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Abstract— In the conventional supervisory control frame-
work for discrete event systems with partial event observation,
it is assumed that, for each event, the corresponding output
symbol is determined deterministically. However, this assump-
tion does not hold in discrete event systems such as a system
with sensor errors and a mobile system, where an output symbol
depends on not only an event but also a state at which the event
occurs. In this paper, we model such a discrete event system by a
Mealy automaton with a nondeterministic output function. We
consider two kinds of supervisors: one assigns its control action
based on a permissive policy and the other based on an anti-

permissive one. We present necessary and sufficient conditions
for each of them to achieve a given specification. We then
present algorithms for verifying these conditions. Moreover, we
discuss the relationship between the two supervisors in the case
that an output function is deterministic.

I. INTRODUCTION

The supervisory control framework for discrete event

systems (DESs) with partial event observation was proposed

in [1], [2]. In this conventional framework, partial event

observation is represented by the projection function from the

event set to the observable event set [1] or the mask function

from the set of events to the set of output symbols [2]. It

was shown in [1], [2] that there exists a partial observation

supervisor that achieves a given specification language if

and only if the language is controllable [3] and observable

[1], [2]. There are many studies dealing with supervisory

control of DESs with partial event observation [4], [5], [6],

[7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17]. In

state feedback control of DESs, it is assumed that partial

information of the current state is available for deciding the

control action [18], [19], [20]. Partial state observation is

represented by the mask function from the state space to the

observation space. Further, supervisory control using partial

event and state observations was studied [21]. In all existing

work mentioned above, the observed output is determined

deterministically based on an event and/or a state.

Recently, a sensor failure tolerant supervisory control

problem has been addressed [22]. In this problem, it is

assumed that an observable event becomes unobservable after

failure of the corresponding sensor. That is, an observed

symbol depends on the state of the corresponding sensor.

In a mobile system, an output symbol corresponding to an
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event may depend on the state at which the event occurs, and

may not be determined uniquely due to packet loss. State-

dependence and nondeterminism of partial event observation

are represented by introducing a nondeterministic output

function that maps a pair of an event and a state into a

set of possible output symbols. Motivated by this, we study

supervisory control of DESs modeled by Mealy automata

[23] with nondeterministic output functions.

We consider two kinds of supervisors: one assigns its

control action based on a permissive policy [24] and the

other based on an anti-permissive one [24]. The former is

called the permissive supervisor, and the latter is called the

anti-permissive supervisor. In the conventional supervisory

control framework [1], [2], a given specification language

is achieved by the permissive supervisor if and only if it is

achieved by the anti-permissive one. We show that, however,

there exists a language that can be achieved only by the

anti-permissive supervisor under a nondeterministic output

function. We introduce notions of P-observability and A-

observability to characterize classes of languages achiev-

able by the permissive supervisor and the anti-permissive

one, respectively. We provide effective tests to verify P-

observability and A-observability of a given language.

Moreover, we discuss the existence of a supervisor that

achieves a given specification language. We show that A-

observability is weaker than P-observability, and that con-

trollability and A-observability are only sufficient for the ex-

istence of a supervisor. That is, there may exist a supervisor

that cannot be synthesized by using the permissive nor anti-

permissive policy. We then prove that in a special case that

an output function is deterministic, these sufficient conditions

become necessary and sufficient, and P-observability and A-

observability are equivalent.

In this paper, a notation |A| represents the cardinality of

a set A. A∗ denotes the set of all finite strings of elements

of A, including the empty string ε . For a language K ⊆ A∗

over a set A, the set of all prefixes of strings in K is denoted

by K. K is said to be (prefix-)closed if K = K. For a finite

string s ∈ A∗, we write s := {s}. Also, |s| denotes the

length of s.

II. DISCRETE EVENT SYSTEM MODEL

In this paper, we consider a DES modeled by a Mealy

automaton [23] with a nondeterministic output function:

