

Abstract—A problem encountered in online multi-player

gaming communities involves the following: Given a set of p

players each of whom has strength pj, and a set of m monsters,

each of whom has strength mi, is it possible to partition the

players into groups such that each monster is assigned a group

of players that is capable of overcoming said monster? A

feasibility algorithm for the class restricted version of the

problem, which has computational complexity O(p2(q-1) log2m) is

developed, where q is the number of classes.

I. INTRODUCTION

ECENTLY, in the world of online multi-player gaming,

the task of designing player character and adversary

skill levels, then allocating players into groups in order to

maximize player enjoyment in the face of adversarial agents,

based on player skill level, and the strength of the range of

adversaries, has attracted some attention. Most allocation

problems possess a similar nature: there is a set of resources,

and these resources are then allocated in order to complete a

set of tasks. The objective is often to minimize the number

of resources used, or to ensure that all tasks can be

completed (subject to some constraint). This type of

allocation is prevalent amongst many diverse applications; it

is similar to the problem of storage allocation for computer

networks, assigning advertisements to newspaper columns,

the stock cutting problem, the airline servicing problem, and

the truck packing problem, to name a few.

Therefore, a gaming universe usually has a preset list of

adversaries of different strength, and depending upon the

stage of the game, adversaries of a single strength (M) are

released to encounter all groups of players who have

achieved that stage or level. Given an online world, and a

set of unoccupied players that wish to form at most m

groups, what is the maximum strength of adversary that can

be defeated by any group? Put more simply, for what

maximum value of M can all unoccupied players be divided

into m groups such that the strength of each group

cumulatively is at least M?

Characters are designed generally in classes, with a set of

base given attributes that are then customized by the

individual user while exploring the online world through

Manuscript received September 21, 2007. This work was supported in

part by the NSF through grants CCR 0311616 and CCR 0325716. The

authors also wish to thank Dr. Helen Gill for her support.

N. A. Neogi is with the University of Illinois, Urbana-Champaign,

Urbana, IL 61822 USA (phone: 217-333-4741; e-mail: neogi@uiuc.edu).

Cedric Langbort is with the University of Illinois, Urbana-Champaign,

Urbana, IL 61822 USA (e-mail: langbort@uiuc.edu).

modes of expression. However, there are only a limited

number of base character classes, and thus base character

strengths, due to maintenance constraints. A question

becomes, given a particular online world, what is the most

efficient separation of character classes Ai in order partition

random arrangements of players in groups of equal strength?

A brief survey of related problems follow in Section II.

Section III formally defines the problem, and addresses

issues of NP-completeness. A class partition method is

introduced in Section IV and an algorithm that bounds the

feasible space are outlined. A simple example is solved

explicitly in Section V. Section VI analyzes the time and

space complexity of the calculation, conclusions and

avenues for future work are enumerated in section VII.

II. RELATED WORK

The problem of player allocation in a dynamic game

environment is similar to that of the multi-processor

scheduling problem, the packing problem, the partitioning

problem and the subset sum problem, all of which are closely

related. An excellent treatment of these subjects can be

found in [6, 10, 15]. We briefly summarize the state-of- the-

art in some of these domains in the following section.

Multi-Processor Scheduling involves scheduling a given

set of tasks, each with execution time ti, on m different

processors in order to minimize the makespan (completion

time of last processor). The tasks often have release times,

deadlines, priorities and precedence relationships associated

with each of them; and the problem is, in general, NP-

complete. However, specific restricted cases of the problem

have solutions that are pseudo-polynomial or even fully

polynomial. Some of the best known scheduling algorithms

in this genre are: Longest Processing Time (LPT) [8] which

never produces schedules greater that 4/3 of optimum

(denoted as 4/3OPT); Multifit [1], which is a modified bin-

packing heuristic that generates schedules at most 11/9OPT;

and Divide and Fold (D&F) [14].

Bin Packing is a fundamental problem in the domains of

computer science, discrete optimization and communications

networks [2]. It consists of determining the minimum

number k of bins of unit size needed to pack a list of

elements, each possessing size less that 1, which is NP-

complete. The First Fit Decreasing (FFD) and Best Fit

Decreasing (BFD) algorithms have essentially the same

asymptotic performance characteristics in the offline case,

where the solution is no worse than 122% of optimal [9].

