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Abstract— An adaptive on-line scheme is designed to identify
the uncertain and time-varying resonance modes in hard
disk drive servo systems. Based on the identified results, the
uncertain resonance mode is extracted and a peak filter is de-
signed accordingly to provide stronger capability of disturbance
suppression. The scheme does not require any extra excitation
signal nor additional signal processing for the parameter
identification. Compared to conventional method, the rates
of learning and error convergence are greatly increased. The
scheme can provide good stability margin at high frequency
subject to the variation of the resonance frequency and the peak

gain. Simulation results show the validity and effectiveness of
the proposed scheme.

Index Terms— Disturbance rejection, adaptive control, peak
filter, hard disk drive.

I. INTRODUCTION

In hard disk drives (HDDs) technology, the last decade has

seen the rapid growth rate of 100% per year in the recording

density [1]. The effort is still continuing to push the recording

density to beyond 1Tb/in2. This gives the servo designers

a great challenge to stretch out the servo performance by

precisely positioning the read/write head on ever narrower

tracks.

Various sources which contribute to the positioning accu-

racy include vibrations caused by mechanical resonance, as

well as input and output disturbances. The mechanical reso-

nances, if not being handled properly, will not only worsen

the positioning accuracy, but will also lead the closed-loop

system into instability. However, the resonances may shift

due to the environmental variation especially the temperature

changes, the manufacturing/assembly process and material

properties [2]. In addition, some resonance modes will be

excited by various disturbances especially those output dis-

turbances at high frequencies such as flow-induced vibration

(FIV) [3], contact-induced vibration (CIV) [4], etc. Due to

the highly uncertain and time-varying manner of these kind

of disturbances, the characteristics of the resonance modes

being excited will be fast-changing in terms of their peak

values and phase. Notch filters have worked very well to

suppress the mechanical modes and guarantee the closed-

loop stability. Adaptive notch filters have been developed
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to capture and tolerate shift in resonance frequency [5][6].

However, the servo loop using the notch filters to handle

these resonance mode will not have gain attenuation in the

sensitivity function at these resonance modes and thus cannot

suppress the vibrations caused by the disturbances at these

resonance modes.

To achieve higher TPI (track-per-inch) in HDDs, vari-

ous loop-shaping methods, such as phase stabilized design

[7][8], which support lower sensitivity transfer function gain

at frequencies with more vibration, have been developed.

Motivated by these works, we propose a novel adaptive

disturbance rejection scheme which can identify the uncer-

tain and time-varying resonance modes on-line, and provide

better disturbance rejection at these modes. The scheme does

not require any extra excitation signal nor additional signal

processing for the parameter identification except for choos-

ing appropriately the initial identification conditions based

on some known information on the uncertain dynamics. It

is a simple yet practical method, which is easy for real-

time implementation. Compared to conventional methods,

the rates of learning and error convergence are greatly

increased. Therefore, it can accommodate the fast-changing

uncertainties. A peak filter is then designed according to the

identified results to provide better disturbance rejection at

these uncertain frequencies.

II. PROBLEM FORMULATION

In this section, we present the main idea of the adaptive

disturbance rejection scheme proposed in this paper.

The block diagram of the servo control systems for the

scheme is shown in Fig. 1, where C(z) is the nominal

controller which guarantees the stability for the nominal

closed-loop, N̂(z) is used to identify the uncertain dynamics,

Cpf (z) is the peak filter used to provide disturbance rejec-

tion, Pn(z) and Pu(z) denote the nominal plant dynamics

and uncertain plant dynamics respectively, do(k) and n(k)
are used to represent the output disturbance and measurement

noise respectively, assuming the input disturbance can be

converted into output disturbance, r(k) is the reference signal

and r(k)=0 for track-following mode.

The objective of designing N̂(z) is to let the measured

position error signal (PES) ym(k) follow the nominal output

y∗(k) as closely as possible. The parameters of N̂(z) are

tuned on-line using the approximation error e(k) = ym(k)−
y∗(k) under an adaptive law. By doing so, the uncertain

resonance modes can be identified, and as soon as the

identification is settled down, a peak filter Cpf (z) will be

designed to replace N̂(z) according to the identified results
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to provide better disturbance rejection at these uncertain

modes. Note that both N̂(z) and Cpf (z) are augmented in

an “add-on” fashion so that the performance of the nominal

controller is well-preserved [8] and both of them can be

easily enabled or disabled to accommodate the fast-changing

uncertainties.
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Fig. 1. Block diagram of adaptive resonance rejection scheme.

