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Abstract— We introduce and address the sensor arrangement
problem. We ask when and where it is best to sample an
unknown scalar field (say of temperatures or chemical con-
centrations) in order to estimate it to within a certain error
tolerance. This question is necessary to decide where to place
sensors in sensing phenomena which can be described as fields
over large areas. We assume that the field is modeled as a
linear combination of a set of basis functions and that the
sensor measurements are noisy. Based on linear estimation
theory, estimation error can be shown to be a function of
sampling errors and of the geometric arrangement of sampling
locations. We refer to the latter as the sensor arrangement.
Our approach is to characterize different classes of sensor
arrangements and to understand the circumstances under
which the reconstructed fields for arrangements from these
classes satisfy an error tolerance limit. We refer to these classes
as Error Tolerant Arrangement Classes or ETAC’s. With a
knowledge of the nature of ETAC’s we will have articulated
constraints for placing sensors in time and space; furthermore,
by identifying possible sampling locations in advance, we will
also have simplified the planning of the motion of mobile sensors
for that field. In this paper we discuss three types of ETAC’s
for fields that are modeled as 2D trigonometric polynomials:
uniform sensor arrangements, ∆-dense sensor arrangements
and incrementally constructed sensor arrangements.

I. INTRODUCTION

In this paper we consider the sensor arrangement problem.

The question we ask is when and where to sample an

unknown spatio-temporal field in order to obtain a good

estimate of the field. We refer to the geometric arrangement

of sampling locations as a sensor arrangement. The forward

problem of estimating a field given the noisy sample values

for a given sensor arrangement is widely addressed in

many areas of science and engineering. However the inverse

problem, i.e., understanding where to take samples, is seldom

addressed. We argue that the sensor arrangement problem

is of fundamental importance in the nascent area of sensor

networks.

Sensor networks have shown great promise in under-

standing phenomena by providing measurements at spatial

and temporal scales that were not possible before. Many

of the phenomena that sensor networks can sense involve

physical quantities such as temperature, light intensity, chem-

ical concentration and density, and can be represented as

spatio-temporal fields. For instance, in large ecological sys-

tems such as lakes, rivers and oceans, one is interested in

monitoring temperature, pH levels, chemical levels, algae

concentrations, salinity, etc. in certain regions. In addition,

in the case of potential disasters such as chemical spills and
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the leakage of hazardous gases into the environment, one is

interested in monitoring the evolution of concentration levels.

The spatio-temporal mapping of such physical quantities are

often continuous and can be viewed as scalar fields.

Depending on the accuracy required, estimating a spatio-

temporal field may require a large number of measurements.

Some arrangements of sampling sensors may be disadvanta-

geous in that they may require a larger number of sensors

to reconstruct the field with the same accuracy as other

geometric arrangements of sensors, and the question of

where to place static sensors is crucial. Sometimes using just

static sensors alone may not be feasible or sufficient, and a

few additional mobile sensors may be necessary. Mobility

has the effect of multiplying the number of sensors in the

field. Theoretically, a sensor which can move infinitely fast

can be at many places at one time instance. A sensor moving

at some finite velocity effectively enables that single sensor

to act like some finite number of sensors in time-space,

enabling what we refer to as multiplicity. In our view, sensor

mobility can be categorized into two types, incidental and

intentional. We define incidental mobility as a situation in

which a sensor does not have control over its motion. In these

situations a sensor moves passively under the influence of the

environment (e.g., sensors moving with water currents and

nodes mounted on animals). We define intentional mobility

as a situation in which a sensor has control over its motion

and can actively move to a desired location (e.g., nodes

mounted on mobile robots). However, a clear understanding

does not exist for how the sensors, static or mobile, must be

arranged to ensure good sampling. 1

In this paper we define the sensor arrangement problem

and propose an approach to determining feasible solution

spaces to the question of which sensor arrangements ensure

that the estimation error does not exceed some pre-specified

threshold. We assume that an unknown field to be estimated

is represented as a linear combination of a set of basis

functions. We further assume that the measurement model

involves random additive noise. In this setting, according

to linear estimation theory, [1], [2], the estimation error is

a function of the sensor arrangement. Any solution to the

sensor arrangement problem belongs to the space of sensor

arrangements each of which guarantees that the estimation

error is less than the error tolerance. However characterizing

this space is difficult. Instead, our approach consists of con-

sidering different classes of sensor arrangements such that

for each class, any of its sensor arrangement ensures that the

1In this paper, we exclusively focus on the sensing part of ‘sensor’
networks and leave the networking part for future work.
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estimation error is always less than the error tolerance. We

