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Abstract— On-line modal parameter monitoring of structures
like bridges has compelling practical significance. This paper
describes an example of applying recursive stochastic subspace
identification methods to the monitoring of bridge modal pa-
rameters. The usual recursive stochastic subspace identification
algorithm tailored to modal analysis is first presented in details.
Then the algorithm is adapted to exploit the power of the multi-
core capacity of today’s computers so as to improve the speed
and effectiveness of the original algorithm. The results of the
experiments based on the real data of Donghai Bridge have
confirmed the above positive effects of the modified recursive
stochastic subspace identification algorithm.

I. INTRODUCTION

The past years witnessed several severe bridge collapse

accidents around the world. For instance, the one happening

at Minneapolis in August 2007 was one of such disas-

trous and heartbroken events. Unfortunate accidents like this

should and could be avoided in the future, which implies

engineers an urgent task of building better structure health

monitoring systems that can better monitor critical structures

like bridges. In particular, real-time monitoring of the modal

parameters of bridges under working condition is a highly

demanded capability for a bridge health monitoring system.

Modal analysis is a standard practice in structure health

monitoring system. For structures like bridges, a typical type

of methods to do modal analysis is categorized as OMA

(operational modal analysis), which means that no artificial

stimulus are applied and only the responses signals under

ambient stimulus are measured. So this type of method is also

called output-only method. By OMA methods, the modal

parameters of a structure can be obtained from the measured

acceleration signals induced by the external loads acting

as unknown stimulus to the structure. Stochastic subspace

identification (SSI) is a popular method among all the OMA

methods. It is widely adopted to do off-line modal analysis

for various structures. In terms of monitoring, however,

on-line monitoring, which is at least as fast as the data

streaming-in rate, is more desired.

However, direct application of SSI algorithm to real-time

monitoring the modal parameters of bridges is facing the

difficulty of overwhelming computation intensity. Conse-

quentially, having the ability to eliminate the redundancy

in using SSI to do on-line monitoring, recursive type of

SSI algorithm (RSSI) has been introduced and successfully

applied to several applications. See for instance [1] [2]

for more details. Directly applying the RSSI algorithm to
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bridges, however, still confronts some challenges. First, the

computation intensity is still high if all modes of interest

are to be tracked. Second, it will be difficult to identify the

modes with relatively small “amplitude”.

In this paper, we are going to introduce a natural solution

to meet these challenges. Also, the results obtained by

applying our method to real data from Donghai bridge

monitoring system will be presented and analyzed. Last,

some discussions and suggestions will be made for future

advances.

II. FROM SSI TO RSSI

In order to establish the RSSI algorithm, let’s first look at

the corresponding SSI algorithm (see [3] for more details).

A. SSI

Consider the following linear system:

xk+1 = Axk + wk , (1)

yk = Cxk + vk , (2)

where wk and vk are zero mean, white vector sequences with

covariance matrix:

E[

(

wp

vp

)

(wT
q vT

q )] =

(

Q S
ST R

)

δpq . (3)

Given enough measurements of the output yk ∈ R
l, we

would like to determine the system matrices A ∈ R
n×n,

C ∈ R
l×n up to within a similarity transformation and the

second order statistics of the noises wk ∈ R
n and vk ∈ R

l,

Q, R and S.

A key notation in SSI algorithm is the following block

Hankel matrix.

Choose integers i, j such that i > n and j >> i and

define the output block Hankel matrix as:

Y0|2i−1 ,


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,

where the superscript “p” is for “past” and “f ” for “future”.
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First we do the LQ decomposition of the block Hankel

matrix Y0|2i−1:





Y0|i−1

Yi|i

Yi+1|2i−1



 =


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L11 0 0
L21 L22 0
L31 L32 L33









QT
1

QT
2

QT
3



 .

Then the orthogonal projection of Yf onto Yp can be

expressed as:

Oi , Yf/Yp =

(

L21

L31

)

QT
1

Similarly, the orthogonal projection of Y −
f onto Y +

p as:

Oi−1 , Y −
f /Y +

p = Yi+1|2i−1/

(

Y0|i−1

Yi|i

)

= (L31L32)

(

QT
1

QT
2

)

,

with the meanings of superscripts “+” and “-” self-revealing.