The mechanical structure of the voice-coil-motor (VCM)

model is usually represented by a second order system

dominant at a low frequency along with some resonance

modes at high frequencies as

Pmech(s) = Kp

Nr
∑

i=1

ki

s2 + 2ζiωis + ω2
i

(1)

where Nr, ki, ζi, ωi are the number of resonance mode,

the residue of the resonance mode, the damping ratio and

natural frequency of the resonance mode respectively, and

Kp is the plant gain. The input time delay or dead time e−sTd

is usually modeled by the first-order Pade approximation as

e−Tds≈ 2−Tds
2+Tds

. Thus, the full model of the VCM actuator is

Pf (s) = Kp(
2 − Tds

2 + Tds
)

Nr
∑

i=1

ki

s2 + 2ζiωis + ω2
i

(2)

In HDD head positioning servomechanism, the PES signal

is sampled into a discrete signal before passing to the digital

microprocessor to compute the control signal, which is then

converted to a continuous signal by the D/A converter and

the hold, and then supplies to the VCM actuator. For a plant

Pf (s) preceded by a zero-order-holder (ZOH), its discrete

transfer function is [9]

Pf (z) = (1 − z−1)Z

[

L−1

(

Pf (s)

s

)]

(3)

Therefore, the overall system can be treated as a discrete-

time system and it is preferable to perform the design in the

discrete-time domain.

Since the plant is modeled in the summation of the transfer

functions for each resonance modes, the discrete transfer

function can be obtained by taking Z-transform for each

resonance modes and then summing them together. For

simple illustration, the discrete transfer function for single

resonance mode is given here. Define

Pi(s) = Kp

(2 − Tds)

(2 + Tds)

ki

(s2 + 2ζiωis + ω2
i )

(4)

The discrete transfer function of Pi(s) is can then be obtained

in the form as

Pi(z) =
bi1z

−1 + bi2z
−2 + bi3z

−3

1 + ai1z−1 + ai2z−2 + ai3z−3
(5)

Accordingly, the parameters in eq. (5) can be calculated as

ai1 = −e
−

2

Td
Ts − 2e−ζiωiTs cos(ωi

√

1 − ζ2
i Ts)

ai2 = e−2ζiωiTs + 2e
−

2

Td
Ts−ζiωiTs cos(ωi

√

1 − ζ2
i Ts)

ai3 = −e
−

2

Td
Ts−ζiωiTs

Define α1=e−ζiωiTs , α2=cos(ωi

√

1 − ζ2
i Ts), which can be

computed by α1=−ai3/e
−

2

Td
Ts , α2=−(ai1+e

−
2

Td
Ts)/2α1.

The damping ratio and natural frequency are ready to be

obtained by

ζi = 1/

√

[
arccos(α2)

ln(α1)
]2 + 1 (6)

ωi = −
ln(α1)

ζiTs

(7)

The on-line identifier N̂(z) is activated when the nominal

controller fails to maintain required tracking accuracy. On

the other hand, as soon as the approximation error enters into

the dead-zone and stay within it thereafter, the identification

loop will be de-activated while the uncertain resonance mode

is ready to be extracted according to the relationship given

by (6) and (7). The identification loop is then replaced by a

linear peak filter which takes the form

Cpf (z)=
(z − 1)(αz + β)

z2−2e−ζ0ω0Ts cos(ω0

√

1 − ζ2
0Ts)z+e−2ζ0ω0Ts

(8)

where 0 ≤ ζ0 ≤ 0.707 is the damping ratio and ω0 is

the natural frequency of the peak filter, one zero at 1 is to

minimize the unwanted distortion in the loop shape outside

the disturbance frequency, the other zero determined by α
and β is to guarantee the closed-loop stability.

III. ADAPTIVE IDENTIFICATION OF UNCERTAIN

RESONANCE

Assume that one single resonance mode is subject to

variation. The discrete transfer function (3) can be expressed

in ascending powers of z−1 as

Pf (z−1) = Pn(z−1) + Pu(z−1)

=
z−d(b1 + b2z

−1 + · · · + bm+1z
−m)

1 + a1z−1 + · · · + anz−n

where d=n−m≥0 denotes the relative degree, Pn(z−1) and

Pu(z−1) denote the known plant dynamics and uncertain

dynamics respectively.

