
  

  

Abstract—A problem encountered in online multi-player 

gaming communities involves the following:  Given a set of p 

players each of whom has strength pj, and a set of m monsters, 

each of whom has strength mi, is it possible to partition the 

players into groups such that each monster is assigned a group 

of players that is capable of overcoming said monster?  A 

feasibility algorithm for the class restricted version of the 

problem, which has computational complexity O(p2(q-1) log2m) is 

developed, where q is the number of classes. 

I. INTRODUCTION 

ECENTLY, in the world of online multi-player gaming, 

the task of designing player character and adversary 

skill levels, then allocating players into groups in order to 

maximize player enjoyment in the face of adversarial agents, 

based on player skill level, and the strength of the range of 

adversaries, has attracted some attention.  Most allocation 

problems possess a similar nature: there is a set of resources, 

and these resources are then allocated in order to complete a 

set of tasks.  The objective is often to minimize the number 

of resources used, or to ensure that all tasks can be 

completed (subject to some constraint). This type of 

allocation is prevalent amongst many diverse applications; it 

is similar to the problem of storage allocation for computer 

networks, assigning advertisements to newspaper columns, 

the stock cutting problem, the airline servicing problem, and 

the truck packing problem, to name a few.  

Therefore, a gaming universe usually has a preset list of 

adversaries of different strength, and depending upon the 

stage of the game, adversaries of a single strength (M) are 

released to encounter all groups of players who have 

achieved that stage or level.  Given an online world, and a 

set of unoccupied players that wish to form at most m 

groups, what is the maximum strength of adversary that can 

be defeated by any group?  Put more simply, for what 

maximum value of M can all unoccupied players be divided 

into m groups such that the strength of each group 

cumulatively is at least M? 

Characters are designed generally in classes, with a set of 

base given attributes that are then customized by the 

individual user while exploring the online world through 
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modes of expression.  However, there are only a limited 

number of base character classes, and thus base character 

strengths, due to maintenance constraints.  A question 

becomes, given a particular online world, what is the most 

efficient separation of character classes Ai in order partition 

random arrangements of players in groups of equal strength? 

A brief survey of related problems follow in Section II.  

Section III formally defines the problem, and addresses 

issues of NP-completeness.  A class partition method is 

introduced in Section IV and an algorithm that bounds the 

feasible space are outlined.  A simple example is solved 

explicitly in Section V. Section VI analyzes the time and 

space complexity of the calculation, conclusions and  

avenues for future work are enumerated in section VII. 

II. RELATED WORK 

The problem of player allocation in a dynamic game 

environment is similar to that of the multi-processor 

scheduling problem, the packing problem, the partitioning 

problem and the subset sum problem, all of which are closely 

related.  An excellent treatment of these subjects can be 

found in [6, 10, 15]. We briefly summarize the state-of- the-

art in some of these domains in the following section. 

Multi-Processor Scheduling involves scheduling a given 

set of tasks, each with execution time ti, on m different 

processors in order to minimize the makespan (completion 

time of last processor).  The tasks often have release times, 

deadlines, priorities and precedence relationships associated 

with each of them; and the problem is, in general, NP-

complete.  However, specific restricted cases of the problem 

have solutions that are pseudo-polynomial or even fully 

polynomial.  Some of the best known scheduling algorithms 

in this genre are: Longest Processing Time (LPT) [8] which 

never produces schedules greater that 4/3 of optimum 

(denoted as 4/3OPT); Multifit [1], which is a modified bin-

packing heuristic that generates schedules at most 11/9OPT; 

and Divide and Fold (D&F) [14]. 

Bin Packing is a fundamental problem in the domains of 

computer science, discrete optimization and communications 

networks [2].  It consists of determining the minimum 

number k of bins of unit size needed to pack a list of 

elements, each possessing size less that 1, which is NP-

complete.  The First Fit Decreasing (FFD) and Best Fit 

Decreasing (BFD) algorithms have essentially the same 

asymptotic performance characteristics in the offline case, 

where the solution is no worse than 122% of optimal [9].  
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Vega and Lueker [4] constructed a polynomial time 

approximation scheme (PTAS) for bin-packing, and a 

refinement on this scheme by Karmakar and Karp’s has 

running time of approximately O(n
9
).   

