
Analysis and Design of Output Feedback Control Systems in the

Presence of Actuator Saturation

Wei Guan and Guang-Hong Yang

Abstract— In this paper, a dynamic output feedback con-
troller design approach based on cone complementary lineari-
sation procedure is proposed for linear time-invariant (LTI)
systems with actuator saturation. Firstly, the estimation of
domain of attraction is given. Then, a design method to find
a larger estimation of domain of attraction is presented. In
the process of design, nonconvex conditions are obtained, so
a cone complementary linearisation procedure is exploited to
solve the nonconvex feasibility problem. Two examples are given
to illustrate the efficiency of the design method.

I. INTRODUCTION

Control systems with actuator saturation are often encoun-

tered in practice. When actuator saturation occurs, global

stability of an otherwise stable linear closed-loop system can

not in general be ensured (see, [1], [2], [3]). And the problem

of estimating the domain of attraction for a system with a

saturated linear feedback was studied by many researchers

in the last few years and various methods have appeared.

Model predictive control (MPC) is an effective control

algorithm for dealing with actuator saturation. Over the

last few years, many formulations were developed for the

stability of MPC (see, [4], [5]). Enlargement of the do-

main of attraction was achieved in ([6], [7], [8], [9], [10]).

Anti-windup research was largely discussed and many con-

structive design algorithms were formally proved to induce

suitable stability properties (see, [11]-[17]). Many of these

constructive approaches relied on sector condition and S-

procedure techniques and provided LMIs for the anti-windup

compensator design.

In some papers, notion of invariant set and LMI-based

optimization approaches were proposed to estimating the

stability regions by using quadratic Lyapunov functions and

the Lur’e-type Lyapunov functions. The notion of invariant

set played a very important role in the study of systems with

state and control constraint ([18]-[21]). In [22], the modeling

of the nonlinear behavior of the system under saturation

was made by using a polytopic differential inclusion and
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quadratic Lyapunov functions. In [23], system

ẋp = Apxp +Bpσ(u) (1)

with a given linear state feedback u = Fxp was considered.

For determining if a given ellipsoid is contractively in-

variant, the authors described a condition which is based on

the circle criterion or the vertex analysis, and LMI-based

methods were presented for constructing state feedback laws

F in [23].

However, in practice, system state xp is not measurable

in general. Our main work is to extend the state feedback

results [23] to the case of dynamic output feedback. In this

paper, a dynamic output feedback controller design approach

based on cone complementary linearisation procedure is pro-

posed for linear time-invariant (LTI) systems with actuator

saturation. Firstly, the estimation of domain of attraction is

presented. In addition, a method of controller design for LTI

systems with actuator saturation is described. In the process

of design, nonconvex conditions are obtained, so a cone

complementary linearisation procedure is exploited to solve

the nonconvex feasibility problem.

The paper is organized as follows. Problem statement is

given in Section 2. A condition for set invariance is presented

for LTI systems with actuator saturation in Section 3. The

proposed estimation of domain of attraction is presented

in Section 4. A controller design method based on cone

complementary linearisation procedure is given in Section

5. And in Section 6 two examples are given to illustrate the

efficiency of the design method. The paper will be concluded

in Section 7.

The notations in this paper are standard. Rn denotes

n−dimensional real space. Rm×n is the set of real m × n

matrices. The transpose of a real matrix M is denoted by

MT . For matrix M ∈ Rn×n, its trace is denoted by tr(M).
A > 0 (A ≥ 0) means that the matrix A is positive definite

(semi-definite).

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider LTI plant Σ described by

Σ : ẋp = Apxp +Bpσ(u)

y = Cpxp +Dpσ(u) (2)

where xp ∈ Rnp is the plant state, y ∈ Rny is the measurement

output, and σ(u) ∈ Rnu is the saturated control input. It is

assumed that

(A1) the triple (Ap,Bp,Cp) is stabilizable and detectable,

(A2) the matrices BT
p and Cp have full row rank,
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(A3) Dp = 0.

Assumption (A3) helps to simplify the derivation, and it

can be satisfied by redefining the output variable.

