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Abstract— Continuous Petri nets (conPNs) are an approxi-
mation of (discrete) Petri nets (PNs) introduced to cope with
the state explosion problem typical of discrete event systems.
We consider a free-labeled Petri net model and assume that
certain transitions, including all that model faulty behaviors
are unobservable, i.e., they are labeled with the empty word.
We show how to design a marking observer that consists in
a linear algebraic characterization of the set of markings that
is consistent with a given observation. For some subclasses of
nets the results can be extended to the discrete case where
the computational complexity is much bigger than the one of
continuous systems.

I. INTRODUCTION

Reconstructing the state of a system from available mea-
surements is a fundamental issue in several applications.
State observation can be seen as a self-standing problem,
but also as a pre-requisite for solving problems of different
nature, such as stabilization, state-feedback control, diagno-
sis, filtering, and others.

This problem has been extensively investigated in time
driven systems. On the contrary, despite the attention payed
by several authors in the last years, there are relatively few
works addressing this topic in discrete and hybrid systems,
thus several related problems are still open.

In the case of discrete event systems modeled by PNs,
different approaches for observability have been recently
proposed. In [7] the problem was that of reconstructing the
initial marking (assumed only partially known) from the
observation of transition firings. In [9] this approach was
extended to the observation and control of timed nets. In
other works it was assumed that some of the transitions
of the net are not observable [4] or undistinguishable [6],
thus complicating the observation problem. Benasser [2] has
studied the possibility of defining the set of markings reached
firing a “partially specified” step of transitions using logical
formulas, without having to enumerate this set. Ramirez et al.

[17] have discussed the problem of estimating the marking
of a Petri net using a mix of transition firings and place
observations.

Recently, a particular hybrid model based on Petri nets has
received some attention. This model is called contPNs [1],
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[20]. It can be seen as a relaxation of Petri nets where the
constraints that markings and transitions firings are integer
is removed. While for timed case the problem has been
extensively studied for infinite server semantics [11], [15]
and exist some works also for finite server semantics [14],
in the untimed case the problem has been studied in [13] for
a particular class of backward conflict free nets.

In this paper we focus on the problem of designing a state
observer for general case of untimed contPNs. Thus the net
behavior is asynchronous and sequential as in discrete net
systems, and the only difference between the first and the
latter model is the relaxation of the integer constraint.

We assume that the net structure is known, as well as
the initial marking. The set of transitions is partitioned in
two sets: observable and unobservable transitions. After an
observable transition firing we observe its firing quantity,
which is the continuous counterpart of the number of firings
of each transition. Our goal is that of reconstructing the set
of markings consistent with the given observation (namely,
the set of markings in which the system may be given the
actual observation).

We first prove that, under certain assumptions on the un-
observable subnet, the set of consistent markings is convex.
An iterative algorithm is also given to compute it if the
net system is bounded. Some important remarks are made
allowing to simplify the computational complexity of the
algorithm, moving off-line the most burdensome part of the
procedure.

We also investigate when it is possible to use such results
when dealing with discrete PNs, namely if it is possible to
study the state observation problem via relaxation. We show
via simple numerical examples that this is in general not
possible unless the unobservable subnet is either a marked
graph or a state machine. This confirms what has already
been proved in [3], i.e., the requirement of enumerating the
set of consistent markings for general unobservable nets.

II. BACKGROUND ON UNTIMED CONTPNS

In this section we provide the basic background on un-
timed contPNs.

Definition 1: A contPN system is a pair 〈N , m0〉, where:

• N = 〈P, T, Pre, Post〉 is the net structure with two
disjoint sets of places P and transitions T ; pre and
post incidence functions Pre, Post : P × T → R≥0,
denote the weight of the arcs from places to transitions
(respectively, transitions to places);

• m0 : P → R≥0 is the initial marking. �

We denote as m = |P | and n = |T | the cardinality of the
set of places and transitions, respectively.
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The input and output set of a node x ∈ P ∪ T is denoted
by •x and x•, respectively. The token load of a place pi at
the marking m is denoted by m(pi) or simply by mi.