Many partition problems, such as three dimensional 

matching (3DM), exact cover by three sets (X3C), or three 

partition are known to be NP-complete [7].  The worst-case 

performance ratio of Karmarkar-Karp’s offline differencing 

method for the Partition Problem is 7/6OPT [5]. The 

partition problem is a special case of the Subset Sum 

problem, which is stated as follows: given a positive integer 

bound and a set of n positive integers find a subset whose 

sum is closest to, but not greater than, the bound.  There are 

randomized approximation algorithms for this problem with 

linear time and space complexity of O(n log(n)) that 

outperforms Martello and Toth's [12] quadratic greedy 

search, whose time complexity is O(n
2
). 

III. PROBLEM DESCRIPTION 

A. Statement and Definitions 

Consider the following static scenario for multi-player 

games where groups of players “band” together in order to 

overcome a number of monsters (that is, no player can be 

assigned to more than one monster).  In order for a group of 

players to overcome a monster, the “value” (summative total) 

of the collective “strength” of players must equal or exceed 

the value of the monster.  Thus, the simple static form of the 

problem becomes:  Given a finite set of players and a finite 

set of monsters, is it possible to assign the players into 

groups such that each monster is vanquished? 

More formally, the problem can be stated as follows:  

There is the set M of “monsters”, which has cardinality m, 

and each of the monsters possesses a valuation (strength) 
+∈ Zmi : 

{ }mimmM ii <<>= 0,0                 (1) 

 

and there is the set P of “players”, which has cardinality p, 

and each of the players possesses a valuation 
+∈ Zp j : 

{ }pjppP jj <<>= 0,0                 (2) 

Does there exist a set { }ms PPPP K,, 21=  where 
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that is, does there exist a partition suba PP ∈  over the set 

Psub, where each element Pa (a unique set of players) of Psub 

corresponds uniquely to a monster mi in the set M, which the 

summative strength of its elements is capable of 

overcoming? Note that the sets of players in Psub are 

mutually disjoint, thereby allowing each player to join only 

one group. Similarly, the cardinality of M must equal the 

cardinality of Psub, as the function f is bijective, thus each 

monster is guaranteed to be handled by exactly one group.  

As the problem is currently stated, it is a decision problem. 

B. NP-Completeness of General Problem 

In the general case, this problem is NP-complete.  This can 

be seen using the simple restriction to the multi-processor 

scheduling problem, which is stated as follows:  Given a 

finite set Aa ∈  of tasks, each of which has a length 
+∈ Zal )( , a number 

+∈ Zm  of processors, a deadline 

+∈ ZD , is there a partition mAAAA ∪∪= K21  of A 

into m disjoint sets such that: 

Dmial
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≤
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
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1:)(max              (6) 

Consider the restriction of the group assignment problem to 

the case where all Dmi =  (all monsters have equal 

strength).  The question becomes, is it possible to create a 

partition { }ms PPPPP K,, 21== of players such that: 

DpPP
kPcard
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which is exactly equivalent to the multi-processor scheduling 

problem.  Note that this problem is NP-Hard, since 

generating an answer to the decision problem is equivalent to 

generating a Karp (polynomial-time many-one) reduction of 

the problem. 

IV. PLAYER CLASSES AND FEASABILITY 

In the general case, determining whether a fixed set of 

players can cover a given group of monsters is not feasible.  

The simple initial conditions that: 
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provide a quick first check for infeasibility, but give no 

insight as to the feasibility of the problem. 

However, if we consider a fixed number of monsters, and 

divide up the players into strength classes, whereby every 

player in the class is at least as strong as the class type, there 

is the possibility of gaining some insight into the feasibility 

of the problem.   