As shown in Fig. 1, C(z) is the nominal controller

and N̂(z) is used to identify the uncertain resonance

mode adaptively [10]. Consider the track-following mode

when r(k)=0. Let Pf (z−1)=
Nf (z−1)
Df (z−1) , Pn(z−1)=Nn(z−1)

Dn(z−1) ,
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Pu(z−1)=Nu(z−1)
Du(z−1) . The approximation error can be ex-

pressed as

e(k) = [Pn(z−1) + Pu(z−1)]un(k) + Pu(z−1)uc(k) + d(k)

=
[Nn(z−1)Du(z−1) + Nu(z−1)Dn(z−1)]un(k)

Dn(z−1)Du(z−1)

+
Nu(z−1)Dn(z−1)uc(k)

Dn(z−1)Du(z−1)
+ d(k) (9)

where d(k) = do(k) + n(k) is the combined disturbance.

Define

A(z−1) = DnDu = Df(z−1) = 1 + a1z
−1 + ... + anz−n

z−dB(z−1) = NnDu + NuDn = Nf (z−1)

= z−d(b1 + b2z
−1 + ... + bm+1z

−m)

z−d1C(z−1) = NuDn = z−d1(c1 + c2z
−1 + ... + cl+1z

−l)

Then eq. (9) can be re-written as

A(z−1)e(k) = z−dB(z−1)un(k) + z−d1C(z−1)uc(k)

+ A(z−1)d(k) (10)

In this paper, we only consider the case when d=1 and d1=1
to avoid the causality problem. Note that the condition d=1
and d1=1 is common in discrete-time VCM models which

are usually converted from the continuous models such as

eq. (1) or eq. (2) using “ZOH” method. The results can be

easily extended to d≥2, and d≤d1 can be guaranteed to avoid

causality constraints under mild assumption [10]. Under the

condition d=1 and d1=1, it is ready to know that l=n−d1.

For identification purpose, re-write eq. (10) in the linear

regression form (ARX-model, [11]) as

e(k) = b1

[

un(k − d) − θ∗
T

ψ(k − d)
]

+ A(z−1)d(k)

where ψ(k) is the regression vector and θ∗ is the unknown

parameter vector defined respectively by

ψ(k) = [e(k), ..., e(k − n + 1), un(k − 1), ..., un(k − m),

uc(k + d − d1), ..., uc(k + d − d1 − l)]T

θ∗ = [
a1

b1
, ...,

an

b1
,−

b2

b1
, ...,−

bm+1

b1
,−

c1

b1
, ...,−

cl+1

b1
]T

Consider the adaptive control law

un(k − d) = θ̂T (k − 1)ψ(k − d)

with the adaptive parameter tuning low using the Normalized

Least Mean Square (NLMS) algorithm [11] as

θ̂(k) = θ̂(k − 1) +
sgn(b1)Γψ(k − d)e(k)

1 + βψT (k − d)ψ(k − d)
(11)

where Γ is a positive definite matrix determining the updating

rate and β > 0 is the normalizing constant.

Remark 1: Ideally the approximation error will converge

to zero. Therefore, the control un(k) becomes

un(k) = −
b2

b1
un(k − 1) − · · · −

bm+1

b1
un(k − m)

−
c1

b1
uc(k + d − d1) − · · · −

cl+1

b1
uc(k + d − d1 − l)

Note here d=d1=1 and l=n−d1, the discrete transfer func-

tion N(z−1) can be obtained by

N(z−1) = −
c1 + c2z

−1 + · · · + cnz−(n−1)

b1 + b2z−1 + · · · + bnz−(n−1)
(12)

which shows that N(z) is realizable. For other possibilities

of d and d1, similar conclusion can be obtained.