It has been proved in [3] that:

Oi = ΓiX̂i ,

where Γi is the extended observability matrix of original

linear system and X̂i the Kalman filter state sequence.

Specifically, Γi = (CT (CA)T (CA2)T · · · (CAi−1)T )T

and X̂i = (x̂i x̂i+1 · · · x̂i+j−2 x̂i+j−1)
Similarly,

Oi−1 = Γi−1X̂i+1 ,

where Γi−1 , Γi referring to Γi without the last l rows.

The Kalman filter state sequence X̂i can be obtained by

doing an SVD of the orthogonal projection Oi and (A,C)

can then be obtained by a least square procedure using the

Kalman filter state sequence. The second order statistics

of the noise vectors are obtained from the residue of this

least square problem. If needed, the Kalman gain can be

further computed from the obtained matrices by solving the

associated Raccati equation. Since in our context of modal

analysis, only the matrices (A,C) are needed, we will skip

the steps after obtaining matrices (A,C) hereafter.

Suppose
(

L21

L31

)

= (U1 U2)

(

S1 0
0 0

) (

V T
1

V T
2

)

= U1S1V
T
1 ,

choose

Γi = U1S
1/2

1 ,

then

X̂i = Γ†
iOi ;

further

X̂i+1 = Γ†
i−1

Oi−1.

(A,C) can be obtained from the following least square

problem:
(

X̂i+1

Yi|i

)

=

(

A
C

)

X̂i +

(

ρw

ρv

)

.

Summarize the above procedure in a compact form as

follows:

1) Selections of i and n;

2) Construction of the block Hankel matrix Y0|2i−1;

3) LQ decomposition of Y0|2i−1:





Y0|i−1

Yi|i

Yi+1|2i−1



 =





L11 0 0
L21 L22 0
L31 L32 L33




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 ;

4) SVD of

(

L21

L31

)

:

(

L21

L31

)

= (U1 U2)

(

S1 0
0 0

) (

V T
1

V T
2

)

;

5) Estimation of (A,C):

(

Â

Ĉ

)

=

(

(U1S
1/2

1 )†L31

L21

)

V1S
−1/2

1 . (4)

One point worth mentioning is that in the above procedure,

there is no need to actually compute the orthogonal matrices

Q′s; only the lower triangle matrix L is needed.

B. RSSI

Having the SSI basis, the RSSI algorithm can be con-

structed by recursifying the core decompositions in the SSI

algorithm: LQ and SVD, in sequence.

First, with s data samples available, we employ the SSI

algorithm to initially obtain the L factor in the LQ decom-

position and the U1 and S1 components in the SVD, from

which (A,C) can be computed. Then, suppose, a new data

sample comes in; we need to produce the updated L and U1

and S1, so that a new set of (A,C) can be obtained, which

includes the information contained in the new data sample.

This means we need to have operations taking into account

the new data sample: LQ update and SVD update.

More specifically, removing the first block element of the

last column of the output block Hankel matrix Y0|2i−1 and

appending the new data sample at the end of this column,

we form a new column and then place it after Y0|2i−1,

that is the [ Y0|2i−1 | ys+1 ], where the superscript s + 1
indicates this column vector contains the samples up to the

(s + 1)th sample. It is easy to show that LQ decomposition

of [ Y0|2i−1 | ys+1 ], when only the L factor being sought,

can be done by Givens rotations on
(

Ls
1 ys+1

p

Ls
2 Ls

3 ys+1

f

)

, (5)

where

Y0|2i−1 =

(

Yp

Yf

)

=

(

Ls
1

Ls
2 Ls

3

) (

(Qs
1)

T

(Qs
2)

T

)

,

and

ys+1 =

(

ys+1
p

ys+1

f

)

.

The Givens rotations can be viewed as of two steps. First,

it produces the following intermediate result:
(

Ls+1

1 0
Ls+1

2 Ls
3 zs+1

f

)

,
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where

Ls+1

2 (Ls+1

2 )T = Ls
2(L

s
2)

T + ys+1

f (ys+1

f )T − zs+1

f (zs+1

f )T .
(6)

Then, it continues to annihilate zs+1

f and thus ends up with

an updated version of the lower triangle matrix:

(

Ls+1

1

Ls+1

2 Ls+1

3

)

.