A. Class Definition 

 Consider that we have a finite number of positive integer 

values A={A1, A2,…,Aq} ordered qAAA <<< K21 , to 

denote the player class strengths.  Then we have q classes of 

players, where the number of players in class Ak is given by: 
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}0,,{ 1 qkPpApApcardX jkjkjk ≤≤∈<≤= +
 (9) 

where we define A0=0, and Aq+1=∞, and card is the set 

cardinality operator (denoting the equinumerosity of the set). 

Thus, we have created a discrete partition over the set of 

players, based on classes, where any element of the partition 

Ak has strength at least equal to Ak.   

Note that we can alternatively define player classes: 

}0,,{ 11 qkPpApApcardX jkjkjk ≤≤∈≤<=′
++

(10) 

where we define A0=0, and Aq+1=∞, and any player in the k
th

 

partition Xk  has strength at most equal to Ak. 

B. Algorithm for Generic Partition 

 We want to determine if there are non-negative integer 

vectors:  

( ) ( )
qmqqqm YYYYYYYY ,,2,11,1,21,11 ,,,,,,, KKK == (11)

such that: 

∑
=

≤
m

i

jji XY
1

, ,  for each qj ≤≤1             (12) 

and 

∑
=

≥
q

j

ijij MYA
1

, ,  for each mi ≤≤1         (13) 

For each mi ≤≤1  and qj ≤≤1 , Yi,j gives the number of 

players of strength at least Aj that are assigned to the i
th

 

monster.  The second condition, Eqn (13), ensures that the 

strength of each party is greater than or equal to that of the 

monster it is assigned, and the first condition, Eqn (12), 

guarantees that the total number of players assigned from any 

given class is less than or equal to the number of available 

players from that class.   

 To approach a feasibility guarantee with the modified 

problem, we consider the equation (where all Mi are equal): 

MxAxAxA qq =+++ K2211            (14) 

such that Eqn (14) defines a surface in the q-dimensional 

space.  We need to pick m non-negative integer valued 

points on or above the surface so that the sum of the j
th

 

coordinates of these m points is at most Xj.  We only need to 

consider the integer points in the bounded area described by: 

qjXx jj ≤≤≤≤ 1,0  and Eqn (14). 

If we were to choose points via an enumerative approach, 

the running time of the algorithm would be proportional to 

p
m
 and thus exponential in the size of the input, since there 

may be O(p) boundary points.  However, we can use a 

dynamic programming approach to pick these m points more 

efficiently.  

Without loss of generality, we may assume Xq=max(Xi).  

For each 11 −≤≤ qj  we let  { }
jjj AMXB /,min= .  The 

set of boundary points we consider is given by:  
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such that  1111 0,,0 −− ≤≤≤≤ qq XjXj K . We then 

define S to be the q-dimensional table with size m in the first 

dimension and size Xj+1 in the (j+1)
th

 dimension for each 

11 −≤≤ qj .   

For each mi ≤≤1 , 1111 0,,0 −− ≤≤≤≤ qq XjXj K , 

( )
11 ,,, −qjjiS K  gives the smallest sum of the q

th
 

coordinates that can be obtained by choosing i boundary 

points such that the sum of the l
th

 coordinates of these i 

points is jl for each 11 −≤≤ ql .   

We define ( ) ∞=−11 ,,, qjjiS K  if we cannot find i 

boundary points such that the sum of the l
th

 coordinates of 

these i points is jl for each 11 −≤≤ ql . Thus, there are 

non-negative integer vectors: 

( ) ( )
qmqqqm YYYYYYYY ,,2,11,1,21,11 ,,,,,,, KKK == (17) 

satisfying Eqns (12,13) if and only if there exists: 

 ( ) qq XXXXmS ≤−121 ,,,, K .             (18) 