refer to these classes as Error Tolerant Arrangement Classes

or ETAC’s. We say that each instance of an arrangement from

an ETAC is error tolerant. ETAC’s are suitably characterized

feasible solution spaces to the sensor arrangement problem.

They are also convenient when we study mobile sensor

networks. In the case of incidentally mobile sensors, ETAC’s

can be used as a tool to analyze the feasibility of a particular

mobility model for sampling. In the case of intentionally

mobile sensors, ETAC’s may simplify and characterize the

motion planning problem.

Here we consider 2D fields that are modeled as trigono-

metric polynomials. We assume Additive White Gaussian

Noise (AWGN) model for measurements. We discuss three

types of ETAC’s - uniform sensor arrangements, ∆-dense

sensor arrangements and incrementally constructed arrange-

ments. The first two classes are characterized by a single

parameter whereas as the name suggests the third class

involves an explicit construction method.

The remainder of the paper is organized as follows. In

Section II, we summarize the related work. In Section III,

we formulate the sensor arrangement problem for general

cases as well 2D trigonometric polynomial fields and state

our approach. We discuss three types of ETAC’s for trigono-

metric polynomial fields in Section IV in detail and conclude

in Section V.

II. RELATED WORK

In almost every signal processing application, the uniform

sampling arrangement is the most widely used sampling

arrangement. According to the Shannon sampling theorem,

the uniform sampling density must be at least the Nyquist

rate (twice the highest frequency) in a band-limited signal in

order to be able to reconstruct the signal perfectly [3]. Yen

proposed a method to reconstruct a band-limited signal from

non-uniform samples when the average sampling density

is at least the Nyquist rate [4]. However, this method is

numerically unstable. Duffin and Schaeffer first proposed

conditions on the sampling pattern under which stable re-

construction of a band-limited signal is possible [5]. Such

a sampling pattern is referred to as a frame. In [6], [7],

[8], theoretical and numerical aspects of the reconstruction

of a special type of band-limited signal, a trigonometric

polynomial, from non-uniform samples have been studied. In

this case the stable reconstruction is related to ‘conditioning’

of a certain matrix. In [7], Gröchenig shows that for ∆-

dense sampling arrangements, this matrix is well-conditioned

and stable reconstruction is possible. Our choice of ∆-dense

arrangements as a class of error tolerant arrangements for

trigonometric polynomial fields is inspired from the work in

[7], [8].

In the area of sensor networks, the importance of dealing

with inevitable non-uniform sensor arrangements is empha-

sized recently [9]. In [10], [11], [12], [13], [14] the authors

deal with the sensor arrangement problem. The sensor ar-

rangement problem is closely related to optimal experiment

design and is also known as the sampling design problem. In

[10], the authors consider the near optimal sensor arrange-

ment for Gaussian processes. In [11], Zhang and Sukhatme

propose an adaptive sampling approach for a single mobile

sensor mounted on a boat in combination with a few static

sensors. The approach is based on the optimal experiment

design work. In [12], the authors consider elliptical motion

paths for mobile underwater vehicles and consider the sensor

arrangement problem restricted to these paths. In [13], [14],

the authors consider the sensor arrangement problem for

trigonometric polynomials in the Bayesian estimation frame-

work. They consider the probabilistically generated sampling

arrangements and use the asymptotic analysis techniques to

obtain error tolerance values. In addition to the above work,

in [15], the authors use active learning methods for mobile

sensors for adaptive sampling.

