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Abstract -- This paper deals with the practical and theoretical 
implications of model reduction for aerodynamic flow based 
control problems. Various aspects of model reduction are discussed 
that apply to Partial Differential Equation (PDE) based models in 
general. Specifically, the Proper Orthogonal Decomposition (POD) 
of a high dimension system as well as frequency domain 
identification methods are discussed for initial model construction. 
Projections on the POD basis give a Galerkin model. Then, a model 
reduction method based on empirical balanced truncation is 
developed and applied to the Galerkin model. The proposed 
empirical balanced truncation uses the Galerkin model with a chirp 
signal as input to produce the output in the Eigensystem 
Realization Algorithm (ERA). This method estimates the system’s 
Markov parameters that accurately reproduce the output. Then, 
balanced truncation is used to show that model reduction is still 
effective on ERA produced approximated systems. The linear 
empirical balanced truncation algorithm is applied to the Galerkin 
model which is nonlinear. The rationale for doing so is that linear 
subspace approximations to exact submanifolds associated with 
nonlinear controllability and observabilty require only standard 
matrix manipulations utilizing simulation/experimental data. The 
proposed method is applied to a prototype convective flow on 
obstacle geometry.  A H  feedback flow controller is designed 
based on the reduced model to achieve tracking, and then applied to 
the full order model with excellent performance. 

I. INTRODUCTION 

      Recently there has been significant interest in model 
reduction for the purpose of control design [2, 3, 12, 15, 16], 
[19][30][31]. One such application of reduced order 
modeling is control design in the context of aerodynamic 
flow. Aerodynamic flow control is a research area of great 
interest to the Air Force and the fluid mechanics community. 
Recent advances in the design of actuators and sensors can 
be leveraged for better system control only if the control 
design methods provide a reliable low order controller [4]. 
Additionally, simulation, and experimental diagnostics are 
making applications such as the suppression of acoustic 
tones in cavities, and trajectory control without the need to 
move hinged surfaces a possibility [5].  
      Reduced models are important for the design of feedback 
control laws, which rely on models that capture the relevant 
dynamics of the input-output system and are amenable to 
control design. In addition, many applications require the 
integration of feedback control to achieve robustness to
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flight condition and vehicle attitude, precision tracking, 
overcoming low-fidelity models, or moving a system away 
from a stable solution or limit cycle as efficiently as possible 
[5].    Unfortunately, it is difficult to create models that 
capture the relevant dynamics of the input-output system. 
For example, computational fluid dynamics simulations can 
provide good solutions to a discretized version of the 
Navier-Stokes equation [2]. However, accurate simulations 
for simple shapes such as two-dimensional airfoils, or 
complex shapes, such as a full vehicle, require several 
thousands to millions of states. Therefore, the simulation 
results are not directly useful for control design [5]. The 
large number of states is necessary to capture important flow 
features that occur at extremely small spatial scales [4]. 
     POD has been extensively investigated in distributed 
parameters systems due to its order reduction capability 
[28]-[31], and balanced truncation, which is a simple yet 
efficient model reduction technique widely used in reducing 
model orders of high order linear systems [20], [22], [23]. 
POD models of only a few dozen states can often accurately 
capture the input-output behavior of systems that have full 
order system models of thousands of states [5]. In addition to 
using the POD method in conjunction with model reduction 
techniques, the idea of using empirical Gramians is growing 
in popularity for use in an approximate balanced truncation 
[14], [15], [27], [9]. Further some work has been done on 
finding nonlinear empirical Gramians for balanced 
truncation [6], [9]. However, it might not be possible or 
practical to actuate over an entire problem region. In the area 
of fluid mechanics controls must often be fixed to the 
boundary of the problem geometry. The problem geometry 
used for this project is one example of a case where control 
is restricted to the boundaries by physical necessity.  

     The paper is organized as follows. In Section II we 
introduce a prototype flow problem geometry that is used to 
apply the proposed order reduction techniques. Section III 
introduces empirical balanced truncation. This method is 
based on approximate (empirical) controllability and 
observability Gramians and uses only a single 
simulation/experimental test. Section IV introduces the ERA 
to identify the Markov parameters of the system, and as a 
product the empirical Gramians. In Section V, empirical 
balanced truncation and the ERA algorithm are applied to 
the Galerkin model, and numerical results are provided to 
show the effectiveness of the proposed method. An H
controller based on the empirical reduced model and which 
achieves tracking is also discussed. The responses of the 
controlled closed-loop on the full order model are presented, 
and show that the H  controller achieves good tracking 
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performances despite being designed on a much lower 
model than the original. Section VI contains concluding 
remarks.    