In (11), the error between the measured PES and the

estimated PES is used to determine the direction of parameter

adaptation. However, the error e(k) is always contaminated

by the output disturbance, measurement noise, modeling

errors, etc. Therefore, a series of robust modification is

needed for the parameter identification algorithm. In fact,

the functional approximation error defined by

ǫ(k)
△
= θ̂T (k − 1)ψ(k − d) − θ∗

T

ψ(k − d) (13)

contributes partially to the error e(k). Since ǫ(k) is supposed

to drop down along the adaptation, its contribution to e(k)
will become less. When ǫ(k) drops down to certain level

while at the same time the effect from various disturbances

become dominant in e(k), certain scheme need to be carried

out to stop the adaptation. A dead zone augmented to the

adaptation law can be one of the solutions. However, the

size of ǫ(k) is usually unknown, the specified region to stop

the adaptation should be carefully chosen to avoid instability.

The dead-zone modification is then given by

θ̂(k) = θ̂(k − 1) +
µ(k)sgn(b1)Γψ(k − d)e(k)

1 + βψT (k − d)ψ(k − d)
(14)

where

µ(k) =

{

1, if |e(k)| ≥ δ
0, otherwise

with δ > 0 being the threshold of the dead-zone.

The stability proof for the above scheme with dead-zone

modification can be found in [10].

IV. SIMULATION STUDY

Consider a VCM actuator whose measured frequency

response is plotted in Fig. 2 (solid line) and was modeled

according to eq. (2) (dashed line). The parameters of the full

model are: Kp=1.7686e6, Td=1.0e−5, and the parameters

for each resonance mode are given in Table I.

TABLE I

IDENTIFIED RESONANCE MODES

ζi ωi ki

0.4 2π50 1

0.02 2π8400 -1

0.015 2π15300 -1

0.01 2π18500 -1

In the simulation study, the servo sector number is 330,

the spindle rotational speed is 7200 RPM, and therefore the

sampling frequency is 330·(7200/60)≈40kHz. The VCM

actuator is subject to the input and output disturbances and
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Fig. 2. Frequency response of VCM actuator.

measurement noise, which are obtained from a commercial

drive [12].

The nominal controller is a PID control given by

C(z) =
55.5247(z − 0.9844)(z − 0.9844)

(z − 1)(z − 0.6242)

A. Ideal case

Assume the resonance mode subject to variation is at

8.4kHz. For simplicity and illustration purpose only, we as-

sume that the known resonance modes are well-compensated

so that the nominal plant is a second order systems with

the first rigid mode. Therefore, the system order n = 4,

m = 3, the relative degree d = d1 = 1. There are totally 11
unknown parameters to be identified. Different from [10],

we assume that there is no external excitation such as the

sinusoidal disturbance at single frequency except for white

noise which is usually introduced for broadband excitation

in adaptive control applications [13], and other input/output

disturbances.

We first assume that the functional approximation error

defined in (13) is available and can be used in the parameter

adaptation. The initial conditions for adaptation are chosen

as: θ̂(0) = 0, ψ(0) = 0. The adaptation gain matrix is Γ =
7.9996e11 ·I and the normalizing constant β = 1. The initial

states of the full model plant Pf (z), the known plant Pn(z),
the nominal controller C(z), and the on-line identifier N̂(z)
are all set to be zero. The reference signal is r(k) = 0.0 for

track-following mode. Note that there will be no dead-zone

for this ideal case. It is simulated when the resonance mode is

subject to −10% variation, i.e., f2 = 7.56kHz (−10%). The

total simulation time is 600 revolutions, i.e., 4.95 seconds.

Fig. 3 shows the evolution of the parameter estimates for

f2 = 7.56kHz (−10%). The functional approximation error

ǫ(k) during the adaptation are shown in Fig. 4. It can be

seen that the parameter estimates converge at around 1.8
seconds and the functional approximation error ǫ(k) reaches

its steady-state even earlier at around 1 second.
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Fig. 4. Functional approximation error ǫ(k).

B. Practical case

However, the functional approximation error defined in

(13) normally is not available. The only available signal

in HDDs is the measured PES, which is always corrupted

by various kind of disturbances/noise. Instead of the ideal

functional approximation error (13), the error between the

measured PES and the estimated PES (computed through

the user-defined nominal plant) has to be used to determine

the direction of parameter adaptation in practical application.

However, the contribution from the parameter variation to the

error signal would be hidden by various disturbances/noise.

In other words, the error used for adaptation is dominated

by various disturbances/noise rather than the functional ap-

proximation error. Therefore, it will make the identification

extremely difficult. Additional signal processing by, for ex-

ample, some band-pass filters is one of the solutions. But

it will add extra computation burden to the microprocessor.