III. PROBLEM FORMULATION

Let f(x) indicate an unknown scalar field on the bounded

domain [0, 1]d in the d-dimensional space. We assume that

f(x) has the following form,

f(x) =

m
∑

k=1

akφk(x) (1)

where φk’s form a set of m known orthonormal basis

functions. Orthonormality is defined as:

∫

D

φk(x)φl(x)dx = δkl, k, l = 1, 2, ...,m (2)

where D = [0, 1]d and δkl indicates the Kronecker Delta

function. Thus, ak’s constitute a set of m unknown fixed

parameters of the field. We assume that sensors take mea-

surements at a point. Typically, these measurements are

noisy and we use an additive noise model to capture these

imperfections. Thus, we assume that measurement y(x) has

the following form.

y(x) = f(x) + ε(x) (3)

where ε(x) denotes noise. We refer to x as a sensor location

or sampling location. We measure field values at n different

sampling locations, where n ≥ m. Let yi denote the field

value at location xi, where i = 1, 2, · · · , n. Under these

settings, the problem of estimating f(x) is now reduced to

estimating ak’s as a function of n data pairs (yi,xi). We use

the following vector and matrix notation:

y =











y1

y2

...

yn











, e =











ε(x1)
ε(x2)

...

ε(xn)











, zk =











φk(x1)
φk(x2)

...

φk(xn)











,

v(x) =











φ1(x)
φ2(x)

...

φm(x)











, a =











a1

a2

...

am











,
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V =











vT(x1)
vT(x2)

...

vT(xn)











=
(

z1 z2 · · · zm

)

.

Further, let X = {x1,x2, · · · ,xn} be the set of n

sampling locations. We refer to X as a sensor arrangement.

y is referred to as an observation vector and V as an

observation matrix. Using the above notation, we can express

f(x) and the measurement data as:

f(x) = vT (x) · a (4)

y = Va + e (5)

We assume that the noise vector e has zero mean, and

its covariance matrix Q = E[eT e] is known and is positive

definite. Given the setting in (5), the problem of finding a

good estimate â of a has been studied extensively in the

literature on linear estimation [1],[2]. A variety of error

metrics that capture the difference between â and a and the

estimators that minimize these metrics have been discussed.

In this paper, we consider the minimum variance unbiased

estimator (MVUE). MVUE is based on zero bias, i.e.,

E [â − a] = 0, and minimizes the variance of the error â−a.

E
[

‖â − a‖2
]

=

m
∑

k=1

E
[

(âk − ak)2
]

(6)

According to the Gauss-Markov theorem, the optimal esti-

mate â is given by:

â = (V∗Q−1V)−1V∗Q−1y (7)

and the error covariance is given by:

E
[

(â − a)(â − a)T
]

= (V∗Q−1V)−1 (8)

Here V∗ denotes the transpose of the complex conjugate

of V. Thus, the value of the minimum error variance is given

by:

min E
[

‖â − a‖2
]

= trace(V∗Q−1V)−1 (9)

Given X and y in this setting, this is the best one can do

[2].

A. Sensor Arrangement Problem

The error covariance and the optimal estimation error

corresponding to the MVUE as in (8) and (9) are functions

of the sensor arrangement X alone and are independent of

the observation vector. This is important from the sampling

perspective. Through rest of the paper, we denote the optimal

estimation error corresponding to the MVUE as Err(X) to

capture its dependence on the sensor arrangement X . Thus,

Err(X) = trace(V∗Q−1V)−1 (10)

We refer to Err(X) as the error metric. We say that the field

estimate â is good if the error metric Err(X) is less than a

certain error tolerance value. We formally define the sensor

arrangement problem as follows:

Find X, s. t. Err(X) ≤ Θ (11)

where Θ denotes a certain tolerance value and we refer to

it as error tolerance. Thus, the sensor arrangement problem

involves finding a sensor arrangement that guarantees that the

error metric is less than the error tolerance. Note that the so-

lution to the sensor arrangement problem need not be unique.