 We compute S(1,j1,j2,…,jq-1) easily; specifically 

S(1,j1,j2,…,jq-1)=jq if the point (j1,j2,…,jq-1,jq)∈F; otherwise 

set S(1,j1,j2,…,jq-1)=∞.  Compute S(2i, ,j1,j2,…,jq-1):   

( )
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
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
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q
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such that  

1111 0,,0 −− ≤≤≤≤ qq jljl K             (20) 

and  

∞≠−−− −− ),,,,( 112211 qq ljljljiS K      (21) 

and  

∞≠− ),,,( 121 qllliS K ,                   (22) 

if the set is non empty.  If the set is empty,  

( ) ∞=−11 ,,2 qjjiS K                    (23) 

If m is not a power of 2, we compute S(m,…) using a 

combination of S(2
r
,…), S(2

r-1
,…),…, S(1,…), where r is the 

greatest integer value such that 2
r
<m so that: 

( )



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when 1111 0,,0 −− ≤≤≤≤ qq jljl K ; 

∞≠−−− −− ),,,,( 112211 qq ljljljbS K    (25) 

and ∞≠− ),,,( 121 qlllaS K , otherwise it is set to ∞. 

Note that this provides a feasibility certificate to the class-

partitioned player problem (that is, if all players in a class 

have value exactly equal to their class partition value).  

Otherwise, if all players have a value at least that of their 

class partition value, then if this algorithm generates a 

feasible solution, the original problem with unique player 

values is also feasible.  Conversely, if the class partitioning 

scheme of Eqn (10) is chosen, that is, all players have a 

value of at most their class partition value, and this algorithm 

cannot generate a feasible solution, then the original problem 
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with unique player values is infeasible.   A simple numerical 

example for this algorithm is illustrated in the next section. 

V. NUMERICAL EXAMPLE 

A.  2-Partition Class Algorithm 

Let us consider the simplest possible case where we have 

two player classes.  Thus, we have X1 players of at least 

strength A1, and X2 players of at least strength A2, where 

X1+X2=p.  If we are given that we have m monsters, which 

we will assume have strength M, and that all of these values 

are non-negative integers, then we must find the non-

negative integer vectors: 

 Y1=(Y1,1, Y2,1,…,Ym,1) and  Y2=(Y1,2, Y2,2,…,Ym,2)   (26) 

such that: 

2

1

2,1

1

1, XYXY
m

i

i

m

i

i ≤∧≤ ∑∑
==

                   (27) 

and 

MAYAY ii ≥+ 22,11,  for each mi ≤≤1 .     (28) 

 Consider the line (and associated area) formed by: 

 MyAxA ≥+ 21                           (29) 

as shown in Figure 1,  with the candidate area integer points 

for selection further bounded by 

,0,0 21 XyXx ≤≤≤≤  the constraints that require that 

at most the maximum number of players allocated to any 

monster is at most the cardinality of the class.  

Figure 1 illustrates all of the candidate integer value points 

(x’,y’) that could possibly be selected and evaluated for Yi,1 

and Yi,2 shown in the shaded points.  However, we only need 

to consider the boundary points, which are shown circled in 

Figure 1, since all other candidate points are subsumed by 

one of them. 

 

Figure 1:  Candidate Integer Valued Points 

Let us assume 21 XX ≤ , without loss of generality.  We 

then have  ( )111 ,min AMXB = , the minimum of either 

the upper integer value intersection point with the x-axis or 

the number of players in class 1.  For each integer value of j 

between B1 and X1, we let fj be the point in the Euclidean 

plane defined by ( ) ( )21, AjAMjf j −= , the closest 

integer-valued point above the line created by Eqn (29) in 

the area of interest.  The set of boundary points we will 

consider is given by { }
10 BjfF j ≤≤= .  Then, we 

define S to be a two-dimensional table having m rows and 

X1+1 columns.  The rows are numbered from 1 to m and the 

columns are numbered from 0 to X1.  For each mi ≤≤1  

and 10 Xj ≤≤ , S(i,j) gives the smallest sum of the y-

coordinates that can be obtained by choosing i boundary 

points from F such that the sum of the x-coordinates of these 

i points is j.  For convenience, we let S(i,j)=∞ if we cannot 

find i boundary points from F such that the sum of the x-

coordinates of these i points is j.  It is now easy to see that 

there are non-negative integer vectors Y1=(Y1,1, Y2,1,…,Ym,1) 

and  Y2=(Y1,2, Y2,2,…,Ym,2) satisfying the above constraints if 

and only if ( ) 21, XXmS ≤ . 