A transition tj ∈ T is enabled at a marking m iff ∀pi ∈
•tj , m(pi) ≥ 0 and the enabling degree of tj at m is:

enab(tj , m) = min
pi∈•tj

mi

Pre(pi, tj)
. (1)

When a transition tj is enabled at a marking m it can
be fired. The main difference with respect to discrete PNs is
that in the case of contPNs it can be fired in any real amount
α, with 0 ≤ α ≤ enab(tj, m) and it is not limited only to
a natural number. Such a firing yields to a new marking
m′ = m + α · C[·, tj ], where C = Post − Pre is the
token flow matrix (or incidence matrix). This firing is also
denoted m[tj(α)〉m′.

If a marking m is reachable from the initial marking
through a firing sequence σ = tr1(α1)tr2(α2) · · · trk(αk),
and we denote by σ : T → R≥0 the firing count vector,
then we can write m = m0 + C · σ, which is called the
fundamental equation or state equation.

The set of all fireable sequences in the net is L(N , m0),
while the set of all markings that are reachable with a finite
firing sequence is denoted by RSut(N , m0). An interesting
property of RSut(N , m0) is that it is a convex set [18].
That is, if two markings m1 and m2 are reachable, then
any marking m3 = α · m1 + (1 − α) · m2, ∀α ∈ [0, 1] is
also a reachable marking.

The net N is called consistent iff ∃x > 0 such that C ·x =
0. The support of a vector v is denoted by ||v|| and represents
the indices of its not null components.

A Petri net N = 〈P, T, Pre, Post〉 is a marked graph if
∀p ∈ P , |•p| = |p•| ≤ 1 and Pre(p, t), Post(p, t) ∈ {0, 1}
for any p ∈ P and any t ∈ T . It is a state machine if ∀t ∈ T ,
|•t| = |t•| ≤ 1 and Pre(p, t), Post(p, t) ∈ {0, 1} for any
p ∈ P and any t ∈ T .

Given a net N = 〈P, T, Pre, Post〉, and a subset T ′ ⊆ T

of its transitions, the T ′−induced subnet of N is the new
net N ′ = 〈P, T ′, Pre′, Post′〉 where Pre′, Post′ are the
restriction of Pre, Post to T ′. The net N ′ can be thought
as obtained from N removing all transitions in T \ T ′. We
also write N ′ ≺T ′ N .

Given a subset T ′ ⊆ T , the projection Π of a sequence
σ ∈ T ∗ over T ′ is defined as Π : T ∗ → T ′∗ such that:
(i) Π(ε) = ε, where ε denotes the empty word; (ii) for
all σ ∈ T ∗ and t ∈ T , Π(σt) = Π(σ)t if t ∈ T ′,
and Π(σt) = Π(σ) otherwise. Here T ∗ denotes the set of
all possible sequences obtainable combining elements in T ,
included the empty word.

Given a sequence σ ∈ L(N , M0), we denote w =
Πo(σ) the corresponding observed word, where Πo(σ) is the
projection of σ to To. In the following, with a little abuse of
notation, we will write that w ∈ T ∗

o .

III. PROBLEM STATEMENT

In this paper we propose a procedure to design an observer
for contPNs based on the following three assumptions.

(A1) The initial marking of the net is known.
(A2) The set of transitions is partitioned as T = To ∪ Tu

where To is the set of observable transitions and Tu is
the set of unobservable transitions.

(A3) The Tu-induced net has no spurious solution.

A spurious marking is a marking satisfying the state
equation but not reachable, i.e., there exists no firing se-
quence corresponding to the firing vector. Thus, the third
assumption implies that all markings m ∈ R

m
≥0 such that

m = m0 + C · σ, with σ ≥ 0, are reachable.
The following proposition provides two constructive cri-

teria to establish the validity of assumption (A3).
Proposition 2: Let 〈N , m0〉 be a contPN system. All

markings m ∈ R
m
≥0 : m = m0 + C · σ, with σ ≥ 0,

are reachable, i.e., N has no spurious solution, if one of the
following two conditions is satisfied:

• N is acyclic [16];
• N is consistent and all transitions are firable from m0

[18], or, equivalently, there exists no empty syphon at
m0.

