
Hierarchial Modeling of Manufacturing Systems Using Max-Plus

Algebra

Aleksey Imaev

School of Electrical Engineering

and Computer Science

Ohio University

Athens, OH 45701, USA

ai400695@ohio.edu

Robert P. Judd

Cooper Industries Professor and Chair

Industrial & Manufacturing Systems

Engineering

Ohio University

Athens, OH 45701, USA

judd@ohio.edu

Abstract— The paper describes a novel approach to model
any deterministic manufacturing system. A function block
diagram type of model is proposed. A block can be a single
machine or a factory. The model is expressed as a system of
linear event timing equations using max-plus algebra. One of
the advantages of block diagram representation is the simplicity
of algebraic relations between the sub-system transfer functions
[1]. It is expected that the proposed model will make it possible
to develop and use techniques similar to those found in classical
transfer function block diagrams.

I. INTRODUCTION

This paper describes a generic approach to model any

deterministic manufacturing system. A deterministic system

is the one which is conflict- or choice free [2]. Accordingly,

it is assumed that the routes of all the parts are established,

the sequences of parts on the machines are known and the

processing times are fixed. Furthermore, it is assumed that a

part starts processing on a machine as soon as it enters it.

Existing modeling frameworks of deterministic manufac-

turing systems include discrete event simulation, timed event

graphs (TEGs) and directed graphs, queueing networks and

max-plus algebra [3]. Discrete event simulation (e.g. [4])

is usually computationally expensive and it doesn’t supply

equations needed to analyze and predict system’s behavior.

TEGs are a subclass of Petri nets where each place has

only one incoming and one outgoing arc. Performance of

TEG and directed graph models can be analyzed using path-

based approaches (e.g. [5], [6], [7], [8]) and integer/linear

programming approaches (e.g. [9], [10], [11]). Queueing

networks are usually used to evaluate long term performance

characteristics of stochastic manufacturing systems, with the

exception of the so-called max-plus linear queueing networks

[12].

Max-plus algebra is an attractive tool for modeling of

manufacturing systems because the event timing dynamics of

any deterministic manufacturing system can be expressed by

a set of linear equations in the max-plus algebra. It provides

computational engine for calculating system’s quantitative

characteristics. Fundamentally, the event timing equations in

timed event graphs or max-plus linear queueing networks can

always be written in terms of the max-plus algebra (e.g. [13],

[14], [15], [16], [12]). Furthermore, the max-plus algebraic

model of a manufacturing system may be obtained directly

from system’s specifications using the approach proposed by

Doustmohammadi and Kamen [17].

What is missing in the existing modeling approaches of

manufacturing systems is the block diagram type of model. It

is well known that block diagrams, such as state space block

diagrams and transfer function block diagrams, are widely

used in control theory to model behavior of linear systems.

A novel block diagram type of model of deterministic

manufacturing systems is proposed. The model is expressed

as a system of linear event-timing equations in max-plus

algebra. A manufacturing system is represented as a network

of processing elements. Each processing element is modeled

as a block with two inputs and two outputs. A block can

be a single machine or a factory. Parts are routed through

blocks according to system specifications. In a block diagram

the interconnection of blocks with one another and with sys-

tem’s inputs and outputs is specified using routing matrices.

Routing matrices described here are similar in concept with

interconnection matrices introduced by Doustmahammadi et.

al [17].

Two scheduling policies for manufacturing systems are

distinguished: a conventional batch production (static)

scheduling and a dynamical (cyclic) scheduling. A static

production schedule tends to produce a set of required parts

in one large lot. A manufacturing system that repeatedly pro-

duces an identical set of parts is called a dynamical or cyclic

manufacturing system. In the paper, we limit ourselves to

static deterministic manufacturing systems. Extension of the

approach to dynamical systems is currently being developed.

The contributions of the paper include: a novel block

diagram approach to modeling deterministic manufacturing

systems, a composition methodology that reduces a network

of blocks to a single block, models for machines and

buffers, which constitute the basic building blocks of any

manufacturing system, and the application of the approach

to simple manufacturing systems such as job shops.