II. PROBLEM GEOMETRY 

The specific problem geometry considered is shown in 
Figure 1. The problem statement with its corresponding 
boundary conditions and governing equations was taken 
from [4]. A realistic example of this geometry in an 
aerodynamic application would be a payload hatch open 
during flight with actuator control only on the boundary. Let 

gap be the region defined by [a1, a2] x [b1, b2]. Let full be
the region defined by (a0, aend) x (b0, bend). Then the problem 
domain is given by /full gap . In this problem setup, 

gap is an obstacle. The system dynamics that act within the 
problem domain are described by the two dimensional 
Burgers’ equation [4]: 

2 2

2 2
1( , , ) ( ) ( , , ) ( , , )w t x y F w w t x y w t x y

t r x y
 (1) 

where the form of ( ) F w is   
2 2

1 2
( , , ) ( , , )( )        

2 2

T
w t x y w t x yF w c c   (2) 

In this case, the value for 1c  is equal to 1 and 2c  is equal to 
0. The parameter r controls how much nonlinearity is present 
in the problem. The value used is 300, a small “Reynolds 
number” but it still allows for the nonlinearity to show in the 
problem. Dirichlet boundary conditions [13] located on the 
obstacle top and bottom are denoted by  and top bottom . The 
form of the boundary condition is   

       ( , , ) ( , , )    ,w t x y f t x y x y  (3) 
The boundary conditions on the top and bottom are 
described by the following equations 

( , ) ( ) ( )bottom bottom bottomw t u t x               (4) 
( , ) ( ) ( )top top topw t u t x                     (5) 

Here ( )topu t and ( )bottomu t  are control inputs on the top and 
bottom boundaries respectively, the spatial functions 

( )top x  and ( )bottom x  describe the spatial effects.  
The boundary condition on the airflow intake side is   

( , ) ( )inw t f y                           (6) 
and it is parabolic in nature. The airflow outtake side has a 
Neumann boundary condition that has the form [13] 

( , ) 0outw t
x

                       (7) 

On all of the remaining boundaries of , ( , , )w t x y is set 
equal to 0 for all values of t. Finally, the initial conditions 
for the interior are given by  

                   2
0(0, , ) ( , ) ( )w x y w x y L        (8) 

A numerical solution based on finite difference was found 
by simulation using a uniformly spaced grid. The resulting 
system model contains a little more than 2000 states. 
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Fig. 1: Problem Geometry 

The POD model construction is based on the total energy 
captured.  A condition that 99.9% of system energy must be 
captured was used for determining how many system modes 
were retained.  This condition was met by a 40 POD basis. 
Although this is a major reduction from the numerical 
solution, it will be shown that important system dynamics 
can be retained with even lower state number system 
models.  
The general approach of this method is to construct a series 
of solution “snapshots.” These snapshots are generated by 
numerical simulations with a variety of input equations [10, 
19]. These inputs should be similar to the expected inputs of 
the real system. The inputs used here are of the form [4] 

     2( ) sin(0.25 )     ( ) 0bottom topu t t u t  (9) 
2( ) 0          ( ) sin(0.25 )bottom topu t u t t          (10) 

2 2( ) sin(0.25 )     ( ) sin(0.25 )bottom topu t t u t t    (11) 
where the values for  are –3, -2, and –1 and the range for t
is 0 to 10 seconds with a sample every 50 milliseconds.  The 
squelch signal for all three values of  is shown in Figure 
2. The numerical simulation was performed to create the 
ensemble of solution snapshots 1( , ) M

k kS x y  [4]. The value 
for M must be greater than the number of modes that one 
will choose for the approximated system model [4].   
The solution to the PDE is assumed to be belong to the 

2 [0, )L T , and can be approximated as 

1
( , , ) ( ) ( , )

n

k k
k

w t x y t x y                 (12) 

where the 'k s are time varying coefficients that multiply 
the spatial functions k s'  and 

2 2([0, )) , ( , ) ( )k kL T x y L  where 2 ([0, ))L T  and 
2 ( )L  are the standard Hilbert spaces of absolutely square 

integrable functions defined, respectively, on the time 
interval [0, )T  and spatial domain . The approximation 
(13) can be as accurate as desired since the tensor space

2
2 2

1
2

( ) ( , ), ( ) ([0, )),
([0, )) ( ):

( , ) ( ), integer

n

k k k
k

k

t x y t L T
L T L

x y L n

is

dense in 2 [0, )L T  [14].  Any basis for 2 ( )L  can be 
used to construct the approximation of the solution 

( , , )w t x y . Here we use the POD basis { }k  since it is 
optimal in the following sense [3] 
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Fig. 2: Test Inputs Used to Generate the Snapshots   

In [3] it is shown that solving the above optimization 
reduces to the usual POD optimality in the average kinetic 
energy sense (19)  discussed below [10]. The POD basis 
function i  is chosen to maximize the average projection of 

the member iu  onto i ,
2

2

2( )
2

,
max

i

i i

L
i

u
 [10].