Now, given an observed word w = tr1(α1)tr2(α2) . . .

trk(αk), our goal is that of characterizing the set of markings
in which the system may be given the actual observation w.
We denote this set C(w) and call it set of consistent markings

at w.
Definition 3: Let 〈N , m0〉 be a contPN system and w ∈

T ∗
o be a sequence of observable transitions. The set of

consistent markings at w is

C(w) = {m ∈ R
m
≥0 | ∃σ ∈ T ∗ : m0[σ〉m, Πo(σ) = w}.

(2)
�

IV. CHARACTERIZATION OF THE SET OF CONSISTENT

MARKINGS

The following proposition claims that C(w) is convex. This
is the key feature of our approach. In fact it enables us to
characterize C(w) in linear algebraic terms.

Proposition 4: Let us consider a contPN system 〈N , m0〉
and an observed sequence w.

Under assumptions (A1) to (A3), the set of consistent
markings C(w) is convex.

Proof: We prove this by induction.
(Basic step) For w = ε the result obviously holds. In

fact, C(ε) is the set of markings that can be reached from
m0 firing sequences σu ∈ T ∗

u , i.e., C(ε) coincides with
the reachability set of the Tu-induced subnet. Being the
reachability space of a contPN system convex [18], the set
C(ε) is convex as well.

(Inductive step.) Assume the result holds for an observa-
tion v. We prove that it also holds for w = vt(α).

We prove this in two steps. The first step (a) consists in
proving that the set of markings that are obtained from a
marking in C(v) constitute a convex set. The second step
(b) consists in proving that any marking in C(w) is obtained
from a marking in C(v).
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(a) Let us consider two markings that are consistent with
the observation w:

m′ = m′
0 + Cu · σ′

u + α · C(·, t),
m′′ = m′′

0 + Cu · σ′′
u + α · C(·, t),

where m′
0, m

′′
0 ∈ C(v). Let m̃ be the generic marking

obtained by a convex combination of m′ and m′′, i.e.,

m̃ = δ · m′ + β · m′′ = δ · m′
0 + β · m′′

0

+Cu · (δ · σ′
u + β · σ′′

u) + α · C(·, t)

with δ, β ∈ [0, 1] and δ + β = 1. Now, keeping into
account that in a contPN if a sequence σ is firable at
m, then γ ·σ is firable at γ ·m, for any γ ∈ R≥0, under
assumption (A3) we may conclude that m̃ ∈ C(w).

(b) Let m′ be an arbitrary marking in C(vt(α)). According
to equation (2), we can write:

m′ = m0 + C · σ + Cu · σu,

where m0 is the initial marking, σ ∈ T ∗, Πo(σ) =
vt(α) and σu ∈ T ∗

u .
Now, we can write σ as σ = σ′σ′′t(α), where
Πo(σ

′) = v and σ′′ ∈ T ∗
u . Thus,

m′ = m0+C ·σ′+Cu ·σ
′′+α·C(·, t)+Cu ·σu. (3)

However, by Definition 3,

m0 + C · σ′ + Cu · σ′′ = m ∈ C(v), (4)

where the inclusion relationship follows by assumption
(A3). Thus the statement holds being m′ = m + α ·
C(·, t) + Cu · σu. �

V. COMPUTATION OF THE SET OF CONSISTENT

MARKINGS

Clearly, if the net system 〈N , m0〉 is bounded, the set
C(w) is a closed convex set. In particular, we can characterize
it as the projection in the R

m-space of a polytope1 in the
R

m+nu space. It is well-known that a closed convex set
can be represented also by the convex hull of its finite
set of vertices. Let us denote by E(w) the set of vertices
of the polytope C(w). The following algorithm provides a
procedure to compute it.

Algorithm 5 (Computation of C(w)):

1) Let v = ε.
2) Let

C(v) = {m ∈ R
m
≥0 | m = m0 + Cuσu, σu ≥ 0}.