It is also possible to define the optimal sensor arrangement

problem as finding the sensor arrangement that yields the

optimal value of the error metric for a given number of

samples. We would like to note that the sensor arrangement

problem can be defined in a similar way for other settings

that involve different types of fields, measurement models

and the corresponding estimators.

B. Our Approach – Error Tolerant Arrangement Classes

(ETAC’s)

Suppose S(Θ) denote the set of all feasible solutions to

the sensor arrangement problem in (11). Ideally we would

like to characterize the space S(Θ). This would allow us

to formulate an optimization problem over the space S(Θ).
For instance, in case of intentionally mobile sensors, we can

imagine a motion planning problem that involves touring

sampling locations corresponding to a sensor arrangement

in S(Θ) such that the energy spent in motion is minimal.

On the other hand, in the incidental motion of sensors, we

can pose a problem to verify whether a particular mobility

model guarantees motion paths that conform with a solution

in S(Θ). Unfortunately characterizing S(Θ) is complicated

by the highly non-linear nature of the error metric. In order

to deal with this problem, we follow a reverse approach.

We define so called the Error Tolerant Arrangement Classes

(ETAC’s) for sampling. We say that a class of sensor arrange-

ments where each arrangement satisfies certain properties is

an ETAC if every sensor arrangement in that class guarantees

that the corresponding error metric value is less than the error

tolerance. More formally,

Definition: Let XA denote a set of sensor arrangements

characterized by certain properties A. We say that XA is an

Error Tolerant Arrangement Class or an ETAC, if ∀ X ∈
XA, Err(X) ≤ Θ, where Θ is a certain error tolerance.

Note that it is likely to be easier to analyze motion

planning problem over the ETAC space because it is more

explicitly defined than S(Θ). This approach is fairly general

because it allows us to deal with different kinds of classes.

For instance, in the case of intentionally mobile sensors,

it is easier to plan motion that is characterized by certain

properties. This will allow us to define an appropriate XA

and identify conditions under which it is an ETAC. Similarly,

incidental motion itself may lead to a certain XA and we can

analyze conditions under which it is an ETAC. Through the

rest of the paper we consider a few specific ETAC’s for fields

that are modeled as trigonometric polynomials.

C. Trigonometric polynomials

2D spatial fields can be modeled via number of ways.

Here we limit our analysis to fields that are modeled as

trigonometric polynomials; and we set up the estimation
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framework for this class of fields.

f(x, y) =

+M
∑

k=−M

+M
∑

l=−M

a(k, l)e2πj(kx+ly) (12)

where f(x, y) indicates the field on domain [0, 1] × [0, 1]
and each basis function is of the form e2πj(kx+ly). Note that

the field is real. Also, a trigonometric polynomial is nothing

but a truncation of the Fourier series representation up to a

certain number of finite terms. In this case we have (2M+1)2

complex exponential basis functions and (2M+1)2 unknown

complex coefficients, a(k, l). As before, we assume that the

measurement model involves additive random noise. In this

paper, we exclusively deal with Additive White Gaussian

Noise (AWGN). Thus our measurement model is:

z(x, y) = f(x, y) + ε(x,y) (13)

where z(x, y) is a field measurement value at location (x, y),
and ε(x,y) is white gaussian noise with E[ε(x,y)] = 0 and

E[ε2
(x,y)] = σ2.

Suppose we take N samples at points

(x1, y1), (x2, y2), · · · , (xN , yN ). Let X denote the sensor

arrangement of these sampling locations. We denote field

values at the corresponding locations by z1, z2, · · · , zN

and we denote the observation vector by z. We arrange

unknown coefficients a(k, l)’s as a vector a. Using the

vector and matrix notation that we defined earlier, we can

represent N samples in terms of the following system of

linear equations.

z = Va + e (14)

Note that each column of V can be indexed by the pair (k, l)
corresponding to the unknown coefficient a(k, l). Let V(k,l)

denote this column. Thus,

V(k,l) =











e2πj(kx1+ly1)

e2πj(kx2+ly2)

...

e2πj(kxN+lyN )











(15)

We further assume that noise values at any two locations

are independent and identically distributed random variables.