To construct numerically the POD basis { }j , we build the 
correlation matrix L, of size M x M, composed of the inner 
products of the snapshots. In 2L  we have 

*
, , ,  k j k j k j k jL S S S S S S dx dy             (13)            

where  denotes complex conjugate transpose. 
A singular value decomposition of the matrix L is 
performed. The n largest eigenvalues 1 2, ,..., n of the 
matrix L are found and placed in descending order. Then the 
set of eigenvectors 1 2, ,... nv v v  are identified. The resulting 
orthonormal POD basis { }j  of dimension n can be 
constructed using the information found from the correlation 
matrix L. First, the eigenvectors of L are weighted by their 
corresponding eigenvalues and normalized according to [4] 

2 1k kv , for k = 1,2,...,n .               (14) 
Then, the POD basis set is formed according to  

,
1

( , ) ( , )
M

k k j j
j

x y v S x y                      (15) 

with ,k jv being the jth component of the eigenvector kv .
with ,k jv being the jth component of the eigenvector kv .
Solving equation (21) gives n 'k s , which constitute the 
POD basis of dimension n.   The governing equation is 
projected onto the POD basis. The projection is 
accomplished via a Galerkin type projection.  The Galerkin 
projection results in only a weak solution to the PDE. 
However, this weak solution with finite difference 
approximations of the boundary conditions eventually leads 
to a nonlinear temporal model for the temporal or POD 
coefficients { }k [4] 

( ) , (0) oA Bu N F              

where  n  and the matrices A is n x n, B is n x 2, N and 
F are both vectors n x 1. The output equation will be simply 
chosen to be  

( ) ( )y t t

In this model the dimension of the state vector  is 40 
which correspond to 40 POD modes. The first 8 POD modes 
corresponding to the first 8 temporal coefficients are shown 
in Figure 3. The first model corresponds to the baseline 
mode, and the remaining modes to actuated modes. To test 
the validity of the POD model the following test inputs 
applied at the boundary are used  

1 2
3 3( ) sin ( ) sin
4 2

t tu t u t

In Figure 4, dashed lines denote the linear combination of 
POD modes restricted to the boundary. Solid lines denote 
the boundary test inputs.  As can be seen in Figure 4, there is 
very good agreement between the boundary conditions 
specified for the full order system and the linear combination 
of POD modes restricted to the boundary. 
The goal of model reduction is to construct another 
nonlinear system [4][5] 

( )r r r r r r rA B u N F            (16) 

where  r
r   and r n , such that the behavior of the 

two systems is similar for states in some region of the state 
space.  The reduced model is derived via the construction of 
an immersion/projection pair  

r r rT T TT I              (17) 
where  rl  is the r r  identity matrix, resulting in the 
following reduced model 

( ) , ( ) ( )r r r rTAT TBu TN T TF y t CT t    (18) 
This is carried out by developing an empirical balanced 
truncation algorithm which is based on 
experimental/simulation input-output measurements of the 
nonlinear Galerkin model. To do so we need first to 
introduce the balanced truncation model reduction.   

III. EMPIRICAL BALANCED TRUNCATION 
The dynamics of (finite dimensional) LTI systems are 
governed by a state space model of the form  

                  
: ( ) ( ) ( )

( ) ( ) ( )
G x t Ax t Bu t

y t Cx t Du t
                    (19) 

where  ( ) nx t  is the state vector, ( ) mu t  is the input, 

and ( ) py t  is the output. The first step in applying 
balanced truncation is to compute a coordinate 
transformation M such that the controllability and 
observability Gramians, denoted cW  and oW  respectively, 
of the system are equal and diagonal. 
A balanced realization needs a similarity transformation M
such that the transformed Gramians are equal and satisfy 
[22][23][27] 

ˆ ˆ
o cW W                             (20) 
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where the matrix  is a diagonal matrix containing 
constants in monotonically decreasing order.    