In this paper, we adopt a practical method by setting the

initial conditions of the on-line identifier to some nominal

values rather than zero. The initial conditions are set in a way

such that the functional approximation error is dominant in

the overall PES signal rather than being hidden by various
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disturbances/noise. The only effort to take is merely pre-

storing some data and re-placement of the initial conditions.

By doing so, the learning time is dramatically shortened

while good identification performance is achieved. Therefore,

it is a practical and easy for implementation.

The plant is the same as the one used for the ideal

case, i.e., plant model n = 4, m = 3, and there are

totally 11 unknown parameters to be identified. The plant

is subject to the same input disturbance, output disturbance

and sensor noise. The adaptation gain matrix is chosen as

Γ = 8.4e8·I and the normalizing constant β=1. The initial

regressor vector ψ(0) = 0. Fig. 5 and Fig. 6 plot the results

when the nominal frequency subject to −10% variation, i.e.,

f2=7.56kHz and ζ2=0.006.
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Fig. 5. Evolution of the parameter estimates.
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Fig. 6. Approximation error e(k) and combined disturbances d(k)

As can be seen from Fig. 5, the parameter estimates

converge at about 30 milli-seconds, which equivalent to

around 4 revolutions. Compared to the ideal case, the learn-

ing/converging time is dramatically reduced. In addition, Fig.

6 shows that initially the approximation error drops down

along the adaptation but stops dropping down further from

around 30 milli-seconds onwards and stays in the steady-

state at the same level as that of the combined disturbances.

Therefore, the knowledge of the disturbance could be a

reasonable guideline to determine the size of the dead zone.

C. Peak filter design

According to the identification results, the unknown res-

onance mode is ready to be extracted according to the

relationship (6) and (7). Let us use the example when the

nominal resonance frequency subject to −10% variation,

i.e., f2=7.56kHz. According to the identification results, the

estimated resonance mode is centered at 7574Hz. As soon as

the approximation error enters into the dead-zone and stays

within it thereafter, at about 30 milli-seconds for this case,

the identification loop can be cut off and replaced by a linear

peak filter given by (8). Therefore, the natural frequency

in (8) can be set as ω0=2π7574. The choice of α and β
will affect the stability as well as the resulting sensitivity

function. According to the identification results, the peak

filter is designed as

Cpf (z) =
−0.21354(z − 1)(z − 0.2484)

(z2 − 0.6142z + 0.9875)

The frequency responses of the open-loop system with the

nominal control and the nominal control plus the add-on peak

filter based on the identified resonance mode are plotted in

Fig. 7, as well as the vector loci of the open-loop systems

plotted in 8. The open-loop system achieves the crossover

frequency fc=1.07kHz, phase margin 45deg (red dot in Fig.

7), gain margin 11.35dB at 6.09kHz (red dot in Fig. 7).

In addition, the second phase margin [14], [7] is 67deg

at 7.3kHz, which provides a good stability margin to the

variation of the resonance frequency and the peak of the

gain. The phase at each resonance mode frequency is kept

within a stable region of ±90 deg (black dot in Fig. 7).

To illustrate the effectiveness of the adaptive design, we

compare the sensitivity functions in Fig. 9, in which the

black dashed curve shows the nominal design, the blue

dashed curve shows the peak filter design without adaptation,

and the red solid curve shows the peak filter design based

on adaptive identification. It can be seen the peak filter

design based on adaptive identification achieve the best

performance, providing the best disturbance rejection 8dB

gain attenuation at the resonance frequency without obvious

distortion or sharp peak at other frequencies. The linear

spectrum of PES is plotted in Fig. 10, which also shows

the disturbance rejection of the designed peak filter.

V. CONCLUSION

An adaptive on-line scheme has been designed to identify

the uncertain and varying resonance modes in HDD systems.

The scheme did not require any extra excitation signal nor

additional signal processing for the parameter identification.

Compared to conventional method, the learning time has

been greatly shortened as well as the converging time of

the estimation error. Based on the identified results, the

uncertain resonance mode can be extracted and a peak filter

has been designed accordingly. The scheme has provided

good stability margin at high frequency to the variation of
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the resonance frequency and the peak gain. Simulation results

have shown the validity and effectiveness of the proposed

scheme.
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