Thus E[e] = 0 and E[eeT ] = σ2I, where I is the N × N

identity matrix. Let â indicate the estimate of a obtained

using the MVUE. The Gauss-Markov theorem implies the

following.

â = (V∗V)−1V∗z (16)

E
[

(â − a)(â − a)T
]

= σ2(V∗V)−1 (17)

Err(X) = E
[

‖â − a‖2
]

= σ2trace{(V∗V)−1} (18)

Let T = VT V. Thus,

Err(X) = σ2trace{T−1} (19)

T is a matrix of size (2M +1)2×(2M +1)2. Note that each

element of T can be indexed by indices of two columns of

V that yield it. Thus,

Tkl,mn = V∗

(k,l)·V(m,n) =
N

∑

i=1

e−2πj[(k−m)xi+(l−n)yi]

where k, l,m, n = −M,−M + 1, · · · , 0, 1, · · · ,+M (20)

Note that T has a special structure. Each element of T

just depends on k, l,m, n. Such a matrix is called as a block

Toeplitz matrix.

Lemma: The error metric in (18) is invariant to the

translation of the sensor arrangement. Suppose we translate

each point in X by s = (∆x,∆y) along x and y-axis

and let X + s denote the new arrangement after mapping

all the points to [0, 1] × [0, 1]. Note that a trigonometric

polynomial f(x, y) is a periodic function and the sampling

domain [0, 1]×[0, 1] corresponds to one period. Thus for any

point (x, y) outside this domain, it is always possible to find

an equivalent point in [0, 1] × [0, 1]. Then,

Err(X + s) = Err(X) (21)

This invariance of the error metric to the translation of

a sensor arrangement allows us to rearrange the sensor

arrangement such that one of the sampling locations is

always at (0, 0).

IV. ETAC’S FOR TRIGONOMETRIC POLYNOMIALS

A. Uniform Sensor Arrangements

Uniform sampling is undoubtedly the simplest sensor

arrangement to specify and analyze. The only information

that we need to specify a uniform arrangement is the number

of samples. Suppose we take samples at points of a N×N

2D Cartesian grid with grid spacing 1
N

. We assume that the

origin of the lattice is at (0, 0) because the error metric is

translation invariant. We now prove that a uniform arrange-

ment yields the optimal value of the error metric for a given

number of samples.

Theorem: Let f(x, y) be a 2D trigonometric polynomial

as in (12). Suppose we take sample values at N×N sampling

locations to form the sensor arrangement X . Let the mea-

surement model be as in (13) that gives a system of linear

equations (14). Let N2 ≥ (2M + 1)2. Then we have the

following result.

min
X

Err(X) =
σ2(2M + 1)2

N2
(22)

We prove that the uniform arrangement of N×N yields this

optimal error.

Proof: Note that each diagonal element of T is just

N2.

Tkl,kl = V∗

(k,l)V(k,l) = N2

T is a Hermitian matrix. Hence all its eigenvalues are real

[16]. In addition, T is a block Toeplitz matrix and hence it

is positive definite [8]. Let λ1, λ2, · · · , λ(2M+1)2 denote the
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eigenvalues of T. Note that λi>0. We have the following

relations.

trace(T) =

(2M+1)2
∑

i=1

λi = N2(2M + 1)2

Err(X) = σ2trace(T−1) = σ2

(2M+1)2
∑

i=1

1

λi

Since all λi’s are positive, we use the Arithmetic Mean -

Harmonic Mean inequality to obtain the following result:

∑(2M+1)2

i=1 λi

(2M + 1)2
≥

(2M + 1)2
∑(2M+1)2

i=1
1
λi

Using the above inequality and previous two equations,

σ2

(2M+1)2
∑

i=1

1

λi

≥
(2M + 1)2

N2

Err(X) ≥
σ2(2M + 1)2

N2

We obtain a lower bound on the value of error metric for any

sensor arrangement X of size N2. Next we prove that this

lower bound is tight by showing that uniform arrangement

indeed achieves it. Consider the uniform arrangement of

N×N sampling locations denoted by XU . The grid spacing

is 1
N

. Let TU denote the corresponding block Toeplitz

matrix.