B. Numerical Example Specification 

Consider the simple problem where we have 14 players, and 

6 monsters, all of whom have strength equal to 9.  The player 

distribution is given in the following table: 

Player Strength Value Player Strength Value Cardinality 

4 6 

5 4 

6 2 

7 1 

8 1 

Table 1:  Player Strength Distribution 

The quick condition of Eqn (8) shows us that the problem 

cannot be deemed infeasible immediately, as the total player 

strength of 71 is greater that the total monster strength of 54, 

and the cardinality of players is greater than the cardinality 

of monsters.   

Let us consider the simple two-class case, and pick the 

partition point at 6; that is, X1=4, A1=6, X2=4, A2=10.  That 

is, there are 4 players who have at least strength equal to 6, 

and there are 10 players who have strength at least equal to 4 

(and at most equal to 6). Thus, q=2 and 946 ≥+ yx  

defines the region, bounded by 100,40 ≤≤≤≤ yx  

where integer points are of interest.    

Since X1<X2, we have that  

 ( )  ( ) 26/9,6min/,min 111 === AMXB  (30) 

For each 20 ≤≤ j we let fj be the point in the plane 

defined by  

( ) ( ) ( ) ( )4/69,/, 21 jjAjAMjf j −=−= .  (31) 

So { } ( ) ( ) ( ){ }0,2,1,1,3,00 1 =≤≤= BjfF j  are the 

boundary points we consider.  Then S(i,j) is a two 

dimensional table having m=6 rows and X1+1=5 columns 

shown below.  The rows i are numbered 1 to 6, and the 

columns j from 0 to 4.  Then, each S(i,j) gives the smallest 

sum of the y-coordinates that can be obtained by choosing i 

boundary points from F such that the sum of the x-
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coordinates are j.  Since we are interested only in the last row 

of S (where S(6,4) occurs), we do not need to compute every 

row.  It is sufficient to compute only O(log2(m)) rows of S if 

m is a power of 2 (i.e. m=2
r
) for some non-negative integer r. 

If m is not a power of 2, we then first generate rows 1,2,… 

2
r
, where r is the largest non-negative integer such that 2

r
<m.  

We can then compute the m
th

 row of S by using row 2
r
 of S 

and some combination of rows 1,2,… 2
r-1

.   

S(i,j) 0 1 2 3 4 

1 3 1 0 ∞ ∞ 

2 6 4 2 1 0 

4 12 10 8 7 4 

6 18 16 14 12 10 

Table 2:  S(i,j) Computed for X1=4,A1=6,X2=10,A2=4, 

M=9, m=6 

The first row of S is easily computed since: 

( ) ( )  121 ,/,1 BjAjAMjS ≤−= , ( ) 1,,1 BjjS >∞=  

So for our example (see entries in Table 2): 

( ) ∞==== ))4,3(,1(,0)2,1(,1)1,1(,30,1 SSSS , 

that is, the first B1+1 entries in the first row are the y-

coordinates of the boundary points in F.  Now, we can 

compute the 2
ith

 row from the i
th

 row as follows:  For each 

10 Bj ≤≤ , let T2i,j be defined as: 

( ) ( ) ( ){ }∞≠−∞≠≤≤−− ),(,,,0,, ljiSliSjlljiSliS

then S(2i,j) is given by the smallest number in T2i,j if  it is 

non-empty, and S(2i,j)=∞ if T2i,j is empty.  Thus, for our 

example, S(2,0) is given by: 