As have been shown in the SSI algorithm, it is the matrix

L2 that needs to be decomposed by the SVD. That is,

L2 = U1S1V
T
1 .

So (6) is the basis to do this update. Notice, since

L2L
T
2 = U1S

2
1UT

1 ,

we should strictly speaking be talking about (symmetric)

eigenvalue decomposition and its update. So the update is

as follows: having

Ls
2(L

s
2)

T = Us
1 (Ss

1)2(Us
1 )T ,

seek Us+1

1 and Ss+1

1 such that

Ls+1

2 (Ls+1

2 )T = Us+1

1 (Ss+1

1 )2(Us+1

1 )T ,

given (6).

This is a standard problem in numerical linear algebra.

Equation (6) is a rank-2 update of a symmetric matrix; its

eigenvalue and eigenvector matrices can be updated from the

old eigen-pair using the newly obtained vectors ys+1

f and

zs+1

f . A convenient algorithm called FAST is used in this

paper [4].

Having Us+1

1 and Ss+1

1 , the system matrices (A,C) can

be obtained through (4). To facilitate the eigenvalue update,

however, a little modification is needed to apply to this

formula. From

L2 = U1S1V
T
1 ,

we obtain

V1 = LT
2 U1S

−1

1 ;

plug this into (4), we obtain
(

Âs+1

Ĉs+1

)

=

(

0 (U1
s+1(Ss+1

1 )1/2)†

I 0

)

Ls+1

2 (Ls+1

2 )T Us+1

1 (Ss+1

1 )−3/2 ,

(7)

which is a ready formula for the computation of the updated

matrices (A,C).
Notice that in (5), forgetting factor can be added to

deemphasize the history data so as to make the algorithm

adapt to changes in the system’s dynamic properties. This

results in the following modified version of matrix (5):
(

ηLs
1 ys+1

p

ηLs
2 ηLs

3 ys+1

f

)

,

where η ∈ (0, 1) is the forgetting factor.

III. APPLYING RSSI TO BRIDGE MODAL

PARAMETER MONITORING

In this section, we first show how the general RSSI

algorithm is connected to modal parameters of a structure

and then use Donghai Bridge as an example to show the

challenges encountered when the RSSI algorithm is directly

applied to monitor the modal parameters of Donghai Bridge.

Finally, our solution to overcome these challenges is pre-

sented.

A. Modal Parameter Calculations

When applying SSI algorithm to bridge modal analysis,

we only need to go a little further after obtaining (A,C).
Standard procedure relates the system matrices (A,C) with

the modal parameters as follows [5]: eigen-decompose A as

A = ΦΛΦ−1, where Λ = diag(λ1, λ2, · · · , λn) and Φ =
[φ1 φ2 · · · φn] are the eigenvalue matrix and corresponding

eigenvector matrix of A, respectively. The modal parameters,

that is, the resonance frequencies fi, damping ratios ζi and

mode shape matrix V are found from

fi =
arg λ

2πτ
, (8)

ζi =
ln |λ|

√

(ln |λ|)2 + (arg λ)2
, (9)

V = CΦ , (10)

where τ is the sampling period.

By combining the above formulas with the RSSI algo-

rithm, the modal parameters can also be updated each time

a new measurement is made. Resonance frequency vs. time

curves, for instance, can be thus obtained. If the RSSI

algorithm is fast enough, this updating procedure runs in

real-time.

B. Challenges

Donghai Bridge has been selected as the application

example in this paper. As China’s first sea-crossing bridge,

Donghai Bridge, a cable-stay bridge stretching across the

East China Sea has a full length of 32.50 km, a 25.32 km

portion of which is above water. The main navigation span,

which is of 420 m, has navigation capacity of 5000 t,

navigation height of 40 m. Obviously, the monitoring system

for Donghai Bridge is large-scale with a variety of quantities

to be monitored and transmitted.