3) Let t(α) be a new observation and w = vt(α).
4) Let

C′(v) = {m ∈ R
m
≥0 | m ∈ C(v), m ≥ α ·Pre(·, t)}.

(5)
5) Compute the set of vertices E ′(v) of C′(v).
6) Let E = ∅.

1A bounded polyhedron P ⊂ R
n, P = {x ∈ R

n | Ax ≤ B} is
called a polytope.

7) For all ei = [mT
i ; σT

u,i] ∈ E ′(v):

a) compute the set of vertices Ei of the polytope
defined as







m = mi + Cu · σu + α · C(·, t)
m ≥ 0

σu ≥ 0;
(6)

b) let E = E ∪ Ei.

8) Let C̄(w) be the convex hull of E and C(w) the
projection of C̄(w) in the R

m space2.
9) Let v = w and goto Step 3. �

In simple words, Algorithm 5 computes first the set of
markings that are consistent with the observation of the
empty word (v = ε). Then, given an observation t(α), it
computes the set of markings C′(v) that are consistent with
the empty word and that also enable the firing of t for an
amount α. At this point, for each vertex of C′(v), namely
for each element of E ′(v), it computes the vertices of the
polytope obtained solving the system of inequalities (6). The
vertices obtained considering all mi’s in E ′(v) define the set
E. The projection in the R

m space of the convex hull of E

provides the set of consistent markings C(w). The algorithm
iterates when a new observation t(α) is detected.

Note that the boundness assumption is essential when
computing C(w) with Algorithm 5. In fact, if the net sys-
tem is unbounded, the set of consistent markings may be
unbounded as well, and the procedure should be modified to
accept directions, not only vertices.

Corollary 6: Let 〈N , m0〉 be a bounded contPN system.
Let assumptions (A1) to (A3) be satisfied and w be a given
observation.

The set C(w) computed using Algorithm 5 is the set of
markings consistent with w.

Proof: Let us preliminary observe that the set C′(v) is
convex for any v ∈ T ∗

o . In fact it is obtained by the set
C(v), that is convex by Proposition 4, simply removing all
markings m such that m < α · Pre(·, t) (see Step 4 of
Algorithm 5).

Now, since C(vt(α)) is computed from the vertices of
C′(v) ⊆ C(v) firing t(α) and a series of unobservable
transitions, it is obvious that to any interior point of C′(v)
we can associate at least one point in C(vt(α)).

Finally, we have to prove that any point of C(vt(α)) can be
obtained from C′(v), so when the convex hull is computed all

consistent markings are obtained. This can be proved using
exactly the same arguments we used in the proof of case (b)
of Proposition 4. �

A. A remark on the implementation of Algorithm 5

Let us make an important remark concerning the imple-
mentation of Algorithm 5. In particular, we want to show
how its computational complexity can be drastically reduced

2Note that we project the first m-entries of C̄(w) corresponding to the
marking, while the remaining nu entries correspond to the unobservable
firing vector.
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Fig. 1. The Petri net of Subsection V-B.

taking advantage from the structure of the constraints in
equation (6).

Step 7 of Algorithm 5 requires the enumeration of all the
vertices of the polytope defined by equation (6). As it is
well known such enumeration cannot be done in general,
in polynomial time [19]. However, we can avoid this taking
into account that each vertex can be identified by a different
basis. To show this, let us rewrite equation (6) as:















[

I −Cu

]

·

[

m

σu

]

= mi + α · C(·, t)

m ≥ 0

σu ≥ 0

(7)

Let B ∈ R
m×m be a full rank matrix obtained extract-

ing from
[

I −Cu

]

a number m of independent linear
columns. If we denote as b the right hand side term of
equation (7), namely b = mi + α · C(·, t), then xB =
B−1 · b is a basic solution of (6). Moreover, if xB ≥ 0,
the positiveness constrains are satisfied and xB is a basic

feasible solution of (6).
Now, let IB = {i1, i2, . . . , im} be the indices of the m

columns of matrix
[

I −Cu

]

generating B. We define
a vector y such that y(ij) = xB(j) if ij ∈ IB , and 0
otherwise. It is well known that, for bounded polyedra, y is
a basic feasible solutions iff it is an extreme point [19].