G = (Q, Σ, ∆, f, λ, q0),

where Q is the set of states, Σ is the finite set of events, ∆
is the set of output symbols, f : Q × Σ → Q is the partial
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state transition function, λ : Q× (Σ∪ {ε}) → 2∆∪{ε} is the

nondeterministic output function, and q0 ∈ Q is the initial

state. When an event σ ∈ Σ occurs at a state q ∈ Q, an output

symbol in λ(q, σ) ∈ 2∆∪{ε} is observed nondeterministically

by a supervisor. If ε ∈ λ(q, σ), no output symbol may be

observed when σ ∈ Σ occurs at q ∈ Q. For each q ∈ Q, we

let λ(q, ε) = {ε}. By introducing the nondeterministic output

function λ, both state-dependence and nondeterminism of

partial event observation are represented. The state transition

function f : Q × Σ → Q is extended to f : Q × Σ∗ → Q
in a natural way. The notation f(q, s)! means that f(q, s) is

defined for q ∈ Q and s ∈ Σ∗. Also, ¬f(q, s)! denotes the

negation of f(q, s)!. The generated language L(G) of G is

defined by L(G) = {s ∈ Σ∗ | f(q0, s)!}.

Due to the nondeterminism of the output function, the

output string is not uniquely determined. For each s ∈ L(G),
a set O(s) of possible output strings is defined inductively

as follows:

• O(ε) = {ε},

• (∀sσ ∈ L(G) (σ ∈ Σ))

O(sσ) = {τδ ∈ ∆∗ | τ ∈ O(s), δ ∈ λ(f(q0, s), σ)}.

For a language K ⊆ L(G), the set of all possible output

strings is denoted by O(K), that is,

O(K) =
⋃

s∈K

O(s) ⊆ ∆∗.

Also, for each output string τ ∈ O(L(G)), the set O−1(τ) ⊆
L(G) is defined by

O−1(τ) = {s ∈ L(G) | τ ∈ O(s)}.

That is, O−1(τ) is the set of event strings for which τ can

be observed as an output string.

In the conventional framework of supervisory control un-

der partial event observation, for each event, the correspond-

ing output symbol is determined deterministically [1], [2].

This deterministic event observation is modeled by the mask

function M : Σ → ∆ ∪ {ε} such that λ(q, σ) = {M (σ)}.

So our framework using the nondeterministic output function

generalizes the conventional one.

A pair (σ, δ) ∈ Σ × (∆ ∪ {ε}) of an event σ ∈ Σ and an

output symbol δ ∈ ∆∪{ε} is called an extended event. The

empty extended event string is denoted by ε̂ = (ε, ε). Let t =
a1a2 . . . an ∈ (Σ× (∆∪{ε}))∗ be an extended event string,

where each ai is of the form ai = (σi, δi) ∈ Σ× (∆∪{ε}).
We define two projection functions PΣ : (Σ×(∆∪{ε}))∗ →
Σ∗ and P∆ : (Σ × (∆ ∪ {ε}))∗ → (∆ ∪ {ε})∗ by

PΣ(t) = σ1σ2 . . . σn,

P∆(t) = δ1δ2 . . . δn.

For each event string s = σ1σ2 . . . σn ∈ L(G), an extended

event string t = a1a2 . . . an ∈ (Σ × (∆ ∪ {ε}))∗ is said to

be compatible if the following three conditions hold:

• PΣ(t) = s,

• P∆(a1) ∈ λ(q0, σ1), and

• P∆(ai) ∈ λ(f(q0, σ1σ2 . . . σi−1), σi) (i = 2, 3, . . . , n).

Denoted by Π(s) is the set of all compatible extended event

strings for s. For each compatible extended event string t ∈
Π(s), P∆(t) is an output string that is possibly observed

when s is executed. Note that Π(ε) = {ε̂} for the empty

event string ε ∈ L(G). We define the set Le(G) ⊆ (Σ ×
(∆ ∪ {ε}))∗ of all compatible extended event strings of G
as

Le(G) =
⋃

s∈L(G)

Π(s).

III. SUPERVISORY CONTROL

A. Problem Formulation

The event set Σ is partitioned into the controllable event

set Σc and the uncontrollable event set Σu, that is, Σ =
Σc∪̇Σu [3]. Formally, a supervisor is defined as a function

S : O(L(G)) → 2Σc . For each possible output string τ ∈
O(L(G)), S(τ) is the set of controllable events which are

disabled by S after observing τ . Let S/G be the closed-loop

system controlled by the supervisor S. The set Le(S/G) ⊆
Le(G) of all compatible extended event strings of S/G is

defined inductively as follows:

• ε̂ ∈ Le(S/G),
• (∀t ∈ Le(S/G), a ∈ Σ × (∆ ∪ {ε}))

ta ∈ Le(S/G) ⇔ ta ∈ Le(G) ∧ PΣ(a) 	∈ S(P∆(t)).