The actuator nonlinearity with the consideration of a

piecewise-linear saturation is described as

σ(ui) =

{

ui, |ui| ≤ umax
i ,

sign(ui)u
max
i , |ui| > umax

i ,
(3)

for i = 1,2, ...,nu. Here we have slightly abused the notation

by using σ to denote both the scalar valued and the vector

valued saturation functions.

In this paper, we will consider the dynamic output feed-

back controller which is given by

Σk : ẋk = Akxk +Bky

u = Ckxk +Dky (4)

where xk ∈ Rnk is the state of system (4).

Applying the controller (4) to the system (2), the following

closed-loop system Σd can be obtained

Σd : ẋ = Aclx+Bclσ(u)

u = Cclx (5)

where x = [xT
p xT

k ]T , x ∈ Rn with n = np +nk, and

Acl=

[

Ap 0

BkCp Ak

]

, Bcl =

[

Bp

0

]

, Ccl =
[

(DkCp) Ck

]

.

(6)

For a matrix Ccl ∈ Rnu×n, denote the ih row of Ccl as Ccli,

define

℘(Ccl) = {x ∈ Rn : |Cclix| ≤ 1, i ∈ [1,nu]},

then ℘(Ccl) is the region in the state space where saturation

does not occur.

For x(0) = x0 ∈ Rn, denote the state trajectory of system

(5) as ψ(t,x0). Then the domain of attraction of the origin

is

ℓ := {x0 ∈ Rn : limt→∞ψ(t,x0) = 0}.

Let P ∈ Rn×n be a positive-define matrix. Denote

ε(P,ρ) = {x ∈ Rn : xT Px ≤ ρ}.

Let V (x) = xT Px. If V̇ (x) = 2xT P(Aclx + Bclσ(Cclx)) for

all x ∈ ε(P,ρ)\{0}, the ellipsoid ε(P,ρ) is contractively

invariant. Clearly, if ε(P,ρ) is contractively invariant, then

it is inside the domain of attraction.

Let V be a set of nu×nu diagonal matrices whose diagonal

elements are either 1 or 0. There are 2nu elements in V and

we denote its elements as Vi, i ∈ [1,2nu ]. Denote V−
i = I−Vi.

It is easy to see that V−
i ∈ V. The following propositions

will be useful for the development of the main results of

this paper.

Proposition 1 ([3]) Let u, v∈Rnu with u = [u1,u2, ...,unu ]
T

and v = [v1,v2, ...,vnu ]
T . Suppose that |vi| ≤ 1 for all i ∈

[1,nu].

Then,

σ(u) ∈ co{Viu+V−
i v : i ∈ [1,2nu ]},

where co denotes the convex hull.

A multivariable circle criterion is applied to estimate the

domain of attraction for system (1), with a given state

feedback u = Fxp, in the following proposition.

Proposition 2 ([23]). Given a ellipsoid ε(Pp,ρ), Pp ∈
Rnp×np , if there exists an D ∈ Rnu×np , such that

(Ap +Bp(ViF +V−
i D))T Pp

+Pp(Ap +Bp(ViF +V−
i D)) < 0

for all Vi ∈V and ε(Pp,ρ)⊂℘(D), i.e., |Dixp| ≤ 1 for all xp ∈
ε(Pp,ρ), i ∈ [1,nu], then ε(Pp,ρ) is a contractively invariant

set.

Now, the problems under consideration in this paper are

described as follows:

Problem 1 Assume that the controller (4) is given, for

system (2) with actuator saturation, find an estimate of the

domain of attraction.

Problem 2 For system (2) with actuator saturation, design

a controller (4) such that the estimated domain of attraction

is maximized respect to a prescribed bounded convex set.

III. A CONDITION FOR SET INVARIANCE

Assume that the standard dynamic output feedback con-

troller has been designed. Then, for system (5) controlled

by designed controller, the following theorem is presented

to estimate the domain of attraction of the origin.

Theorem 1 Given a ellipsoid ε(P,ρ), P ∈ Rn×n, if there

exists an H ∈ Rnu×n, such that

(Acl +Bcl(ViCcl +V−
i H))T P

+P(Acl +Bcl(ViCcl +V−
i H)) < 0

for all Vi ∈ V and ε(P,ρ) ⊂℘(H), i.e., |Hix| ≤ 1 for all x ∈
ε(P,ρ), i∈ [1,nu], then ε(P,ρ) is a contractively invariant set.