Fig. 3: First Eight POD modes            Fig. 4: Boundary Control
                                                        Accuracy 

For a system with n states, the controllability and 
observability matrices are n n   symmetric and therefore 
solving for each one of them involve finding n unknowns.  
An alternative is to develop a balanced truncation algorithm 
based on empirical Gramians, which are constructed solely 
from a single simulation/experiment using a sufficiently rich 
input. To this end, let us first introduce the l-step
observability and q-step controllability matrices [20] 

1 -1: ( ) ( ) , :      
TT T l T q

l qO C CA CA R B AB A B              

which give rise to the l-step observability and q-step 
controllability Gramians : , :ol l l cq q qW O O W R R .
As the numbers q and l approach infinity, these empirical 
Gramians approach the true Gramians                 

                           lim , limol o cq cl q
W W W W               (21) 

The goal is to find a balancing transformation matrix M that 
will approximately balance the empirical Gramians, i.e.,  

* * 1 1ˆ ˆ: ( ) :cq cq ol olW MW M M W M W     (22)                        
The matrix M can then be applied back to the original 
system model to produce an approximately balanced 
realization.  The product of the l-step controllability and the 
and the q-step observability matrices gives a Hankel1 matrix, 
denoted lqH , containing the Markov 

parameters , 0,1,kCA B k , of the system in the 
following way 

1

2

1 2

:

q

q

lq l q

l l l q

CB CAB CA B

CAB CA B CA BH O R

CA B CA B CA B

  (23) 

for integers l and q chosen such that [20]
( 1)( )( ) ( ) , 1lq l q jrank H rank H n j         (24)                         

In terms of the SVD decomposition of lqH
                                                          
1 A Hankel matrix when considered in block form is simply a 
matrix that has the ith column identical to the ith row. 

11
1 2

2

0
[ ]

0 0lq
V

H U V U U
V

             (25)                     

The balancing transformation M is constructed as 

[15]
1

2
1 1qM R V . A straightforward computation shows  

1 1 *
1

ˆ ˆ: :cq cq ol olW M W M M W M W     (26) 
Balanced truncation can be realized the usual way, if                    

r 1r  for some r then we can partition 1  as 

1 1( , )r rdiag                       (27) 
where   

1 2 1 1 2( , , , ), ( , , , )r r r r r ndiag diag
A columwise conformal partition of 1U  and 1V

1 1[ ], [ ]r n r r n rU U U V V V                      (28) 
yields the immersion/projection pair [15] 

1 1
2 2, ,r q r r r r r l r r rT R V T U O T T I  and from which a 

reduced order r-dimensional model with state matrices is 
deduced 

r r r r r r rA T AT B T B C CT            (29) 
The above construction only requires estimates of the 
Markov parameters , 0,1, , 1kCA B k l q .                            
A basic relationship between the Markov parameters and the 
input and output relationship in discrete-time is 

0

( ) ( ) ( )y k Y u k                           (30)                      

1(0) ,  (1) , ,  ( ) kY D Y CB Y k CA B      (31)                      
The Markov parameters can be computed from a single 
simulation/experiment in which a sufficiently rich input 
signal is applied and the output responses are collected. In 
the next section, the Discrete Fourier Transform (DFT) is 
used to map time domain data into spectral densities from 
which frequency response estimates are calculated using the 
Eigensystem Realization Algorithm (ERA) [25]. 

IV. EIGENSYSTEM REALIZATION ALGORITHM 

Several frequency domain identification techniques are used 
in practice to identify the model parameters. One such 
method is the ERA technique [25] and is applied to discrete 
time versions of system models.  
An alternative form to (30) can be created not using the 
actual outputs and inputs but replacing the output term by 
the cross-correlation between the inputs and the 
corresponding outputs 

0

( ) ( ) ( )yu uuR k Y R k                    (32) 

where the length of the data sequence is 
1 1

0 0

1 1( ) ( ) ( ), ( ) ( ) ( )
m m

T T
uu yuR k u u k R k y u k

m m
 (33)   

The basic process for finding the Markov parameters starts 
using the ratio of the power spectral density of the cross-
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correlation between the inputs and outputs and the power 
spectral density of the autocorrelation between the input 
signals. These power spectral densities are 

2 21 1

0 0

1 1( ) ( ) , ( ) ( )
k km mj j

m m
yu yu uu uuP k R e P k R e

m m
  (34)  

The ratio of the two power spectral densities is the frequency 
response function, denoted, ( )kG z .Then, the final step is to 
take the inverse Fourier transform to find the pulse response 
(Markov parameter) matrices [25] 

2

0

: ( ) ( )
j k

m
k kY Y k G z e            (35) 

The Hankel matrix containing the Markov parameters is of 
the following form    

1 2

2 3 1

1 1

                