Also, the generated language L(S/G) of the closed-loop

system S/G is defined by

L(S/G) = {s ∈ Σ∗ | ∃t ∈ Le(S/G) : PΣ(t) = s}. (1)

For each event string s = σ1σ2 . . . σn ∈ L(S/G), we have

σ1 /∈ S(ε), and there exists at least one corresponding

output string δ1δ2 . . . δn ∈ (∆ ∪ {ε})∗ such that σi /∈
S(δ1δ2 . . . δi−1) (i = 2, 3, . . . , n). Clearly, L(S/G) ⊆ L(G)
holds.

In this paper, we assume that a control specification is

given as a nonempty closed language K ⊆ L(G), and con-

sider a problem of synthesizing a supervisor S : O(L(G)) →
2Σc such that L(S/G) = K . A closed language K is said

to be controllable [3] (with respect to Σu and L(G)) if

KΣu ∩ L(G) ⊆ K. (2)

The following lemma can be easily obtained as in the con-

ventional supervisory control under partial event observation

[1], [2].

Lemma 1: Let K ⊆ L(G) be a nonempty closed lan-

guage. If there exists a supervisor S : O(L(G)) → 2Σc

such that L(S/G) = K , K is controllable.

B. Permissive and Anti-Permissive Supervisors

We define two kinds of supervisors with different control

policies.

Definition 1: A supervisor S : O(L(G)) → 2Σc is said to

be permissive if, for each τ ∈ O(L(G)) and σ ∈ Σc,

O−1(τ){σ} ∩ K 	= ∅ ⇔ σ 	∈ S(τ).
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Also, it is said to be anti-permissive if, for each τ ∈
O(L(G)) and σ ∈ Σc,

(O−1(τ) ∩ K){σ} ∩ (L(G) − K) 	= ∅ ⇔ σ ∈ S(τ).
Hereafter, the permissive and anti-permissive supervisor are

denoted by SP and SA, respectively. It is clear from the

definition of SA that

(O−1(τ) ∩ K){σ} ∩ L(G) ⊆ K ⇔ σ /∈ SA(τ).

We then have the following proposition whose proof is

straightforward.

Proposition 1: For a nonempty closed controllable lan-

guage K ⊆ L(G),

L(SA/G) ⊆ K ⊆ L(SP /G). (3)

C. Supervisory Control under the Mask Function

We review the results on the conventional supervisory

control under partial event observation. Let M : Σ → ∆∪{ε}
be the mask function. For each q ∈ Q and σ ∈ Σ, the output

symbol is uniquely determined by the mask function M as

follows:

λ(q, σ) = {M (σ)}. (4)

A closed language K ⊆ L(G) is said to be observable [1],

[2] (with respect to M , Σc, and L(G)) if, for any s, s′ ∈ K
and σ ∈ Σc,

M(s) = M(s′) ∧ sσ ∈ K ∧ s′σ ∈ L(G) ⇒ s′σ ∈ K.

Theorem 1: [1], [2] Assume that the output function λ :
Q × (Σ ∪ {ε}) → 2∆∪{ε} is given by (4). Then, the

following four statements are equivalent for a nonempty

closed language K ⊆ L(G).

1) K is controllable and observable.

2) There exists a supervisor S : O(L(G)) → 2Σc such

that L(S/G) = K .

3) For the permissive supervisor SP , L(SP /G) = K .

4) For the anti-permissive supervisor SA, L(SA/G) = K .

However, in a general case that the output function λ is

nondeterministic, the equivalence of 3) and 4) of Theorem 1

does not necessarily hold as shown in the following example.

Example 1: We consider a DES modeled by a Mealy

automaton shown in Fig. 1, where Σ = Σc = {σ1, σ2} and

∆ = {δ1, δ2}. A label of an arc is of the form σ/A, where

σ ∈ Σ represents an event, and A ⊆ ∆ ∪ {ε} denotes the

set of possible output symbols. For the generated language

L(G) = {σ1, σ2}2, we consider a control specification given

by a nonempty closed language K = L(G) − {σ2σ1}.

Then, the permissive supervisor SP and the anti-permissive

supervisor SA are given as follows:

SP (τ) =

{

∅, if τ ∈ {ε, δ1, δ2}
Σc, otherwise,

SA(τ) =

{

{σ1}, if τ = δ2

∅, otherwise.

For these supervisors, we have L(SP /G) = L(G) and

L(SA/G) = K . Only the anti-permissive supervisor

achieves the specification in this example.