Since the matrix
[

I −Cu

]

is the same for all ei ∈
E ′(v) and for all v ∈ T ∗

o (obviously the unobservable subnet
is not changing) all its basis can be computed only once and
off-line.

Whenever a new observation is detected, we update the
value of b = mi+α·C(·, t), we compute the basis solutions
by simple matrix manipulation and evaluate their feasibility.
The set of basic feasible solutions coincides with the set of
extreme points [19].

The same reasoning applies for the computation of the set
of vertices of C′(v) (see equation (5)).

B. A numerical example

Let us consider the net system in Fig. 1.
By Step 2 of Algorithm 5, we know that the set of mark-

ings consistent with the empty word C(ε) can be defined:















[I − Cu] ·

[

m

σu

]

= m0

m ≥ 0

σu ≥ 0

(8)

where

Cu =









−1 −1 −1
1 0 0.7
0 1 0.7
0 0 −1









.

The number of basis of this system is equal to 26. Now,
if we denote as bi the generic i-th column of matrix B =
[I − Cu], some basis are B1 = [b1 b2 b3 b4]; B2 =
[b1 b2 b3 b7]; B3 = [b2 b3 b4 b5]; B4 = [b2 b3 b4 b6]; etc.
All basis and their inverse can be computed initially off-line.

Now, for clarity of presentation, we also compute the
extreme points of the set C(ε), thus we compute all products
of the form B−1

i ·m0 and only consider the positive vectors.
In this case we obtain the following basic solutions (extreme
points), respectively:

e1 = [2 0 0 2 0 0 0]T ,

e2 = [0 1.4 1.4 0 0 0 2]T ,

e3 = [0 2 0 2 2 0 0]T ,

e4 = [0 0 2 2 0 2 0]T .

This means that m1 = [2 0 0 2]T is the extreme marking
corresponding to σ1 = [0 0 0]T , i.e., the marking obtained
from the initial one firing no unobservable transition; m2 =
[0 1.4 1.4 0]T corresponds to σ2 = [0 0 2]T , i.e., firing
ε6(2), and so on.

Note that, when making the products B−1
i ·m0, the same

solution can be obtained more than once. As an example, in
this case 24 basis provide basic feasible solutions, but 20 of
them are duplications of the above four ones.

Thus, E(ε) = {e1, e2, e3, e4} and the convex hull of E(ε)
is the polytope

C̄(ε) =

{[

m

σu

]

∈ R
m+nu

≥0 | Aε ·

[

m

σu

]

≤ bε

}

where

Aε =

























2.33 2.33 1 0 0 0 0
−1 0 0 0 0 0 0
−1 −1 −1 0 0 0 0

2.33 1 2.33 0 0 0 0
−2.5 −2.5 −2.5 −1 0 0 0
−1.75 −0.75 −1.75 0 −1 0 0
−1.75 −1.75 −0.75 0 0 −1 0

2.5 2.5 2.5 0 0 0 −1

























,

bε =
[

4.67 0 −2 4.67 −7 −3.5 −3.5 5
]T

have been computed using cdd [5].
Now, assume that t1(0.7) is observed.
We first have to compute the set C′(ε) ⊆ C(ε), that

coincides with the set of markings that are consistent with
the empty word and enable the actual observation t1(0.7).
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To do this, we need to restrict C(ε) adding the constraint
m2 ≥ 0.7, i.e.,

C′(ε) = {m | m ∈ C(ε), m2 ≥ 0.7}.

Note that C′(ε) ⊆ C(ε) thus there can exist points that
belong to C(ε) but not to C′(ε). As an example, e2, e3 ∈ C(ε)
but e1, e4 6∈ C′(ε) since e1(p2), e4(p2) = 0 < 0.7.