{ }

{ } { } { }633)0,1()0,1(

00),0,1(),1(0,1*2

=+=+=

≤≤−+=

SS

llSlST
 

So S(2,0)=min(T2,0)=6 (see Table 2).  The entry S(2,2) is 

derived from T2i2: 

{ }

( ) ( )
( )

( ) ( ){ } { }3,2,3)30(,11,03

)0,1()2,1(

,)1,1()1,1(,)2,1()0,1(

20),2,1(),1(2,1*2

=+++=









+

++
=

≤≤−+=

SS

SSSS

llSlST

 

giving S(2,2)= min(T2,0)=2 (see Table 2).  Furthermore: 

{ }

( ){ } { }00)2,1()2,1(

40),2,1(),1(4,1*2

+=+=

≤≤−+=

SS

llSlST
 

giving S(2,4)=0.  Note that S(1,3) and S(1,4) are ∞, so that 

any terms in T2,4 that involve them do not appear in the set. If 

S(1,2) was also ∞, then T2,4 would be empty, and S(2,4) 

would have been set to ∞.  To compute the 4
th

 row of S, we 

use the 2
nd

 row of S as above. That is, S(a+b,j)=min(Ta+b,j): 

( ){ } ∞≠≤≤−+=+ SjlljbSlaST jba ,0),(,,  

Now, to compute the 6
th

 row, we use the 4
th

 row and the 2
nd

 

row of S.  Thus S(6,4) is given by: 

( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ){ }120,101,82,74,46

)0,4(4,2),1,4(3,2),2,4(

2,2),3,4(1,2),4,4(0,2
4,6

+++++=









+++

++
=

SSSSS

SSSSS
T

 

and so S(6,4)=10=X2.  Therefore, the problem is feasible. 

The algorithm outlined above only produces a feasibility 

certificate, but does not calculate the actual vectors Yi,j .  In 

order to do so, we must associate a pointer to each S(i,j) 

which contains the information regarding the predecessor 

entries used to derive the element.  For example, S(6,4) was 

derived from S(2,2)+S(4,2); and S(2,2) was derived from 

S(1,1)+S(1,1). Since S(1,1) corresponds to the boundary 

point (1,1), this means that Y6,1=1, Y6,2=1,Y5,1=1, Y5,2=1.  

Similarly, S(4,2) was derived from S(2,0)+S(2,2).  S(2,0) was 

derived from S(1,0), so the vectors become Y1 = (0,0,1,1,1,1) 

and Y2 = (3,3,1,1,1,1). 

VI.  COMPUTATIONAL COMPLEXITY AND DESIGN 

TECHNIQUES 

A. Algorithm Complexity 

We can now analyze the time and space requirements of the 

algorithm as out lined above for the two-partition case, and 

then again for the general q partition case.  The two-class 

version of the algorithm computes O(log2(m)) rows of S.  

There are X1+1 entries to each row, and each entry can be 

computed with at most O(X1) steps.  Since X1 is always 

bounded from above by p, the time required to compute one 

row of S is O(p
2
).  Thus, the worst case running time of this 

algorithm, for two classes is given by O(p
2
log2(m)).  Note 

that we have neglected the calculation of the constant B1, 

since the order of the algorithm is dominated by the 

complexity of calculating S (as usually q<<p).   

The space required by the algorithm corresponds to the 

space required to store the rows of S.  Thus, the space 

requirement is O(plog2(m)).  The time and space needed to 

determine the actual values of the vectors Y1,1 andY1,2 is 

O(m).  Since m<p for the problem to be feasible, then we can 

bound this by O(p). 

For the general algorithm, at most O(log2m) “rows” must 

be computed for S.  Each “row” has ∏
−

=
+

1

1
1

q

j jX  entries, 

and each entry can be computed in ( )∏
−

=

1

1

q

j jXO  steps.  Xj 

is bounded from above by p for each 10 −≤≤ qj  , the 

worst case overall running time for the algorithm is given by 

O(p
2(q-1)

log2m)).  The space complexity of the algorithm is 

O(p
(q-1)

log2m)) in the worst case.  The storage complexity of 

the vectors Y is O(mq).  Thus, the algorithm is exponential 

in class size, but not in player (or monster) cardinality.  