σ1/{δ1, δ2}

σ1/{δ1}

σ1/{δ1}

σ2/{δ2}

σ2/{δ2}

σ2/{δ2}

Fig. 1. Controlled discrete event system G of Example 1.

IV. EXISTENCE OF SUPERVISORS

A. Permissive Supervisor

We present necessary and sufficient conditions under

which the permissive supervisor SP achieves a specification

language K . We introduce a notion of P -observability,

which can be seen as a direct extension of the conventional

observability condition.

Definition 2: A closed language K ⊆ L(G) is said to be

P-observable if, for any τ ∈ O(K) and σ ∈ Σc,

[O−1(τ){σ} ∩K 	= ∅] ⇒ [(O−1(τ)∩K){σ}∩L(G) ⊆ K].
The following theorem shows that controllability and

P-observability are necessary and sufficient conditions for

the permissive supervisor SP to achieve the specification

language K .

Theorem 2: Let K ⊆ L(G) be a nonempty closed lan-

guage. The permissive supervisor SP satisfies L(SP /G) =
K if and only if K is controllable and P-observable.

Proof: We first suppose that the permissive supervisor

SP satisfies L(SP /G) = K . By Lemma 1, K is controllable.

We prove by contradiction that K is P-observable. If K is

not P-observable, then there exist τ ∈ O(K) and σ ∈ Σc

such that

O−1(τ){σ} ∩ K 	= ∅, (5)

(O−1(τ) ∩ K){σ} ∩ (L(G) − K) 	= ∅. (6)

By (6), there exists s ∈ K such that sσ ∈ (O−1(τ)∩K){σ}∩
(L(G)−K). Then, there exists a compatible extended event

string t ∈ Le(G) such that PΣ(t) = s and P∆(t) = τ . We

prove by the induction that t ∈ Le(SP /G). For the empty

extended event string ε̂ ∈ t, we have ε̂ ∈ Le(SP /G). We

consider t′ ∈ t̄ and a := (σ′, δ′) ∈ Σ × (∆ ∪ {ε}) such

that t′ ∈ Le(S/G) and t′a ∈ t. Since t ∈ Le(G), we have

t′a ∈ Le(G). Also, since PΣ(t′a) = PΣ(t′)σ′ ∈ s ⊆ K , we

have

PΣ(t′)σ′ ∈ O−1(P∆(t′)){σ′} ∩ K 	= ∅.

By the definition of SP , we have σ′ /∈ SP (P∆(t′)). It follows

that t′a ∈ Le(SP /G). Thus, we have t ∈ Le(SP /G). Fur-

ther, since σ /∈ SP (τ) by (5), we have t(σ, δ) ∈ Le(SP /G),
where δ ∈ λ(f(q0, s), σ). So we have sσ ∈ L(SP /G) = K ,

and this is a contradiction. We can conclude that K is P-

observable.

We next suppose that K is controllable and P-observable.

Since K is nonempty and closed, we have ε ∈ L(SP /G) ∩
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K . We consider any s ∈ L(SP /G) ∩ K and σ ∈ Σ. We

first assume that sσ ∈ L(SP /G). By controllability of K , if

σ ∈ Σu, then sσ ∈ K . We consider the case that σ ∈ Σc.

Since sσ ∈ L(SP /G), there exists an extended event string

ta ∈ Le(SP /G) such that PΣ(t) = s and PΣ(a) = σ. Since

ta ∈ Le(SP /G), we have σ /∈ SP (P∆(t)). By the definition

of SP , we have

O−1(P∆(t)){σ} ∩ K 	= ∅.

Since P∆(t) ∈ O(s) ⊆ O(K), it follows from P-

observability of K that

sσ ∈ (O−1(P∆(t)) ∩ K){σ} ∩ L(G) ⊆ K.

Thus, we have L(SP /G) ⊆ K . Conversely, we assume that

sσ ∈ K . Since s ∈ L(SP /G), there exists an extended

event string t ∈ Le(SP /G) such that PΣ(t) = s. We

have sσ ∈ O−1(P∆(t)){σ} ∩ K 	= ∅, which implies that

σ /∈ SP (P∆(t)). It follows that t(σ, δ) ∈ Le(SP /G), where

δ ∈ λ(f(q0, s), σ). So we have sσ ∈ L(SP /G). Thus,

K ⊆ L(SP /G) holds.