Partitioning and the Online-World Design Problem for Multi-Player

Games

Natasha A. Neogi and Cedric Langbort, Member, IEEE

R

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

WeC14.1

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 1697

Vega and Lueker [4] constructed a polynomial time

approximation scheme (PTAS) for bin-packing, and a

refinement on this scheme by Karmakar and Karp’s has

running time of approximately O(n
9
).

Many partition problems, such as three dimensional

matching (3DM), exact cover by three sets (X3C), or three

partition are known to be NP-complete [7]. The worst-case

performance ratio of Karmarkar-Karp’s offline differencing

method for the Partition Problem is 7/6OPT [5]. The

partition problem is a special case of the Subset Sum

problem, which is stated as follows: given a positive integer

bound and a set of n positive integers find a subset whose

sum is closest to, but not greater than, the bound. There are

randomized approximation algorithms for this problem with

linear time and space complexity of O(n log(n)) that

outperforms Martello and Toth's [12] quadratic greedy

search, whose time complexity is O(n
2
).

III. PROBLEM DESCRIPTION

A. Statement and Definitions

Consider the following static scenario for multi-player

games where groups of players “band” together in order to

overcome a number of monsters (that is, no player can be

assigned to more than one monster). In order for a group of

players to overcome a monster, the “value” (summative total)

of the collective “strength” of players must equal or exceed

the value of the monster. Thus, the simple static form of the

problem becomes: Given a finite set of players and a finite

set of monsters, is it possible to assign the players into

groups such that each monster is vanquished?

More formally, the problem can be stated as follows:

There is the set M of “monsters”, which has cardinality m,

and each of the monsters possesses a valuation (strength)
+∈ Zmi :

{ }mimmM ii <<>= 0,0 (1)

and there is the set P of “players”, which has cardinality p,

and each of the players possesses a valuation
+∈ Zp j :

{ }pjppP jj <<>= 0,0 (2)

Does there exist a set { }ms PPPP K,, 21= where

UI
subasuba PP

suba

PP

a PPPP
∈∈

⊆=∧∅= (3)

and MPf sub →∃ : where

babasubba PPPfPfPPP =⇔=∈∀)()(,, (4)

i

Pcard

l

lkisubki mpPfmPPMm
k

≥







∧=∈∃∈∀ ∑

=

)(

1

)(, (5)

that is, does there exist a partition suba PP ∈ over the set

Psub, where each element Pa (a unique set of players) of Psub

corresponds uniquely to a monster mi in the set M, which the

summative strength of its elements is capable of

overcoming? Note that the sets of players in Psub are

mutually disjoint, thereby allowing each player to join only

one group. Similarly, the cardinality of M must equal the

cardinality of Psub, as the function f is bijective, thus each

monster is guaranteed to be handled by exactly one group.

As the problem is currently stated, it is a decision problem.

B. NP-Completeness of General Problem

In the general case, this problem is NP-complete. This can

be seen using the simple restriction to the multi-processor

scheduling problem, which is stated as follows: Given a

finite set Aa ∈ of tasks, each of which has a length
+∈ Zal)(, a number

+∈ Zm of processors, a deadline

+∈ ZD , is there a partition mAAAA ∪∪= K21 of A

into m disjoint sets such that:

Dmial
iAa

≤








≤≤∑
∈

1:)(max (6)

Consider the restriction of the group assignment problem to

the case where all Dmi = (all monsters have equal

strength). The question becomes, is it possible to create a

partition { }ms PPPPP K,, 21== of players such that:

DpPP
kPcard

l

lk ≥







∈∀ ∑

=

)(

1

min (7)

which is exactly equivalent to the multi-processor scheduling

problem. Note that this problem is NP-Hard, since

generating an answer to the decision problem is equivalent to

generating a Karp (polynomial-time many-one) reduction of

the problem.

IV. PLAYER CLASSES AND FEASABILITY

In the general case, determining whether a fixed set of

players can cover a given group of monsters is not feasible.

The simple initial conditions that:









≥









∧≥ ∑∑

==

)(

1

)(

1

)()(
Mcard

l

l

Pcard

j

j mpMcardPcard (8)

provide a quick first check for infeasibility, but give no

insight as to the feasibility of the problem.

However, if we consider a fixed number of monsters, and

divide up the players into strength classes, whereby every

player in the class is at least as strong as the class type, there

is the possibility of gaining some insight into the feasibility

of the problem.