              

                     
          

q

q
lq

l l q l

Y Y Y

Y Y Y
H

Y Y Y

                 (36) 

The individual Yk’s correspond to the following sequence 
1

0 1,  ,   , k
kY D Y CB Y CA B             (37)         

 In some cases the input data for the ERA method might be 
provided by an experiment on a real system. However, in 
this paper a unique approach of using the Galerkin model in 
the place of the real system was used to generate the 
empirical data. The full order system model was created 
using finite-difference methods. Recall that the control 
inputs were explicitly placed in the boundary conditions, 
because the control inputs do not show up explicitly in the 
two-dimensional Burgers' equation. However, the weak 
Galerkin model results in a nonlinear state space model that 
simplifies the relationship between the input and outputs. 
The chirp signals used for the excitation of the Galerkin 
model are of the following form and are shown in Figure 5. 

2
1( ) sin(0.55 )u t t         2

2 ( ) sin(0.60 )u t t  (38) 
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Fig. 5:  Excitation Inputs for ERA Method 

V. APPLICATION TO THE GALERKIN MODEL 
The empirical balanced truncation based on linear systems is 
applied to the Galerkin model

              ( ) , (0) oA Bu N F               (39)   
which has an equilibrium in steady state, denoted by ss .
The rationale for doing so is that linear subspace 
approximations to exact submanifolds associated with 
nonlinear controllability and observabilty require only 
standard matrix manipulations utilizing simulation/ 

experimental data, denoted by ss . The rationale for doing 
so is that linear subspace approximations to exact 
submanifolds associated with nonlinear controllability and 
observabilty require only standard matrix manipulations 
utilizing simulation/experimental data as explained in 
[15,36,37]. The computational advantages of the scheme 
presented here carry over directly to the nonlinear setting. 
The reduced order model is derived as discussed through the 
construction of the immersion/projection nonlinear system 
pair ,r rT T . This results in the following 
reduced-order model 

( ) , (0)r r r r r r r r oA B u N T F T    (40) 

: , : , : , :r r r r rA TA T B TB N TN F TF
If (39) has a linearization around ss

, (0) oA B u                       (41) 
and the reduced system linearization is 

, (0)r r r r r oA B u T           (42)                      
The linearization of both models are related by 

,r rA TA T B TB
   Empirical balanced truncation applied to the 40th order 
Galerkin model resulted in a 14th order reduced models. The 
first 8 temporal coefficients of the 14th order reduced model 
and 2000th  full order model are plotted in Figure 6.  
     In Figure 7, we compare the Hankel singular values of 
the 2000th  full order linearized and reduced 14th order 
empirical model. As expected the Hankel singular values 
corresponding to the reduced order model are smaller than 
the full order model, nevertheless the Figure shows that they 
are close.  In Figure 8 we compare the full order solution 

( , , )w t x y  of the Burgers’ equation with the solution based 
on the 14 order ERA model ( , , )rw t x y . The Figure shows 
that they behave similarly especially at the boundary where 
control is applied. 

An H controller was designed based on the linearized 
14th order reduced model and applied to the full order model 
using Matlab. The performance was to achieved tracking a 
fixed reference signal ( )refw x  specified for the full order 

model (see [5] for the details). Projecting ( )refw x  onto the 
POD basis yields tracking coefficients for the reduced order 
model. After computing the H  controller we close the 
loop on the original 2000th full order model. The controller is 
only 14th order since based on the 14th order reduced model.  
The projected reference onto the POD basis initial condition 
and reference are shown in Figure 9. The controlled flow 
with the action of the boundary controller is shown in Figure 
10. The Figure shows good tracking performance. 

VI. CONCLSUION 

Empirical balanced truncation has been considered in 
conjunction with POD as an approach for deriving reduced-
order models and applied to the 2D Burgers’ equation. Like 
POD, empirical balanced truncation is based on 
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simulation/experimental data and can be implemented via 
standard matrix computations.   Improvements to the scheme 
originally proposed in [9, 15] have been presented that lead 
to reduced data requirements that may become significant 
for applications such as aerodynamic flow control.  
Essentially, the balancing transformation is constructed via 
Markov parameters that can be identified from 
measurements collected in a single experiment/ simulation.  
The approach has been applied with favorable results to the 
2D Burgers’ equation, a partial differential equation in two 
spatial dimensions that possesses features comparable to the 
Navier-Stokes equations governing fluid flow.  A H
feedback flow controller was designed based on the 
empirical reduced model to achieve flow tracking. The 
closed-loop on the full order model shows good flow 
tracking performance.   
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