Remark 1: The sensor failure tolerant supervisory control

problem studied by [22] can be transformed into a problem

of controlling a Mealy automaton with a deterministic output

function by the permissive supervisor SP . In this sense,

Theorem 2 can be viewed as a generalization of the result

of [22].

B. Anti-Permissive Supervisor

We show necessary and sufficient conditions for the anti-

permissive supervisor SA to achieve a specification language

K . We define a notion of A-observability.

Definition 3: A closed language K ⊆ L(G) is said to

be A-observable if, for any s ∈ K and σ ∈ Σc such that

sσ ∈ K , there exists an extended event string t ∈ Π(s) that

satisfies the following condition.

• For any t′ ∈ t and σ′ ∈ Σc such that PΣ(t′)σ′ ∈ sσ,

(O−1(P∆(t′)) ∩ K){σ′} ∩ L(G) ⊆ K. (7)

The following theorem shows that controllability and A-

observability are necessary and sufficient conditions under

which the anti-permissive supervisor SA achieves a specifi-

cation language K .

Theorem 3: Let K ⊆ L(G) be a nonempty closed

language. The anti-permissive supervisor SA satisfies

L(SA/G) = K if and only if K is controllable and A-

observable.

Proof: We first suppose that the anti-permissive su-

pervisor SA satisfies L(SA/G) = K . By Lemma 1, K is

controllable. We suppose for contradiction that K is not A-

observable. Then, there exist s ∈ K and σ ∈ Σc such that

sσ ∈ K , and for any t ∈ Π(s), there exist t′ ∈ t and σ′ ∈ Σc

satisfying

PΣ(t′)σ′ ∈ sσ,

(O−1(P∆(t′)) ∩ K){σ′} ∩ (L(G) − K) 	= ∅.

By the definition of SA, we have σ′ ∈ SA(P∆(t′)). It follows

that sσ /∈ L(SA/G). This contradicts the assumption that

L(SA/G) = K . Thus, K is A-observable.

σ1/{δ1, δ2}

σ1/{δ1}

σ2/{δ2}

σ2/{δ2}

σ2/{δ2}

σ1/{δ1}

σ2/{δ2}

σ1/{δ1}

σ1/{δ1, δ2}

Fig. 2. Controlled discrete event system G of Example 2.

We next suppose that K is controllable and A-observable.

Since K is nonempty and closed, we have ε ∈ L(SA/G)∩K .

We consider any s ∈ L(SA/G) ∩ K and σ ∈ Σ. We first

assume that sσ ∈ L(SA/G). By controllability of K , if σ ∈
Σu, then sσ ∈ K . We consider the case that σ ∈ Σc. There

exists an extended event string ta ∈ Le(SA/G) such that

PΣ(t) = s and PΣ(a) = σ. Since ta ∈ Le(SA/G), we have

σ /∈ SA(P∆(t)). By the definition of SA, we have

sσ ∈ (O−1(P∆(t)) ∩ K){σ} ∩ L(G) ⊆ K.

Thus, we have L(SA/G) ⊆ K . Conversely, we assume that

sσ ∈ K . If σ ∈ Σu, we have sσ ∈ L(SA/G). We consider

the case that σ ∈ Σc. Since K is A-observable, there exists

t ∈ Π(s) such that any t′ ∈ t and σ′ ∈ Σc with PΣ(t′)σ′ ∈
sσ satisfy (7). We have t ∈ Le(SA/G) and σ 	∈ SA(P∆(t)),
which implies that sσ ∈ L(SA/G). Thus, K ⊆ L(SA/G)
holds.

C. Discussions

We discuss the existence of a supervisor S such that

L(S/G) = K for a given nonempty closed language K ⊆
L(G). We can easily verify that if K is P-observable, then

it is A-observable. By Theorem 3, controllability and A-

observability are sufficient conditions for the existence of

a supervisor. However, as shown in the following example,

these are not necessary conditions.

Example 2: We consider a DES modeled by a Mealy

automaton shown in Fig. 2, where Σ = Σc = {σ1, σ2}
and ∆ = {δ1, δ2}. Let K be a nonempty closed language

generated by an automaton shown in Fig. 3. We can verify

that K is not A-observable. For s := σ2σ2 ∈ K , we have

Π(s) = {(σ2, δ2)(σ2, δ2)}. Then, for t′ := (σ2, δ2)(σ2, δ2)
and σ2 ∈ Σc, we have

(O−1(P∆(t′)) ∩ K){σ2} ∩ (L(G) − K) = {σ1σ1σ2} 	= ∅,

which implies that K is not A-observable. However, the

following supervisor S satisfies L(S/G) = K .