When the RSSI algorithm is applied to Donghai Bridge

to do on-line monitoring, the acceleration signals from tens

of accelerometers mainly residing around the main naviga-

tion span are used to identify the corresponding resonance

frequencies. The well-synchronized acceleration data from

these accelerometers are timestamped and then transmitted

over network to the monitoring center. This multi-channel

signal is then on-line decimated to a reasonable rate for ac-

commodating the targeting resonance frequency range since

the upper bound of the frequency range of interest for modal

parameter monitoring of bridges is relatively low (usually

under several to 1 Hertz). After this, the signal is fed into

an RSSI algorithm to produce the frequency-time curves,
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representing resonance frequency monitoring of the bridge.

The overall schematic gram is shown in Fig. 1.

Fig. 1. on-line modal frequency monitoring schematic diagram

The results, however, reveal several limitations of this

approach. First, suppose we would like to monitor frequen-

cies under 2 Hz; then a certain number of states must

be maintained in order to possibly see all the significant

resonance frequencies in this range. This will enforce a lower

bound of the computations that must be finished in the inter-

val between two adjacent monitoring samples. Experiments

showed that this is too much for the RSSI algorithm to run

in real-time on a mainstream desktop of today. Second, this

approach can fail to detect some resonance frequencies that

can be otherwise easily found by some other experimental

methods. This remains true when the order of the system

increases to some extent. Of course, increasing the order

further may reveal these “hidden” frequencies, but the price

would be the presence of a lot of spurious frequencies usually

to the extent that messes up the frequency-time curve graph.

C. Solution

To overcome these difficulties, we need to adjust a little the

original schematic design of the whole process by inserting

a step right after decimation to bandpass filter the signals

into several sub-bands that is a partition of the frequency

range of interest. Then in each sub-band, an RSSI algorithm

is employed. This modification has two effects: first, it

naturally multi-threads the algorithm so that the multi-core

capacity of the today’s computer can be utilized directly;

second, deliberate choices of sub-bands can better expose

the “hidden” frequencies without excessively increasing the

system order. This modified scheme is shown in Fig. 2. The

decimated signal is simultaneously filtered into several prop-

erly chosen sub frequency bands, in each of which an RSSI

algorithm is applied to the filtered signal. After an initial-

ization stage of the RSSI algorithm, the identified resonance

frequencies are produced over time, forming frequency-time

curves. Moreover, the speed of computation is managed

to be fast enough. Thus, the resonance frequencies of the

bridge are successfully being tracked in real-time. We call

“mRSSI” the RSSI algorithm after this modification with

“m” for “multiple”. The details of these above mentioned

experiments are presented in the next section.

IV. RESULTS AND DISCUSSIONS

The experiments in the following are all done based on

the actual data from Donghai Bridge monitoring system.

In particular, acceleration signals from 22 accelerometers

Fig. 2. Modified on-line modal frequency monitoring schematic diagram

are chosen to form the output vector y in the RSSI/mRSSI

algorithms. These accelerometers are all located around the

main navigation span of the bridge and they are all placed

to measure the accelerations of the bridge in the vertical

direction. The sampling rate is 50 Hz and the decimation

factor is chosen to be 16 in all the experiments below. The

raw data is of a duration of 10 minutes. So, the number of

samples after decimation by a factor of 16 would be 1875
and the upper bound of the frequency range being monitored

would be 1.5625 Hz, which is in accordance with the primary

frequency range of interest for bridge modal analysis. The

computer used in these experiments is a laptop with an Intel

Core Duo 2 T7200 2G CPU.

A. Results

1) Validity: The results from the RSSI algorithm and

mRSSI algorithm need to be validated with existing modal

analysis results, in particular, results from existing off-line

methods that are either in time-domain or frequency domain.

For this purpose, both results from the on-line methods and

the off-line methods need to be obtained using the same set of

data set. The experiments to obtain the results from the RSSI

algorithm and the mRSSI algorithm can be conveniently

chosen to be the same as the two sets of experiments in the

section following immediately. Thus, the results are shown

in Fig. 3 and Fig. 4.

Table I lists all of the off-line results for the first several

modes, in which a consistency within the off-line methods

is first seen. Referring to the aforementioned two figures, an

agreement with high fidelity between the on-line methods

and the off-line methods is further established. Notice that

“Tester 1” and “Tester 2” columns in Table I represent two

separate runs of experiments using the peak-picking method.