A. Class Definition

 Consider that we have a finite number of positive integer

values A={A1, A2,…,Aq} ordered qAAA <<< K21 , to

denote the player class strengths. Then we have q classes of

players, where the number of players in class Ak is given by:

1698

}0,,{ 1 qkPpApApcardX jkjkjk ≤≤∈<≤= +
 (9)

where we define A0=0, and Aq+1=∞, and card is the set

cardinality operator (denoting the equinumerosity of the set).

Thus, we have created a discrete partition over the set of

players, based on classes, where any element of the partition

Ak has strength at least equal to Ak.

Note that we can alternatively define player classes:

}0,,{ 11 qkPpApApcardX jkjkjk ≤≤∈≤<=′
++

(10)

where we define A0=0, and Aq+1=∞, and any player in the k
th

partition Xk has strength at most equal to Ak.

B. Algorithm for Generic Partition

 We want to determine if there are non-negative integer

vectors:

() ()
qmqqqm YYYYYYYY ,,2,11,1,21,11 ,,,,,,, KKK == (11)

such that:

∑
=

≤
m

i

jji XY
1

, , for each qj ≤≤1 (12)

and

∑
=

≥
q

j

ijij MYA
1

, , for each mi ≤≤1 (13)

For each mi ≤≤1 and qj ≤≤1 , Yi,j gives the number of

players of strength at least Aj that are assigned to the i
th

monster. The second condition, Eqn (13), ensures that the

strength of each party is greater than or equal to that of the

monster it is assigned, and the first condition, Eqn (12),

guarantees that the total number of players assigned from any

given class is less than or equal to the number of available

players from that class.

 To approach a feasibility guarantee with the modified

problem, we consider the equation (where all Mi are equal):

MxAxAxA qq =+++ K2211 (14)

such that Eqn (14) defines a surface in the q-dimensional

space. We need to pick m non-negative integer valued

points on or above the surface so that the sum of the j
th

coordinates of these m points is at most Xj. We only need to

consider the integer points in the bounded area described by:

qjXx jj ≤≤≤≤ 1,0 and Eqn (14).

If we were to choose points via an enumerative approach,

the running time of the algorithm would be proportional to

p
m
 and thus exponential in the size of the input, since there

may be O(p) boundary points. However, we can use a

dynamic programming approach to pick these m points more

efficiently.

Without loss of generality, we may assume Xq=max(Xi).

For each 11 −≤≤ qj we let  { }
jjj AMXB /,min= . The

set of boundary points we consider is given by:










































−= ∑

−

=

− q

q

i

iiq AjAMjjjF
1

1

121 ,,,, K (15)

such that 1111 0,,0 −− ≤≤≤≤ qq XjXj K . We then

define S to be the q-dimensional table with size m in the first

dimension and size Xj+1 in the (j+1)
th

 dimension for each

11 −≤≤ qj .

For each mi ≤≤1 , 1111 0,,0 −− ≤≤≤≤ qq XjXj K ,

()
11 ,,, −qjjiS K gives the smallest sum of the q

th

coordinates that can be obtained by choosing i boundary

points such that the sum of the l
th

 coordinates of these i

points is jl for each 11 −≤≤ ql .

We define () ∞=−11 ,,, qjjiS K if we cannot find i

boundary points such that the sum of the l
th

 coordinates of

these i points is jl for each 11 −≤≤ ql . Thus, there are

non-negative integer vectors:

() ()
qmqqqm YYYYYYYY ,,2,11,1,21,11 ,,,,,,, KKK == (17)

satisfying Eqns (12,13) if and only if there exists:

 () qq XXXXmS ≤−121 ,,,, K . (18)

 We compute S(1,j1,j2,…,jq-1) easily; specifically

S(1,j1,j2,…,jq-1)=jq if the point (j1,j2,…,jq-1,jq)∈F; otherwise

set S(1,j1,j2,…,jq-1)=∞. Compute S(2i, ,j1,j2,…,jq-1):

()












−−−

+
=

−−

−

−
),,,,(

),,,(
min,,2

112211

121

11

qq

q

q
ljljljiS

llliS
jjiS

K

K
K (19)

such that

1111 0,,0 −− ≤≤≤≤ qq jljl K (20)

and

∞≠−−− −−),,,,(112211 qq ljljljiS K (21)

and

∞≠−),,,(121 qllliS K , (22)

if the set is non empty. If the set is empty,

() ∞=−11 ,,2 qjjiS K (23)

If m is not a power of 2, we compute S(m,…) using a

combination of S(2
r
,…), S(2

r-1
,…),…, S(1,…), where r is the

greatest integer value such that 2
r
<m so that:

()












−−−

+
=+

−−

−

−
),,,,(

),,,(
min,,

112211

121

11

qq

q

q
ljljljbS

lllaS
jjbaS

K

K
K

(24)

when 1111 0,,0 −− ≤≤≤≤ qq jljl K ;

∞≠−−− −−),,,,(112211 qq ljljljbS K (25)

and ∞≠−),,,(121 qlllaS K , otherwise it is set to ∞.

