2),

Step 5 Let Q∗ = Q, U∗ = U , K∗ = K, γ̃ = γ , η = η + 1.

Go to Step 3

VI. EXAMPLES

Example 1. Consider the system of form (1) with

A =

[
−0.5 0

−1 1.5

]
, B =

[
−0.5

1

]
, C =

[
1 1

]

and xmax
1 = xmax

2 = 1. Suppose that a controller is given as

follows

Ak =

[
0.0213 −1.6320

0.9711 −1.3363

]
, Bk =

[
3.1451

5.0328

]
,

Ck =
[
−0.0040 −0.2317

]
, Dk = 0 (19)

Let XR = co{




1

1

0

0


 ,




1

−1

0

0


 ,




−1

1

0

0


 ,




−1

−1

0

0


}. By using Algo-

rithm 1 we draw the following conclusion

γ∗ = 2.8003

Q∗ =




2.6171 1.0973 −18.1012 1.4457

∗ 6.3003 0.3067 18.5965

∗ ∗ 173.6197 28.9220

∗ ∗ ∗ 93.1208




U∗ =

[
0.4437 0.0708

∗ 2.2468

]
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Fig. 1. Cross-section of ε(P∗, 1) at xc = 0, under controller (19)

By using Algorithm 2, let N = 3, we have

γ∗ = 0.8974

Q∗ =




4.2707 1.9588 −21.6527 1.7726

∗ 11.1191 −2.1203 20.5999

∗ ∗ 201.6241 28.0990

∗ ∗ ∗ 115.9223




U∗ =

[
1.2363 −0.8615

∗ 1.7134

]

A∗
k =

[
−0.5342 −0.1181

0.2839 0.0628

]
, B∗

k =

[
−1.2169

0.6468

]
,

C∗
k =

[
−0.1259 −0.0278

]
, D∗

k = −0.7153 (20)
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Fig. 2. Cross-section of ε(P∗, 1) at xc = 0, under controller (20)
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Fig. 3. trajectories of closed-loop systems

VII. CONCLUSIONS

In this paper, both full state saturation and partial state

saturation were considered. A new system was constructed

for solving the key problem. Then, LMI-based algorithm

was proposed for determining if a given ellipsoid is contrac-

tively invariant, and an LMI-based algorithm was developed

for constructing dynamic output-feedback controllers which

guarantee that the domain of attraction of the origin for the

closed-loop system is large as possible. An example was

given to illustrate the efficiency of the design method.
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