Also, there is a “Theoretical” column in Table I, which

results from theoretical calculations. This can sometimes act

as a guideline for the experimental modal analysis.

2) Speed: This set of experiments compares the speed of

the RSSI algorithm and that of the mRSSI algorithm running

on the same data set and with the same number of reso-

nance frequencies being monitored. Specifically, there are 7

resonance frequencies being tracked in each experiment. In

order to minimize the computations in the RSSI algorithm,

the parameter i, who is the major factor to decide the amount

of computations, is chosen to be the minimum when the 7

resonance frequencies are tracked with acceptable quality.
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TABLE I

REFERRED RESONANCE FREQUENCIES OBTAINED BY DIFFERENT

METHODS

Ordinal Resonance Frequency (Hz)
Number SSI Tester 1 Tester 2 Theoretical

1 0.367 0.368 0.3675 0.361

2 0.434 0.436

3 0.506 0.507 0.5096 0.505

4 0.635 0.637 0.6419 0.606

5 0.779 0.767 0.7791 0.897

6 1.037 1.040 1.0498 0.957

7 1.262 1.232 1.2305 1.042

8 1.152 1.127 1.1172 1.199

The (i, n) pair for the RSSI algorithm in this experiment is

chosen to be (20, 18). For the mRSSI algorithm, three sub-

bands are chosen to cover the frequency range (0, 1.5 Hz),

which are (0, 0.55 Hz), (0.55 Hz, 0.85 Hz) and (0.85 Hz,

1.5 Hz). In each band, an RSSI algorithm is employed to do

frequency monitoring in that band. The (i, n) pairs for all of

the three sub-bands are chosen to identically be (12, 6).

The frequency-time curves (in the form of “frequency”

vs. “number of samples” curves) for each case are shown

in Fig. 3 and Fig. 4, respectively. (Notice that Fig. 4 is

obtained by gluing together the results from each sub-band;

the same approach is applied to the following experiments

by the mRSSI algorithm.) The x-axis of both figures repre-

sents the number of monitoring samples (after decimation)

up to that instance. From these figures, we see that the

7 monitored frequencies are effectively identical for both

cases after a stage of stabilization. The time consumed per

monitoring sample, however, differs greatly. The RSSI algo-

rithm costs about 60% longer time than that of the mRSSI

one
(

334500 ms
838 samples

: 323594 ms
1298 samples

= 1.60 : 1
)

. This shows that

the mRSSI algorithm utilizes better the power of the multi-

core. A consequence of this is that when using the RSSI

algorithm directly, the time consumed per monitoring sample

is 334500/838 ms = 399.16 ms as above, but when using

mRSSI algorithm, the time consumed per monitoring sample

is 323594/1298 ms = 249.30 ms. The actual monitoring

sample interval in real-time is 16/50 s = 0.32 s = 320 ms.

This clearly indicates that the RSSI algorithm does not run

in real-time in this case, but the mRSSI one does!

Fig. 3. Resonance frequency monitoring results by RSSI

Fig. 4. Resonance frequency monitoring results by mRSSI

3) “Hidden” frequencies: Some modal modes can be

readily found by some common off-line experimental meth-

ods, for instance, the aforementioned frequency domain

methods. When the RSSI algorithm is applied directly, how-

ever, these modes are not easily identified. The reason might

be that the energies of these modes are much lower than

those of the ones that are able to be identified by the RSSI

algorithm. The mRSSI algorithm, when applied properly, is

ideal to mitigate this issue. The following experiment shows

this clearly.

In this experiment, a sub-band (0.4 Hz, 0.46 Hz) has been

chosen deliberately for the single mode at about 0.434 Hz.

Other sub-bands are selected accordingly. Overall, the sub-

bands are (0, 0.6 Hz), (0.4 Hz, 0.46 Hz), (0.6 Hz, 1 Hz)

and (1 Hz, 1.5 Hz). The (i, n) pairs in each band are

chosen to be (10, 6), (10, 2), (10, 6) and (10, 6), respectively.

Fig. 5 is the monitoring result, which shows there are 8

resonance frequencies being tracked, the 0.434 Hz one plus

the same set of 7 frequencies in the preceding experiment.