Note that this provides a feasibility certificate to the class-

partitioned player problem (that is, if all players in a class

have value exactly equal to their class partition value).

Otherwise, if all players have a value at least that of their

class partition value, then if this algorithm generates a

feasible solution, the original problem with unique player

values is also feasible. Conversely, if the class partitioning

scheme of Eqn (10) is chosen, that is, all players have a

value of at most their class partition value, and this algorithm

cannot generate a feasible solution, then the original problem

1699

with unique player values is infeasible. A simple numerical

example for this algorithm is illustrated in the next section.

V. NUMERICAL EXAMPLE

A. 2-Partition Class Algorithm

Let us consider the simplest possible case where we have

two player classes. Thus, we have X1 players of at least

strength A1, and X2 players of at least strength A2, where

X1+X2=p. If we are given that we have m monsters, which

we will assume have strength M, and that all of these values

are non-negative integers, then we must find the non-

negative integer vectors:

 Y1=(Y1,1, Y2,1,…,Ym,1) and Y2=(Y1,2, Y2,2,…,Ym,2) (26)

such that:

2

1

2,1

1

1, XYXY
m

i

i

m

i

i ≤∧≤ ∑∑
==

 (27)

and

MAYAY ii ≥+ 22,11, for each mi ≤≤1 . (28)

 Consider the line (and associated area) formed by:

 MyAxA ≥+ 21 (29)

as shown in Figure 1, with the candidate area integer points

for selection further bounded by

,0,0 21 XyXx ≤≤≤≤ the constraints that require that

at most the maximum number of players allocated to any

monster is at most the cardinality of the class.

Figure 1 illustrates all of the candidate integer value points

(x’,y’) that could possibly be selected and evaluated for Yi,1

and Yi,2 shown in the shaded points. However, we only need

to consider the boundary points, which are shown circled in

Figure 1, since all other candidate points are subsumed by

one of them.

Figure 1: Candidate Integer Valued Points

Let us assume 21 XX ≤ , without loss of generality. We

then have  ()111 ,min AMXB = , the minimum of either

the upper integer value intersection point with the x-axis or

the number of players in class 1. For each integer value of j

between B1 and X1, we let fj be the point in the Euclidean

plane defined by () ()21, AjAMjf j −= , the closest

integer-valued point above the line created by Eqn (29) in

the area of interest. The set of boundary points we will

consider is given by { }
10 BjfF j ≤≤= . Then, we

define S to be a two-dimensional table having m rows and

X1+1 columns. The rows are numbered from 1 to m and the

columns are numbered from 0 to X1. For each mi ≤≤1

and 10 Xj ≤≤ , S(i,j) gives the smallest sum of the y-

coordinates that can be obtained by choosing i boundary

points from F such that the sum of the x-coordinates of these

i points is j. For convenience, we let S(i,j)=∞ if we cannot

find i boundary points from F such that the sum of the x-

coordinates of these i points is j. It is now easy to see that

there are non-negative integer vectors Y1=(Y1,1, Y2,1,…,Ym,1)

and Y2=(Y1,2, Y2,2,…,Ym,2) satisfying the above constraints if

and only if () 21, XXmS ≤ .

B. Numerical Example Specification

Consider the simple problem where we have 14 players, and

6 monsters, all of whom have strength equal to 9. The player

distribution is given in the following table:

Player Strength Value Player Strength Value Cardinality

4 6

5 4

6 2

7 1

8 1

Table 1: Player Strength Distribution

The quick condition of Eqn (8) shows us that the problem

cannot be deemed infeasible immediately, as the total player

strength of 71 is greater that the total monster strength of 54,

and the cardinality of players is greater than the cardinality

of monsters.