TU
kl,mn =

N−1
∑

i1=0

N−1
∑

i2=0

e−2πj[(k−m)
i1
N

+(l−n)
i2
N

], k 6= m, l 6= n

=

N−1
∑

i1=0

e−2πj(k−m)
i1
N ·

N−1
∑

i2=0

e−2πj(l−n)
i2
N

Using geometric series summation formula for each of the

above expressions, we can easily show:

TU
kl,mn = 0, k 6= m, l 6= n

Thus, T = N2I, where I is the identity matrix of size (2M+
1)2 × (2M + 1)2. Therefore,

Err(XU ) = trace((TU )−1) =
σ2(2M + 1)2

N2

Thus, uniform arrangement achieves this lower bound.

Hence,

min
X

Err(X) =
σ2(2M + 1)2

N2

With the above result, it is easy to find conditions under

which the class of uniform sensor arrangements is an ETAC.

Let Θ denote the error tolerance. We know that Err(XU ) =
σ2(2M+1)2

N2 . We find the smallest No such that the inequality
σ2(2M+1)2

N2
o

≤ Θ holds. Then, for any N > No, the error is

always less that Θ. Thus, for any given Θ we can easily find

conditions under which the uniform arrangements form an

ETAC.

B. ∆-dense Sensor Arrangement

∆-dense sensor arrangements have been studied in the

context of stable reconstruction of band limited signals using

non-uniform sampling and numerical issues involved therein

[7], [8].

Definition: Let X denote a sensor arrangement in [0, 1]×
[0, 1]. We say that X is ∆-dense, if for any point (x, y) ∈
[0, 1] × [0, 1], there exists some (xi, yi) ∈ X such that

max{|x− xi|, |y − yi|} ≤ ∆, i.e., the L∞ distance between

(x, y) and (xi, yi) is at most ∆. Intuitively, within a square

of size 2∆, i.e., an L∞-disc of radius ∆, placed anywhere

in [0, 1] × [0, 1], there is at least one sampling location. We

refer to a collection of all ∆-dense sensor arrangements as

the class of ∆-dense sensor arrangements.

Note that if X is ∆-dense, then it is also ∆′-dense

for any ∆′ > ∆. However a ∆′-dense arrangement need

not be ∆-dense. Note that the L∞ distance between any

two nearest neighbor sampling locations from a ∆-dense

sensor arrangement is at most 2∆. Intuitively, a ∆-dense

arrangement does not contain a square hole of size larger

than 2∆. Based on this geometric interpretation, we can

conclude that any ∆-dense arrangement contains at least
1

(2∆)2 sampling points.

We find the conditions on ∆ under which the ∆-dense

arrangements form an ETAC. Let Θ be the error tolerance.

In the previous section, we found the conditions under which

uniform arrangements form an ETAC. Suppose we place

N×N samples uniformly to form the sensor arrangement

XU as in the previous section. Let N be the smallest integer

such that Err(XU ) ≤ Θ. Note that XU is in fact 1
2N

-dense

and Err(XU ) = σ2(2M+1)2

N2 . Loosely speaking, XU is the

tightest among all the 1
2N

-dense arrangements since it needs

the smallest number of samples than any other arrangement

in this class. Based on several simulation runs, we make the

following claim.

Claim: Let X be a 1
2N

-dense sensor arrangement, where

N is the smallest integer such that
σ2(2M+1)2

N2 ≤ Θ. Then

Err(X) ≤ Θ. Thus, the class of 1
2N

-dense sensor arrange-

ments is an ETAC with respect to the error tolerance Θ.

Thus, the uniform arrangement with N×N samples is

also the tightest in terms of the error because it represents

the upper bound on the estimation error for any 1
2N

-dense

arrangement. We observed this over several simulation runs,

however we have not been able to prove the claim.