Hence, for fixed player class size, the algorithm is scalable in 

the number of players and monsters.   

B. Design Techniques for Player or Adversary Classes 

In the previous development, we made the assumption that 

all m monsters possessed the same strength for simplicity.  

To modify this algorithm to partition players to cover 
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monsters of unique sizes, envision introducing a scaling 

factor into each class strength.  For each unique monster 

strength, you would solve the system: 

( ) ( ) ( ) 12211 ≥+++ qiqii xMAxMAxMA K .  (32) 

This would be akin to creating an index of strengths for 

each class, as applies to the particular monster to which it is 

assigned.  If we order the monster strengths M1<M2<…<Mr 

where r<m, we end up storing this as a q by r matrix, which 

describes the indexed strength of a given player of class i 

with respect to a monster of class j.  In the worst case, 

finding each element S(i,j1,j2,…jq) will require searching 

over every possible assignment of j1+j2+…+jq-1 players with 

r relative monster strengths.  It is easy to see that the 

algorithm becomes exponential in the monster strength 

(class) size.   

 However, if player strengths are drawn exactly from a 

fixed set of values (exact player class values), an interesting 

dynamic scenario can be posed.  Given, at any time in an 

online setting, there is a set P of unoccupied players, all of 

whom have strengths drawn from a predefined set 

distribution, for whom m monsters are about to be released:  

What is the optimal size (in terms of strength) of group that 

they should form?  Put conversely, for P players whose 

strengths are drawn from a set A, what is the largest monster 

M (in terms of strength) that the optimally chosen m player 

groups could defeat? 

 Now, if we recall, the previous algorithm was exact if the 

player strengths equaled their class sizes.  That is, 

{ }
qi AAAp ,,, 21 K∈∀ ,  and given values for m, M, if the 

algorithm generates a feasibility certificate.  Thus, we wish 

to iterate using this algorithm to find, for a given set of 

players splitting into m groups, what is the maximum value 

of M for which the problem is still feasible. 

 The candidate values for M can be bounded from above 

by U=(A1X1+A2X2+…+AqXq)/m, where each Xi is the number 

of players who have strength Ai.  A naïve lower bound would 

be to consider: 

 















= ∑ mXAL

i

ii
i

*)(min ,              (33) 

that is, all groups having approximately the same number of 

players, and the worst case of one of the groups having 

possibly all of the weakest players.  However, Graham’s 

Largest Processing Time optimal scheduling technique tells 

us in order to approach the optimal partition size, we must 

partition players in order of descending strength.  Hence, the 

first m strongest players will be assigned to different groups, 

and the next (p-m) players will be assigned to the group 

whose strength he will increase the most.  So, a tighter lower 

bound on this value would be L=U-max(Ai).  We can divide 

this interval using a binary search method, thereby ensuring 

that within log2(Amax) iterations, we will have converged to 

the optimal value of M for which a partition of players into m 

successful groups exists.  Hence, the worst case running time 

of this procedure would be O(log2Amax*log2m*p
2(q-1)

). 

VII. CONCLUSION 

An algorithm was found to generate a feasibility certificate 

when player strengths were chosen exactly from a predefined 

class distribution.  This algorithm was exponential only in 

the number of classes of players and monsters, not the 

cardinality of the player and monster sets, and thus scales 

well for large numbers of players and monsters drawn from a 

small predetermined set of values. Future work will 

investigate the effect of choosing classes based on given 

player distributions, and the resulting influence on the 

computational complexity of the outlined feasibility (and co-

requisite partitioning) algorithm.  Also, an online approach 

investigating partitioning schemes under a dynamic 

player/monster list is being undertaken.     
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