Let us consider the simple two-class case, and pick the

partition point at 6; that is, X1=4, A1=6, X2=4, A2=10. That

is, there are 4 players who have at least strength equal to 6,

and there are 10 players who have strength at least equal to 4

(and at most equal to 6). Thus, q=2 and 946 ≥+ yx

defines the region, bounded by 100,40 ≤≤≤≤ yx

where integer points are of interest.

Since X1<X2, we have that

 ()  () 26/9,6min/,min 111 === AMXB (30)

For each 20 ≤≤ j we let fj be the point in the plane

defined by

() () () ()4/69,/, 21 jjAjAMjf j −=−= . (31)

So { } () () (){ }0,2,1,1,3,00 1 =≤≤= BjfF j are the

boundary points we consider. Then S(i,j) is a two

dimensional table having m=6 rows and X1+1=5 columns

shown below. The rows i are numbered 1 to 6, and the

columns j from 0 to 4. Then, each S(i,j) gives the smallest

sum of the y-coordinates that can be obtained by choosing i

boundary points from F such that the sum of the x-

1700

coordinates are j. Since we are interested only in the last row

of S (where S(6,4) occurs), we do not need to compute every

row. It is sufficient to compute only O(log2(m)) rows of S if

m is a power of 2 (i.e. m=2
r
) for some non-negative integer r.

If m is not a power of 2, we then first generate rows 1,2,…

2
r
, where r is the largest non-negative integer such that 2

r
<m.

We can then compute the m
th

 row of S by using row 2
r
 of S

and some combination of rows 1,2,… 2
r-1

.

S(i,j) 0 1 2 3 4

1 3 1 0 ∞ ∞

2 6 4 2 1 0

4 12 10 8 7 4

6 18 16 14 12 10

Table 2: S(i,j) Computed for X1=4,A1=6,X2=10,A2=4,

M=9, m=6

The first row of S is easily computed since:

() ()  121 ,/,1 BjAjAMjS ≤−= , () 1,,1 BjjS >∞=

So for our example (see entries in Table 2):

() ∞====))4,3(,1(,0)2,1(,1)1,1(,30,1 SSSS ,

that is, the first B1+1 entries in the first row are the y-

coordinates of the boundary points in F. Now, we can

compute the 2
ith

 row from the i
th

 row as follows: For each

10 Bj ≤≤ , let T2i,j be defined as:

() () (){ }∞≠−∞≠≤≤−−),(,,,0,, ljiSliSjlljiSliS

then S(2i,j) is given by the smallest number in T2i,j if it is

non-empty, and S(2i,j)=∞ if T2i,j is empty. Thus, for our

example, S(2,0) is given by:

{ }

{ } { } { }633)0,1()0,1(

00),0,1(),1(0,1*2

=+=+=

≤≤−+=

SS

llSlST

So S(2,0)=min(T2,0)=6 (see Table 2). The entry S(2,2) is

derived from T2i2:

{ }

() ()
()

() (){ } { }3,2,3)30(,11,03

)0,1()2,1(

,)1,1()1,1(,)2,1()0,1(

20),2,1(),1(2,1*2

=+++=









+

++
=

≤≤−+=

SS

SSSS

llSlST

giving S(2,2)= min(T2,0)=2 (see Table 2). Furthermore:

{ }

(){ } { }00)2,1()2,1(

40),2,1(),1(4,1*2

+=+=

≤≤−+=

SS

llSlST

giving S(2,4)=0. Note that S(1,3) and S(1,4) are ∞, so that

any terms in T2,4 that involve them do not appear in the set. If

S(1,2) was also ∞, then T2,4 would be empty, and S(2,4)

would have been set to ∞. To compute the 4
th

 row of S, we

use the 2
nd

 row of S as above. That is, S(a+b,j)=min(Ta+b,j):

(){ } ∞≠≤≤−+=+ SjlljbSlaST jba ,0),(,,

Now, to compute the 6
th

 row, we use the 4
th

 row and the 2
nd

row of S. Thus S(6,4) is given by:

() () ()
() ()

() () () () (){ }120,101,82,74,46

)0,4(4,2),1,4(3,2),2,4(

2,2),3,4(1,2),4,4(0,2
4,6

+++++=









+++

++
=

SSSSS

SSSSS
T

and so S(6,4)=10=X2. Therefore, the problem is feasible.