S(τ) =















∅, if τ ∈ {ε, δ1, δ2δ2}
{σ1}, if τ = δ2

{σ2}, if τ = δ1δ1

Σc, otherwise.

Note that this supervisor S cannot be synthesized by using

the permissive nor anti-permissive policy.
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σ1

σ2

σ2 σ1

σ2

σ1σ1

Fig. 3. Automaton representation of control specification of Example 2.

In a special case that the output function λ is deter-

ministic, the following theorem shows that A-observability

and P-observability are equivalent, and controllability and P-

observability are necessary and sufficient conditions for the

existence of a supervisor.

Theorem 4: Let K ⊆ L(G) be a nonempty closed lan-

guage. Assume that the output function λ : Q×(Σ∪{ε}) →
∆ ∪ {ε} is deterministic. Then, K is P-observable if and

only if it is A-observable. Further, there exists a supervisor

S : O(L(G)) → 2Σc such that L(S/G) = K if and

only if K is controllable and P-observable (equivalently, A-

observable).

Proof: To prove the equivalence of P-observability and

A-observability, it suffices to show that if K is A-observable,

then it is P-observable. Consider any τ ∈ O(K) and σ ∈
Σc such that O−1(τ){σ} ∩ K 	= ∅. Then, there exists s ∈
O−1(τ) such that sσ ∈ K . Since the output function λ is

deterministic, we have |Π(s)| = 1. Let {t} = Π(s). By A-

observability of K , we have

(O−1(P∆(t)) ∩ K){σ} ∩ L(G) ⊆ K.

Since P∆(t) = τ , K is P-observable.

Next, we show that controllability and P-observability are

necessary and sufficient conditions for the existence of a

supervisor. By Theorem 2, controllability and P-observability

are sufficient conditions for the existence of a supervisor.

We prove that if there exists S : O(L(G)) → 2Σc such

that L(S/G) = K , then K is controllable and P-observable.

By Lemma 1, K is controllable. Consider any τ ∈ O(K)
and σ ∈ Σc such that O−1(τ){σ} ∩ K 	= ∅. There exists

s ∈ O−1(τ) such that sσ ∈ K = L(S/G). Since the output

function λ is deterministic, we have σ /∈ S(τ). Consider any

s′σ ∈ (O−1(τ)∩K){σ}∩L(G). Since the output function λ
is deterministic, and σ /∈ S(τ), we have s′σ ∈ L(S/G) = K .

Thus, K is P-observable.

V. VERIFICATION RESULTS

In this section, we present algorithms for verifying P-

observability and A-observability. Throughout this section,

we assume that the system G has the finite state set Q, and

a nonempty closed language K ⊆ L(G) is generated by

a finite automaton GK = (QK , Σ, fK , qK,0) (without the

output function). The proofs of the theorems in this section

are omitted due to page limits.

A. Verification of P-Observability

In [5], it was shown that observability can be verified

in polynomial-time. We generalize this result to verify P-

observability. We construct a testing automaton TP =
(RP , ΣP , fP , rP,0) as follows:

• RP = Q × QK × Q × QK .

• rP,0 = (q0, qK,0, q0, qK,0).
• ΣP = (Σ ∪ {ε}) × (Σ ∪ {ε}) − {(ε, ε)}.

• fP : RP × ΣP → RP is defined as follows: For each

rP = (q1, qK1, q2, qK2) ∈ RP and σP = (σ1, σ2) ∈
ΣP , fP (rP , σP )! if and only if

– f(qi, σi)! and fK(qKi
, σi)! if σi 	= ε (i = 1, 2),

and

– λ(q1, σ1) ∩ λ(q2, σ2) 	= ∅.

If fP (rP , σP )!, then fP (rP , σP ) = (q′1, q
′
K1, q

′
2, q

′
K2),

where

q′i =

{

f(qi, σi), if σi 	= ε
qi, otherwise,

q′Ki =

{

fK(qKi, σi), if σi 	= ε
qKi, otherwise,

(i = 1, 2).

Remark 2: In the algorithm for verifying observability [5],

three automata, that is, one copy of G and two copies of GK ,

are composed to characterize the violation of observability.