The time spent in total is 301352 ms with 1390 samples

being monitored, which results in the time consumed per

sample being 301352/1390 ms = 216.8 ms < 320 ms, which

ensures the whole monitoring process is in real-time.

If instead, the RSSI algorithm is used to the whole

frequency range of interest, that is, (0, 1.5 Hz), the mode

at 0.434 Hz is not seen until the order of the system is

chosen so high that there present too many spurious modes

blurring the whole frequency-time curve graph. In fact, the

(i, n) pair are chosen to be (30, 30). With such a high order,

the computation burden for real-time monitoring is already

much higher than what an average desktop can afford. Fig. 6

is the resulting frequency-time graph in this case. There are

11 instead of 8 frequencies being monitored from this figure.

The extra 3 frequencies, however, are not identified by the

aforementioned off-line frequency methods. The total time

spent is 367295 ms with 470 samples being monitored. So,

the time consumed per sample is 781.5 ms, which is much

greater than the real-time sampling interval 320 ms.

The above results demonstrate that the mRSSI algorithm

is much more effective and efficient than the RSSI algorithm

in terms of identifying these “hidden” resonance frequencies.
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Fig. 5. “Hidden” resonance frequency monitoring by mRSSI

Fig. 6. “Hidden” resonance frequency monitoring by RSSI

B. Discussions

In the above experiments, the number of resonance fre-

quencies and the “hidden” frequency are assumed to be

quantities a priori, which actually must be obtained by some

means when a monitoring task is to be performed. Off-line

methods, for example the aforementioned SSI and frequency

domain method, as well as theoretical modal analysis meth-

ods, can be employed to obtain information such as the

number of resonance frequencies in a particular range, the

frequencies distribution and the frequencies that are possibly

difficult to identify. A stabilization diagram can also be

constructed to facilitate the choice of the system order. The

information of the system order can be used in both the

RSSI algorithm and the mRSSI algorithm to set the number

of n. In accordance with [3], it is a good practice to set i
no fewer than n. The general rule is that the ratio between i
and n should be increased as the measured signal gets more

noisy. The frequency distribution information is especially

helpful when the frequency range of interest is divided into

several sub-bands in the mRSSI algorithm. Granted, all of

these settings, especially the pair (i, n), should be finally

tuned according to the actual resulting frequency-time curves

produced by these on-line monitoring methods.

In this paper, we have only shown that the resonance

frequencies are monitored over time. According to the mon-

itoring purposes at hand, some other quantities, however,

may be better indicators. For instance, the residue associated

with the least square problem where (A,C) are derived is

a common choice in damage detection. Damping ratios are

also the choices in certain applications. The mode shapes can

sometimes be very useful as well. The bottom line is that

system matrices (A,C) are tracked in real-time so that any

other quantities that are derived from them can be further

calculated and thus monitored. The specific form of the

indicator is of course directly dependent on the monitoring

purposes. In summary, on the basis of (A,C), a lot of related

indicators can be formulated and thus tracked on-line.

V. CONCLUSIONS AND FUTURE WORK

Bridge modal parameters, in particular, resonance frequen-

cies are monitored on-line. The RSSI algorithm is discussed

in details and it is further adapted to embrace the power of

multi-core CPUs. The method is applied to real data from

Donghai Bridge and the results are shown and discussed,

which demonstrates the feasibility and effectiveness of the

method proposed in this paper. The proposed mRSSI algo-

rithm has the advantage of fully utilizing multi-core power

on multi-core machines; also it can better detect resonance

frequencies that are not so easily detected by the usual RSSI

algorithm.

There is a family of derived applications based on items

derived from the modal parameters of structures, for instance,

load estimation, vibration level estimation and fatigue esti-

mation according to [6]. Among these applications, some

have the potential and necessity to be further turned on-line

by using our on-line modal parameter methods. An example

of this is the tension monitoring of the cables on a cable-stay

bridge. Indeed, the tension can be directly derived from the

modal parameters and thus, in turn, monitored. This shows

the potential big impacts on the application world of the

RSSI algorithm and/or mRSSI algorithm, which provides

attractive future research topics. Besides, how to make less

heuristic the process of choosing a proper configuration in

these algorithms is also interesting and important.
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