The class of ∆-dense sensor arrangements has a connec-

tion with the geometric coverage problem of covering the

domain with L∞-discs (square discs) of radius ∆. Note

that any ∆-dense sensor arrangement is a valid solution

to the coverage problem because if we locate a square

of size 2∆ centered at each sampling location of a ∆-

dense arrangement, then by the definition the entire domain

[0, 1]× [0, 1] is guaranteed to be covered by these L∞ discs.

Furthermore, if we imagine a few mobile square shaped

robots of size 2∆ tour through the sites of a ∆-dense

arrangement, then the entire domain is swept by these robots.

Note that the tour involves only translational motion of the
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robots (no rotations) according to the definition of a ∆-dense

arrangement.

C. Incrementally Constructed Sensor Arrangements

Independent of the previous two ETAC’s, we consider

another type of ETAC inspired from an active learning

method. As the name suggests we incrementally add chosen

sampling sites to the already existing sensor arrangement

one by one such that the estimation error is reduced at

every step until the error is less than the error tolerance

value. At this point the sensor arrangement is error tolerant.

We propose a heuristic to construct such an arrangement.

The class of arrangements obtained from various initial

sensor arrangements is particularly useful for the case of

intentionally mobile sensors. Suppose (2M + 1)2 points are

already chosen in the sensor arrangement. These might be

obtained by placing a few static sensors or measurements

available from a few mobile sensors. Suppose we need

to make a few additional measurements to guarantee that

the error metric is within the error tolerance. In this case,

the class of incrementally constructed sensor arrangements

allows us to find a set of additional measurements.

Let Xn denote a sensor arrangement of n points. Suppose

we wish to add a sampling location to Xn such that the

estimation error is further reduced. Let Tn denote Toeplitz

matrix corresponding to Xn. Tn = V∗
nVn. Suppose we

add the sampling location (xn+1, yn+1) to obtain Xn+1

and let Tn+1 be the new Toeplitz matrix. We add a new

observation to the already existing system of linear equations

as in (14), we add a new row to Vn. Let v denote the

column vector corresponding to all the basis function values

at (xn+1, yn+1). Thus,

Tn+1 = Tn + v̄vT (23)

where v̄ denotes the complex conjugate of v. T−1
n+1 can

be expressed in the closed form as follows [17]:

T−1
n+1 = T−1

n −
1

1 + vT T−1
n v̄

{T−1
n }v̄vT {T−1

n } (24)

Hence,

trace(T−1
n+1) = trace(T−1

n ) −
vT T−1

n T−1
n v̄

1 + vT T−1
n v̄

(25)

Therefore,

Err(Xn+1) = Err(Xn) −
vT T−1

n T−1
n v̄

1 + vT T−1
n v̄

(26)

Since Tn is positive definite and Hermitian, the second

term in the above equation is always positive and this

shows that any extra sample reduces the estimation error.

We consider the following optimization problem of finding

(xn+1, yn+1) that reduces the estimation error the most.

(x∗
n+1, y

∗
n+1) = arg max

(xn+1,yn+1)

vT T−1
n T−1

n v̄

1 + vT T−1
n v̄

(27)

s.t. (xn+1, yn+1) ∈ [0, 1] × [0, 1]

The above constrained optimization problem is highly

nonlinear and has many local maxima. Figure 1 shows

an arrangement of uniformly placed 8 × 8 points except

one sample in the center is missing. Clearly, if we add

the missing sample, we achieve the global optima. We

numerically evaluated the value of Err(X) as a function of

location that is added to the current arrangement. Figure 2

shows Err(X) as a function of (x, y). Note that there are

many local optima. Moreover, the reduction in the estimation

error for the missing sample location from the uniform

arrangement is significantly higher than that for any other

location. In our numerical simulations, we observed that

various initial choices lead to local optima when we solve

the above constrained optimization problem. Thus the choice

of initial solution to the optimization solver is very crucial.
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Fig. 1. M = 3, σ2 = 1; samples are uniformly placed at points of a
regular 8× 8 grid, except one sample is missing.