The algorithm outlined above only produces a feasibility

certificate, but does not calculate the actual vectors Yi,j . In

order to do so, we must associate a pointer to each S(i,j)

which contains the information regarding the predecessor

entries used to derive the element. For example, S(6,4) was

derived from S(2,2)+S(4,2); and S(2,2) was derived from

S(1,1)+S(1,1). Since S(1,1) corresponds to the boundary

point (1,1), this means that Y6,1=1, Y6,2=1,Y5,1=1, Y5,2=1.

Similarly, S(4,2) was derived from S(2,0)+S(2,2). S(2,0) was

derived from S(1,0), so the vectors become Y1 = (0,0,1,1,1,1)

and Y2 = (3,3,1,1,1,1).

VI. COMPUTATIONAL COMPLEXITY AND DESIGN

TECHNIQUES

A. Algorithm Complexity

We can now analyze the time and space requirements of the

algorithm as out lined above for the two-partition case, and

then again for the general q partition case. The two-class

version of the algorithm computes O(log2(m)) rows of S.

There are X1+1 entries to each row, and each entry can be

computed with at most O(X1) steps. Since X1 is always

bounded from above by p, the time required to compute one

row of S is O(p
2
). Thus, the worst case running time of this

algorithm, for two classes is given by O(p
2
log2(m)). Note

that we have neglected the calculation of the constant B1,

since the order of the algorithm is dominated by the

complexity of calculating S (as usually q<<p).

The space required by the algorithm corresponds to the

space required to store the rows of S. Thus, the space

requirement is O(plog2(m)). The time and space needed to

determine the actual values of the vectors Y1,1 andY1,2 is

O(m). Since m<p for the problem to be feasible, then we can

bound this by O(p).

For the general algorithm, at most O(log2m) “rows” must

be computed for S. Each “row” has ∏
−

=
+

1

1
1

q

j jX entries,

and each entry can be computed in ()∏
−

=

1

1

q

j jXO steps. Xj

is bounded from above by p for each 10 −≤≤ qj , the

worst case overall running time for the algorithm is given by

O(p
2(q-1)

log2m)). The space complexity of the algorithm is

O(p
(q-1)

log2m)) in the worst case. The storage complexity of

the vectors Y is O(mq). Thus, the algorithm is exponential

in class size, but not in player (or monster) cardinality.

Hence, for fixed player class size, the algorithm is scalable in

the number of players and monsters.

B. Design Techniques for Player or Adversary Classes

In the previous development, we made the assumption that

all m monsters possessed the same strength for simplicity.

To modify this algorithm to partition players to cover

1701

monsters of unique sizes, envision introducing a scaling

factor into each class strength. For each unique monster

strength, you would solve the system:

() () () 12211 ≥+++ qiqii xMAxMAxMA K . (32)

This would be akin to creating an index of strengths for

each class, as applies to the particular monster to which it is

assigned. If we order the monster strengths M1<M2<…<Mr

where r<m, we end up storing this as a q by r matrix, which

describes the indexed strength of a given player of class i

with respect to a monster of class j. In the worst case,

finding each element S(i,j1,j2,…jq) will require searching

over every possible assignment of j1+j2+…+jq-1 players with

r relative monster strengths. It is easy to see that the

algorithm becomes exponential in the monster strength

(class) size.

 However, if player strengths are drawn exactly from a

fixed set of values (exact player class values), an interesting

dynamic scenario can be posed. Given, at any time in an

online setting, there is a set P of unoccupied players, all of

whom have strengths drawn from a predefined set

distribution, for whom m monsters are about to be released:

What is the optimal size (in terms of strength) of group that

they should form? Put conversely, for P players whose

strengths are drawn from a set A, what is the largest monster

M (in terms of strength) that the optimally chosen m player

groups could defeat?

 Now, if we recall, the previous algorithm was exact if the

player strengths equaled their class sizes. That is,

{ }
qi AAAp ,,, 21 K∈∀ , and given values for m, M, if the

algorithm generates a feasibility certificate. Thus, we wish

to iterate using this algorithm to find, for a given set of

players splitting into m groups, what is the maximum value

of M for which the problem is still feasible.