Proof It is similar to the proof of Theorem 1 in [23], and

omitted here.

Remark 1 Proposition 2 presents a solution to the actuator

saturation problem for the state feedback case, where all

states of the considered systems are assumed to be mea-

surable. When the assumption is not valid and only system

outputs are available for dynamic output feedback controller

designs, Theorem 1 presents a method to solve the actuator

saturation problem for the dynamic output feedback case,

which is an extension of Proposition 2.

IV. ESTIMATION OF THE DOMAIN OF ATTRACTION

From Theorem 1, we can obtain various ellipsoids sat-

isfying the set invariance condition. So, how to choose the

“largest” one of them becomes an interesting problem. In this

section, we will give a method to find the “largest” ellipsoids.

The following definition will be used in the sequel.

Definition 1 ([24], [25], [26]). Define XR is a prescribed

bounded convex set. XR = ε(R,1) = {x ∈ Rn×n : xT Rx ≤
1}, R > 0 or XR = co{x1,x2, ...,xl}. For a set S ∈ Rn,

αR(S) = sup{α > 0 : αXR ⊂ S}.
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In Theorem 1, a condition for the set ε(P,ρ) to be inside

the domain of attraction is given. With the above shape

reference sets, we can choose from all the ε(P,ρ)’s that

satisfy the condition of Theorem 1 such that the quantity

αR(ε(P,ρ)) is maximized. The problem can be formulated

as follows

sup
P>0,ρ,H

α

s.t. (a) αXR ⊂ ε(P,ρ),

(b) (Acl +Bcl(ViCcl +V−
i H))T P

+P(Acl +Bcl(ViCcl +V−
i H)) < 0 for all Vi ∈ V,

(c) ε(P,ρ) ⊂℘(H). (7)

If the given shape reference set XR is a polyhedron as

defined in Definition 1, then Constraint (a) is equivalent to

α2xT
e (

P

ρ
)xe ≤ 1 ⇔

[

1/α2 xT
e

xe (P
ρ
)−1

]

≥ 0, (8)

for all e ∈ [1, l]. If XR is a ellipsoid ε(R,1), then (a) is

equivalent to

R

α2
≥

P

ρ
⇔

[

(1/α2)R I

I (P
ρ
)−1

]

≥ 0. (9)

Constraint (b) is equivalent to

(
P

ρ
)−1(Acl +Bcl(ViCcl +V−

i H))T

+(Acl +Bcl(ViCcl +V−
i H))(

P

ρ
)−1 < 0

for all Vi ∈ V. (10)

Condition (c) is equivalent to

ρh jP
−1hT

j ≤ 1 ⇔

[

1 h j(
P
ρ
)−1

(P
ρ
)−1hT

j (P
ρ
)−1

]

≥ 0. (11)

for all j ∈ [1, nu], where h j be the jth row of H.

If XR is a polyhedron, then from (9), (10), (11), the

optimization problem (7) is equivalent to

inf
Q>0,G

γ

s.t. (a1)

[

γ xT
e

xe Q

]

≥ 0, e ∈ [1, l]

(b1) QAT
cl +AclQ+BclViCclQ+Q(BclViCcl)

T

+BclV
−
i G+GT (V−

i )T BT
cl < 0, i ∈ [1,2nu ]

(c1)

[

1 g j

gT
j Q

]

≥ 0, j ∈ [1,nu] (12)

where γ = 1/α2, Q = (P
ρ
)−1 and G = HQ. Let g j be the jth

row of G. It is easy to see that all constraints are given in

LMIs. If XR is an ellipsoid, we need only to replace (a1)

with

(a2)

[

γR I

I Q

]

≥ 0. (13)

V. CONTROLLER DESIGN

In this section we will design a dynamic output feedback

controller (4) such that the estimated domain of attraction is

maximized with respect to XR.

The following lemma given will be used in the sequel.

Denote by NB̄, NC̄ any matrices whose columns form bases

of the null space of B̄ and C̄, respectively.