Using the above characterization of C(ε) in terms of Aε

and bε, plus the constraint

[0 1 0 . . . 0] ·

[

m

σu

]

≥ 0.7,

we obtain E ′(ε) = {e1, e2, e3, e4, e5, e6} where

e1 = [ 1.3 0.7 0 2 0.7 0 0]T ,

e2 = [ 0 2 0 2 2 0 0]T ,

e3 = [ 0 0.7 1.3 2 0.7 1.3 0]T ,

e4 = [ 0 0.7 1.7 1 0 1 1]T ,

e5 = [ 1 0.7 0.7 1 0 0 1]T ,

e6 = [ 0 1.4 1.4 0 0 0 2]T .

Now, to each vertex ei =
[

mT
i ; σT

u,i

]

∈ E ′(ε) we
associate a polytope defined as







[I − Cu] ·

[

m

σu

]

= mT
i + 0.7 · C(·, t1)

m, σu ≥ 0
(9)

and compute its vertices Ei.
Note that the vertices of such polytopes can be computed

using the same basis we used to characterize C̄(ε), that have
been determined off-line.

The convex hull of E = ∪iEi provides the set C̄(t1(0.7))
defined by matrix At1(0.7) and vector bt1(0.7) where

At1(0.7) =









































2.33 1 2.33 0 1.33 0 0
6.58 6.58 7.58 0 0 −1 0
−1 0 0 0 0 0 0

1.39 4.25 3.25 0 −2.86 −1.86 −1
−1.43 0 0 0 −1.43 −1.43 −1.43
−2.5 −2.5 −2.5 0 0 0 1

0 −1.43 0 0 1.43 0 1
0 0 0 0 0 0 −1

2.33 2.33 1 0 0 1.33 0
0 0 0 0 −1 0 0
0 0 0 0 0 −1 0

−2.5 −2.5 −2.5 −1 0 0 0









































bt1(0.7) = [5.6 19.83 0 8.5 − 1 − 5 0 0 4.67 0 0 − 7]T.

VI. EXTENDING THESE RESULTS TO DISCRETE PNS

Some of us have studied marking estimation of discrete
PNs using the notions of basis marking and minimal expla-

nation (see in particular [3]).
Basis markings are those markings that are reached fir-

ing the observed sequences of transitions and the minimal
explanations, namely minimal sequences of unobservable

Fig. 2. The Petri net of Example 7, where ε2 and ε3 are not observable.

transitions that enable them. The set of basis markings is
a subset of the set of reachable markings, and in most of the
cases it is strictly contained in the set of reachable markings.
However, it still requires enumeration, thus making the
procedure computationally demanding in certain cases.

In this section we want to investigate under which con-
ditions the linear algebraic characterization we proposed in
Section V for untimed contPNs can also be useful for discrete
PNs. In particular, we wonder under which conditions on the
net structure the problem of marking estimation of a discrete
PN can be studied within the continuous framework, simply
relaxing the discrete net to a continuous one. The following
example shows that unfortunately this is not possible in
general cases for two main reasons.

(a) There can exist integer markings consistent with an
observation in the continuous net that are not consistent with
the same observation in the discrete net. An explanation of
this lies in the fact that in the continuous case we can fire a
transition in a real amount, while in the discrete case each
transition may only be fired in a discrete amount.

(b) The set of consistent markings of a discrete PN, in gen-
eral, is not an integer polytope so it cannot be characterized
by a set of linear inequalities.

Example 7: Let us consider the PN in Fig. 2.
If the net is assumed to be discrete (D), the set of markings

that are consistent with the empty word ε is

CD(ε) = {[3 3 0]T , [1 3 1]T , [3 1 1]T , [1 1 2]T }.

In fact, both ε2 and ε3 can fire at most once.
If the net is assumed to be continuous (C), the set

of markings that are consistent with ε coincides with the
polytope whose set of vertices is

EC(ε) = {[3 3 0]T , [0 3 1.5]T , [3 0 1.5]T , [0 0 3]T }.