 The candidate values for M can be bounded from above

by U=(A1X1+A2X2+…+AqXq)/m, where each Xi is the number

of players who have strength Ai. A naïve lower bound would

be to consider:

 















= ∑ mXAL

i

ii
i

*)(min , (33)

that is, all groups having approximately the same number of

players, and the worst case of one of the groups having

possibly all of the weakest players. However, Graham’s

Largest Processing Time optimal scheduling technique tells

us in order to approach the optimal partition size, we must

partition players in order of descending strength. Hence, the

first m strongest players will be assigned to different groups,

and the next (p-m) players will be assigned to the group

whose strength he will increase the most. So, a tighter lower

bound on this value would be L=U-max(Ai). We can divide

this interval using a binary search method, thereby ensuring

that within log2(Amax) iterations, we will have converged to

the optimal value of M for which a partition of players into m

successful groups exists. Hence, the worst case running time

of this procedure would be O(log2Amax*log2m*p
2(q-1)

).

VII. CONCLUSION

An algorithm was found to generate a feasibility certificate

when player strengths were chosen exactly from a predefined

class distribution. This algorithm was exponential only in

the number of classes of players and monsters, not the

cardinality of the player and monster sets, and thus scales

well for large numbers of players and monsters drawn from a

small predetermined set of values. Future work will

investigate the effect of choosing classes based on given

player distributions, and the resulting influence on the

computational complexity of the outlined feasibility (and co-

requisite partitioning) algorithm. Also, an online approach

investigating partitioning schemes under a dynamic

player/monster list is being undertaken.

ACKNOWLEDGMENT

N. A. Neogi thanks Dimitri Harikiopoulou for providing

much insight through his work and input on the state

dependent aircraft scheduling problem.

REFERENCES

[1] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson, “An application

of Bin-Packing to Multiprocessor Scheduling, SIAM Journal of

Computing, Vol. 7, No. 1, Feb. 1978, pp. 1-17.

[2] E. G. Coffman Jr. M. R. Garey, D. S. Johnson, “Approximation

Algorithms for Bin Packing: A Survey,” in D. Hochbaum (Ed.),

Approximation Algorithms for NP-Hard Problems, PWS Publishing,

Boston, 1997, pp. 46-93..

[3] E. Davis and J. Jaffe, “Algorithms for Scheduling Tasks on Unrelated

Processors,” Journal of ACM, Vol. 28, No. 4, Oct. 1981, pp. 721-736.

[4] W. Fernandez de la Vega and G. S. Lueker, “Bin packing can be

solved within 1+ε in linear time”, Combinatorics, Vol. 1, 1981, pp.

349-355

[5] M. Fischetti and S. Martello1, “Worst-case analysis of the

differencing method for the partition problem”, Journal of

Mathematical Programming, Vol. 37, No. 1, Feb., 1987, pp. 117-120.

[6] M. R. Garey, R. L. Graham, D. S. Johnson, A. C. Yao, “Resource

constrained scheduling as generalized bin packing”, J. Combinatorial

Theory Ser. A, Vol. 21, 1976, pp. 257-298.

[7] M.R. Garey and D. S. Johnson, Computers and Intractability: A

Guide to the Theory of NP-completeness. Freeman, San Francisco,

1979.

[8] R. L. Graham, Bounds on the Performance of Scheduling Algorithms,

Computer and Job/Shop Scheduling Theory, (E.G. Coffman, Ed.),

John Wiley, New York, 1976..

[9] D. S. Johnson., Near-optimal bin packing algorithms, PhD Thesis,

MIT, Cambridge, MA, 1973.

[10] R. M. Karp, “Reducibility among combinatorial problems,” In

Complexity of Computer Computations, R. E. Miller and J. W.

Thatcher, Eds., Plenum Press, New York, 1972, pp. 85-103.

[11] J. Y-T. Leung, “On Scheduling Independent Tasks with Restricted

Execution Times”, Operations Research, Vol. 30, No. 1. (Jan. - Feb.,

1982), pp. 163-171.

[12] S, Martello and P. Toth , Knapsack Problems: Algorithms and

Computer Implementations, Chichester, John Wiley & Sons, 1990.

[13] S. T. McCormick, S. R. Smallwood, and F. C. R. Spieksma, “A

polynomial algorithm for multiprocessor scheduling with two job

lengths,” Mathematics of Operations Research, Vol. 26, No. 1, Feb

2001, pp. 31-49.

[14] C. D. Polychronopoulos, On Program Restructuring, Scheduling and

Communication for Parallel Processor Systems, Ph.D. Dissertation,

Computer Science Department, UIUC, Champaign, IL, 1986.

[15] S. Sahni, “Algorithms for Scheduling Independent Tasks”, Journal of

ACM. Vol. 23, No. 1, Jan 1976, pp. 116-127.

1702