Γ = NT
c̄ ΠBcl(I −Vi), Γ0 = NT

c̄ Π0Bcl(I −Vi),

W = NT
B̄

Bcl(I −Vi),

Φ = NT
c̄ (ΠA+AT Π)NC̄ −ΓΓT

0 −Γ0ΓT +Γ0ΓT
0

−NT
c̄ HT H0NC̄ −NT

c̄ HT
0 HNC̄ +NT

c̄ HT
0 H0NC̄,

Θ = NT
B̄
(AQ+QAT )NB̄ −WHHT

0 W T −WH0HTW T

+WH0HT
0 W T −NT

B̄
QQ0NB̄ −NT

B̄
Q0QNB̄ +NT

B̄
Q0Q0NB̄.

where Π = P/ρ ,

A =

[

Ap 0

0 0

]

, B̄T =

[

0 BpVi

I 0

]

, C̄ =

[

0 I

Cp 0

]

.

Lemma 1 For matrix variables Π, Q, H, the following

statements hold:

(i) Constraint (b1) is equivalent to the constraints (b2) as

follows

(b2)

[

Φ Γ+NT
c̄ HT

(Γ+NT
c̄ HT )T − I

]

i

< 0, i ∈ [1, 2nu ]

(14)

[

Θ WH +NT
B̄

Q

(WH +NT
B̄

Q)T − I

]

i

< 0, i ∈ [1, 2nu ] (15)

ΠQ = I (16)

(ii) Constraint (c1) is equivalent to constraint (c2) as

follows

(c2)

[

Ξ ∆+ΛT

(∆+ΛT )T − I

]

j

< 0, j ∈ [1, nu]

(17)

where L j be 1×nu matrices whose element l j is 1, and others

are 0, and

∆ =

[

−L jH 0

0 0

]

, Λ =

[

0 Q

0 0

]

,

∆0 =

[

−L jH0 0

0 0

]

, Λ0 =

[

0 Q0

0 0

]

,

Ξ =

[

−1 0

0 −Q

]

−∆∆T
0 −∆0∆T +∆0∆T

0 −ΛT Λ0

−ΛT
0 Λ+ΛT

0 Λ0.

Proof

Proof for (i): Obviously, the constraint (b1) can be rewritten

as follows

Π(Acl +BclViCcl +Bcl(I −Vi)H)

+(Acl +BclViCcl +Bcl(I −Vi)H)T Π < 0

⇔ Π(A+Bcl(I −Vi)H)+(A+Bcl(I −Vi)H)T Π

+ΠB̄T KC̄ +C̄T KT B̄Π < 0. (18)
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where

K =

[

Ak Bk

Ck Dk

]

.

Then, (18) is equivalent to the following inequality.

(d1) NT
B̄
(A+Bcl(I −Vi)H)Π−1NB̄

+NT
B̄

Π−1(A+Bcl(I −Vi)H)T NB̄ < 0,

(d2) NT
C̄

Π(A+Bcl(I −Vi)H)NC̄

+NT
C̄

(A+Bcl(I −Vi)H)T ΠNC̄ < 0, (19)

(d1) is equivalent to

NT
B̄
(AQ+QAT )NB̄ +WHQNB̄ +NT

B̄
QHTW T < 0. (20)

Apparently, for any two matrices X ,Y , the following

equality always holds

XY +Y T XT = (X +Y T )(X +Y T )T −XXT −Y TY. (21)

In addition, as is known to all that for any matrix V , there

always exists a matrix V0 such that the following inequality

holds

(V −V0)(V −V0)
T ≥ 0. (22)

Thus, there exist Q0 and H0 such that (15) is equivalent

to (20). On one hand, according to (22), if (20) holds, then

(15) holds. On the other hand, when Q0 = Q and H0 = H,

(20) holds if (15) holds. And the similar conclusion can be

drawn that (d2)⇔(14). Thus, the proof for (i) is complete.

Proof for (ii): (c1) is equivalent to
[

−1 0

0 −Q

]

+∆Λ+ΛT ∆T ≤ 0. (23)

The rest is similar to the proof of (i), and omitted here.

Now, the whole proof is complete.

By solving inequalities (a), (b2), (c2), we can solve

Problem 2. But the constraints (b2) and (c2) are not LMIs,

we can not solve them directly. To overcome this difficulty,

we will give the following algorithm.

Algorithm 1 Let ε > 0 be a given small constant speci-

fying a convergence criterion.

Step 1 For system (2) design a standard dynamic output

feedback controller Σk such that the system (5) is asymptotic

stable with saturation does not occur.