In order to get around these local effects, we propose

an approach to calculate initial solution to the optimization

solver using a heuristic based on Voronoi diagrams of

sampling locations. The underlying idea is that we find the

Voronoi cell that has the maximum area and choose the

farthest vertex of that cell from the source point as the

initial solution. Intuitively a large Voronoi cell is present

due to a large gap among the points and in this approach

the optimization solver searches for the next sample in the

vicinity of this large gap. As mentioned before, we assume

toroidal topology of the domain [0, 1] × [0, 1]. Hence we

consider Voronoi diagrams on a torus rather than on a plane.

We summarize our approach in the form of an algorithm as

follows.

Once we find an initial guess at any step, we find the next

sample and add it to the existing arrangement. At each step

the estimation error is reduced and we continue till it is less

than the tolerance error. At this point the arrangement is error

tolerant.

Numerical example: Let M = 3 and σ2 = 1. We chose

64 sampling sites randomly. They are shown in Figure 3.
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Fig. 2. For the arrangement shown in Figure 1, Err(X) is shown as a
function of (x, y) where (x, y) is added to the already existing arrangement
of samples. There are many local optima. The estimation error is reduced
the most when the sample is placed at the missing sample site.

Algorithm 1 A heuristic based on Voronoi diagrams to find

an initial guess for the optimization problem in (27)

1: Input: X , a sensor arrangement

2: Output: Initial guess (xo, yo)
3: Draw Voronoi diagram of points in X

4: Find the Voronoi cell P of the maximum area and its

source (x, y)
5: Choose the vertex of P which is farthest from (x, y) as

(xo, yo)

We use the nonlinear constrained optimization module of

MATLAB to solve the optimization problem at each stage.

We compare three schemes of adaptive sampling by adding

10 samples to the arrangement in each case. In the first

scheme, we follow the brute force search method to find the

global optima that yields the lowest estimation error. In the

second scheme, we use our heuristic in Algorithm 1 to find

an initial guess at each stage. In the third scheme, we choose

initial guess randomly. In Figure 4, we show how Err(X)
behaves as a function of any point (x, y) in the domain.

We observe that for the first extra sample, our heuristic

gives global optima. The figure also indicates that there are

many local optima and usually the larger reduction in the

estimation error occurs when a new sample is placed in the

region of large gaps. In Figure 5, we compare the estimation

error for 10 additional samples for these different schemes.

The brute force search method yields the lowest estimation

error at each stage. However it is extremely time consuming.

Our heuristic approach yielded the estimation error always

less than the random guess at each stage. Moreover it is easy

to implement and the error is close to the brute force search

method.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

 

 
Initial points

Brute force search

Our heuristic

Fig. 3. 64 sample sites are randomly chosen. 10 additional sample points
obtained using the brute force search method and our heuristic are shown
along with the initial randomly chosen sites.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we defined the sensor arrangement problem –

when and where to sample in order to obtain a good estimate

of a field. We proposed the concept of ETAC’s as a means

to obtain suitably characterized feasible solution spaces to

the sensor arrangement problem. Specifically, we discussed

three types of ETAC’s for the sensor arrangement problem

of fields that are modeled as 2D trigonometric polynomials

– uniform arrangements, ∆-dense arrangements and incre-

mentally constructed arrangements. The first two classes are

characterized in terms of a single parameter whereas the third

class involved an explicit construction method. We showed

that for a fixed number of samples that is a perfect square,

the uniform arrangement yields the least estimation error for

trigonometric polynomials under the AWGN measurement

model. We discussed the relation between the class of ∆-

dense arrangements and the geometric coverage problem.

We proposed a Voronoi diagram based heuristic to select an

initial guess at each step for adaptively constructing ETAC’s.

For future research, we would like to study ETAC’s for

other types of field models, implications of ETAC’s on the

motion planning problems for intentionally mobile sensors

and ETAC as a tool to analyze sampling for incidentally

mobile sensors.
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