On the other hand, we compose two copies of G and two

copies of GK . In a Mealy automaton G, the next output

symbol depends on the current state. In order to track two

strings s1, s2 ∈ K such that O(s1) ∩ O(s2) 	= ∅, we need

to know states reached by executing s1 and s2 in G. This

is a reason why we need two copies of G to verify P -

observability.

Theorem 5: A nonempty closed language K ⊆ L(G) is

not P-observable if and only if there exists a reachable state

rP = (q1, qK1, q2, qK2) of the testing automaton TP and a

controllable event σ ∈ Σc such that fK(qK1, σ)!, f(q2, σ)!,
and ¬fK(qK2, σ)!.

By Theorem 5, P-observability is verified in polynomial-

time with respect to |Q| and |QK |.

B. Verification of A-Observability

We construct the synchronous composition G‖GK =
(X, Σ, g, x0) of G and GK , where X := Q × QK , x0 =
(q0, qK,0), and

g((q, qK), σ)

=

{

(f(q, σ), fK(qK , σ)), if f(q, σ)! and fK(qK , σ)!
undefined, otherwise.

Then, L(G‖GK) = L(G)∩L(GK) = K holds. For a subset

X ′ ⊆ X , we define ε(X ′) ⊆ X inductively as follows:

• X ′ ⊆ ε(X ′),
• (∀(q, qK) ∈ ε(X ′), ∀σ ∈ Σ)

g((q, qK), σ)! ∧ ε ∈ λ(q, σ) ⇒ g((q, qK), σ) ∈ ε(X ′).

Also, we define Σc(X
′) ⊆ Σc as

Σc(X
′)

= {σ ∈ Σc | ∃(q, qK) ∈ X ′ : f(q, σ)!,¬fK(qK , σ)!}.

We construct an observer automaton (G‖GK)O = (2X −
{∅}, ∆, h, ε({x0})) of G‖GK . The transition function h :
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(2X − {∅}) × ∆ → (2X − {∅}) is defined as follows: For

each X ′ ∈ 2X − {∅} and δ ∈ ∆, let

X ′
δ = {(q′, q′K) ∈ X | ∃(q, qK) ∈ X ′, σ ∈ Σ :

g((q, qK), σ) = (q′, q′K), δ ∈ λ(q, σ)}.

Then

h(X ′, δ) =

{

ε(X ′
δ), if X ′

δ 	= ∅
undefined, otherwise.

For verifying A-observability, a finite automaton TA =
(RA, ΣA, fA, rA,0) is defined as follows:

• RA = Q × (2X − {∅}),
• rA,0 = (q0, ε({x0})),
• ΣA = Σ × (∆ ∪ {ε}),
• fA : RA × ΣA → RA is defined as follows: For

each rA = (q,X ′) ∈ RA and σA = (σ, δ) ∈ ΣA,

fA(rA, σA)! if and only if

– f(q, σ)!,
– h(X ′, δ)! if δ 	= ε,

– δ ∈ λ(q, σ), and

– σ /∈ Σc(X
′).

If fA(rA, σA)!, then

fA(rA, σA) =

{

(f(q, σ), h(X ′, δ)), if δ 	= ε
(f(q, σ),X ′), otherwise.

It can be verified that for the nonempty closed language

K ⊆ L(G), the anti-permissive supervisor SA satisfies

Le(SA/G) = L(TA). Then, we have the following theorem.

Theorem 6: Assume that a nonempty closed language

K ⊆ L(G) is controllable. K is A-observable if and only if

K = {s ∈ Σ∗ | ∃t ∈ L(TA) : PΣ(t) = s}.

To verify A-observability using Theorem 6, we have to

construct the observer automaton (G‖GK)O . The complexity

of constructing (G‖GK)O is exponential with respect to

|Q| × |QK |. It is an open problem whether A-observability

can be tested in polynomial-time.

VI. CONCLUSION

In this paper, we studied a supervisory control problem

for DESs modeled by Mealy automata with nondeterministic

output functions. We introduced two kinds of supervisors:

the permissive and anti-permissive supervisor. We presented

necessary and sufficient conditions for each of the two su-

pervisors to achieve a given specification language. However,

even if these conditions are not satisfied, there may exist a

supervisor that achieves the specification language. Such a

supervisor cannot be synthesized by using the permissive nor

anti-permissive policy. So the conditions presented in this

paper are only sufficient for the existence of a supervisor. It

is important future work to derive necessary and sufficient

conditions for the existence of a supervisor.
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