Step 2 Based on the given controller in Step 1 find a

feasible set (Q∗,H∗,γ∗) by solving the optimization problem

(12). Let γ̂ = γ∗ +η , where η > ε .

Step 3 Let γ̄ = η , γ̂ = γ∗. If γ̄ < ε, go to Step 11.

Step 4 Let k = 0, t = 0, τ = τ0, where τ0 is a

prescribed number, (Qk,H,Πk,γk) = (Q∗,H∗,Π∗,γ∗), sub-

stitute the obtained matrix variables (Qk,H,Πk,γk) into

(Γ0,H0,∆0,Λ0,γ).
Step 5 Solve the following LMI problem

min tr(ΠQk +QΠk)−2n

subject to (a),(b2),(c2)

and

[

Π I

I Q

]

≥ 0 (24)

Step 6 If there do not exist matrices Π, Q and H satisfying

(a), (b2) and (c2), let τ = 1
2
τ , γk = γ∗, γk = γk − 1

2t τ , go to

Step 5.

Step 7 Substitute the obtained matrix variables (Q,H) into

(a1), (b2) and (c). If condition (a1), (b2), (c) are satisfied,

let (Q∗,H∗,Π∗)=(Q,H,Q−1), (Q̃,Π̃)=(Qk,Πk), η = γ∗− γk,

γ∗ = γk, γk = γk − 1
2t τ , then go to Step 5.

Step 8 If k > N and t > T, where N and T are the

maximum numbers of iterations allowed, go to Step 3.

Step 9 If k > N, let k = 0, (Qk,Πk) = (Q̃,Π̃), t = t + 1,

γk = γ∗, go to Step 5.

Step 10 Let k = k + 1 and (Qk,Πk) = (Q,Π), go to Step

5.

Step 11 Substitute the obtained matrix variables (Π,H)
into (18), obtain the controller gain matrix K, exit.

Remark 2 The above iteration algorithm is modified from

Algorithm 1 in [28], which has been used in some previous

works [27]. The convergence of the algorithm has been well

investigated in [28]. By large number of examples, it is found

that this algorithm generally performs well.

VI. EXAMPLES

Example 1. Consider the system of the form (2) with

Ap =

[

0 1

1 0

]

, Bp =

[

0

5

]

, Cp =
[

1 0
]

,

and a given standard dynamic output feedback controller

with the gains described as

Ak = −30, Bk = −22, Ck = −20, Dk = −30.

Let R = I3×3, by solving the optimization problem (12), we

obtain γ∗ = 118.0139 and

Π∗ =





109.1588 −0.4927 29.8610

−0.4927 1.3420 −2.6067

29.8610 −2.6067 20.4395



 ,

H∗ =
[

−7.7212 −0.7368 −0.4017
]

.

Fig.1 shows the estimate of domain of attraction by

quadratic Lyapunov function (ellipsoid) and four planes

(h1x = ±1, Ccl1x = ±1). Obviously, the ellipsoid α∗XR ⊂
℘(H) and α∗XR 6⊂℘(Ccl).
Example 2. Consider the system described in Example 1, set

ε = 2, N = 5, T = 5, τ = 5, by Algorithm 1 with Π∗, H∗, γ∗

obtained in Example 1, we obtain γ∗1 = 56.9202 and

K =

[

−33.4815 −133.8522

−2.1163 −11.8956

]

,

H∗
1 =

[

−7.0427 −0.3701 −0.3873
]

,

Π∗
1 =





56.5258 −0.0227 5.4276

−0.0227 2.1547 −0.5192

5.4276 −0.5192 1.5738



 . (25)

Fig.2 shows the estimate of domain of attraction by

quadratic Lyapunov function (ellipsoids). Obviously, α∗XR ⊂
α∗

1 XR. From Figure 2, we can see the efficiency of our design

method.
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Fig. 2. Illustration of the condition for Example 1.

VII. CONCLUSIONS

In this paper, a dynamic output feedback controller de-

sign approach based on cone complementary linearisation

procedure has been proposed for linear time-invariant (LTI)

systems with actuator saturation. Firstly, the estimation of do-

main of attraction has been given. Then based on this result,

we have developed a controller design method to increase

stability region. Examples have been used to demonstrate

the effectiveness of these methods.
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