Indeed in such a case both p1 and p2 can be emptied since
ε2 and ε3 can both fire in an amount 1.5.

The above issues (a) and (b) apply to this example.
(a) Marking m = [0 0 3]T ∈ CC(ε) but m 6∈ CD(ε)

even if it has integer entries. In particular, we may observe
that this marking is reachable in the continuous net firing
the sequence σ = ε2(1.5)ε3(1.5), namely firing transitions
ε2 and ε3 in non integer amounts.

(b) Let us consider markings m1 = [1 3 1]T and m2 =
[3 1 1]T , where m1, m2 ∈ CD(w). Marking

m = 0.5 · m1 + 0.5 · m2

= [.5 1.5 .5]T + [1.5 .5 .5]T = [2 2 1]T
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is integer and is a convex combination of them but m 6∈
CD(ε). This shows that the set of consistent markings of the
discrete net is not an integer polytope. �

The above example confirms that Proposition 4 cannot
be extended to discrete PNs with arbitrary structures, thus
enumerating the set of consistent markings is in general a
requirement, as already discussed in [3].

However, there exist particular classes of PNs to which
Proposition 4 applies. In particular, as shown in the follow-
ing, this is true if the unobservable subnet is a marked graph

or a state machine.
The following definition and propositions are necessary to

prove the main result of this section.
Definition 8: A matrix A is totally unimodular if each of

its minors is equal to −1, 0 or 1. �

Proposition 9: [10] A matrix A ∈ R
m×n is totally

unimodular iff the set S = {x ∈ R
n | A ·x ≤ b, x ≥ 0} is

an integer polytope ∀ b ∈ Z
m, i.e., iff all vertices of S are

integers ∀ b ∈ Z
m.

Proposition 10: [10] A matrix A ∈ R
m×n satisfying the

following conditions is totally unimodular.
• Every column of A contains at most two non-zero

entries.
• All entries of A are in {−1, 0, +1}.
• The columns of A can be partitioned in two sets B and

C that satisfy the following two conditions.
– If two non-zero entries in a column of A have the

same sign, then the row of one of them is in B,
and the other one is in C.

– If two non-zero entries in a column of A have
opposite sign, then the rows of both of them are
either in B or in C.

The above proposition enables us to prove:
Corollary 11: Let 〈N , m0〉 be a bounded discrete PN

system satisfying assumptions (A1) to (A3). Assume that the
unobservable subnet is a state machine or a marked graph.

The set C(w) of markings consistent with any observation
w ∈ T ∗

o is an integer convex polytope and can be computed
using Algorithm 5 by relaxation (namely relaxing the discrete
net to a continuous net, and then only considering integer
solutions).

Proof: Let us first consider the case of an unobservable
subnet that is a state machine. In such a case the j-th
column of Cu contains at most one element equal to 1
(corresponding to the output place of tj) and at most one
element equal to −1 (corresponding to the input place of
tj). Thus, by Proposition 10, the matrix [I −Cu] is totally
unimodular. Moreover, by Proposition 9 the vertices of all the
sets defined by equation (6) are integers for any observation
w = tr1

(α1)tr2
(α2) . . . trk

(αk) being α1, . . . , αk integers.
Finally, any other integer point inside the convex hull of

such vertices is a consistent marking as well. In fact, the
unobservable subnet is a state machine thus the firing of any
unobservable transition keeps the marking integer whenever
it is fired in an integer amount.

Exactly the same reasoning applies if the unobservable
subnet is a marked graph: in such a case the transpose of

the incidence matrix of the unobservable subnet satisfies
Proposition 10, i.e., it is a totally unimodular matrix. �

VII. CONCLUSIONS

In this paper we dealt with the problem of designing a
marking observer for untimed contPNs. We first shown that
the set of markings consistent with a given observation is a
convex set; later, an algorithm to compute it is given. For
some subclasses of nets, it is proved that the results here can
be used for the design of observers in the discrete case (it
reduces the computation complexity in this case drastically).
The problem of characterizing how the number of vertices
of the polytope changes with the observed word will be
addressed in a future work.
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