II. MAX-PLUS ALGEBRA BASICS

In this section an overview of the max-plus algebra is

provided. For a more comprehensive review of the max plus

algebra the reader is referred to [18], [14]

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

WeA14.2

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 471

Define ε = −∞ and Rmax = {R∪ ε}, where R is the set

of real numbers. The two max-plus algebraic operations, ⊕
and ⊗, are defined as follows:

a ⊕ b = max(a, b) a ⊗ b = a + b,

for elements a, b ∈ Rmax.

Max-plus algebra is an example of algebraic structure

called dioid. Operation ⊕ has null element, ε, since a⊕ε = a.

Similarly operation ⊗ has unit element, e = 0, as a⊗ e = a.

Max plus algebra is extended to matrices in the same way

as conventional algebra but with + replaced by ⊕ and ×
replaced by ⊗. A set of all n × m matrices is denoted by

R
m×n
max

. We say that an n×m matrix A exists if and only if

A ∈ R
n×m
max

.

Analogous to conventional algebra ⊗ is assumed prece-

dence over ⊕ and if it is clear that the ⊗ symbol is used it

is sometimes omitted, i.e. A⊕BC should be understood as

A ⊕ (B⊗ C).
For any square matrix A ∈ R

n×n
max , A in nth power is

defined by

A⊗n = A ⊗ A ⊗ . . .A
︸ ︷︷ ︸

n times

.

Define

A∗ =

k=∞⊕

k=0

A⊗k,

where A⊗0 = E and E ∈ R
n×n
max refers to identity matrix

which has e’s on the main diagonal and ε’s elsewhere. A∗

can be used in solving linear equations as shown in the next

theorem.

Theorem 2.1: [18, Theorem 2.10] x = A∗ ⊗b solves the

equation x = A ⊗ x ⊕ b, provided that A∗ exists.

III. GENERAL MODELING BLOCK OF

MANUFACTURING SYSTEM

A manufacturing system consists of a set of machines

performing operations on a set of jobs. It is assumed that

the sequence of jobs on machines is known as well as the

order in which jobs flow through the machines. This means

that the system is deterministic and therefore timings of the

system’s events can be expressed by linear equations in the

max-plus algebra.

Let J in be an ordered set of jobs that enter the system

and likewise let Jout be an ordered set of jobs that leave the

system. J in and Jout refer to the same set of jobs, however

the order of elements in J in and Jout is arbitrary and does

not have to be the same. Let [J in]k and [Jout]k denote the

k-th job in J in and Jout, respectively. In this paper, it is

assumed that N = |J in| = |Jout|. 1

The model has two inputs, u and v,

• [u]k is the time when job [J in]k is available to the

system,

1In a general manufacturing system |Jin| and |Jout| can be different
because there may be part assembly and (or) part disassembly operations.
This general case will be implemented in the future by using assembly and
disassembly modeling blocks and by allowing |Jin| �= |Jout|.

A

D

BC

u

y

x

v

+

+

Fig. 1. Block diagram representation of a manufacturing system

u1

v1

A2

D2

B2C2

u2

y2

x2

v2
+

+

The times when

jobs are ready to

leave System 1

The times when

jobs are available

to System 2

The times when

jobs are removed

from System 1

The times when jobs

have actually entered

System 2

1 2y1

x1 =

=

Fig. 2. Serial composition of two blocks

• [v]k is the time when job [J out]k is removed from the

system,

and two outputs, x and y,

• [x]k is the time when job [J out]k is ready to leave the

system,

• [y]k is the time when job [J in]k is entered the system,

where k ∈ 1, 2, . . . , N .

Since the system is max-plus linear, the output of the

system can be described in terms of its input by the following

equation in the max-plus algebra
[
x

y

]

=

[
A B

C D

] [
u

v

]

= W

[
u

v

]

, (1)

where A, B, C and D are matrices in R
n×n
max that describe

input-output relation and W is called the system matrix. The

model can be graphically represented by a block diagram

having two inputs and two outputs as illustrated in Figure 1.

From the definition of the model’s inputs and outputs it

follows that in order to have feasible model one must have

[v]k ≥ [x]k, (2)

as [Jout]k can not be removed from the system before it is

actually ready to leave the system.

The definition of block’s inputs and outputs facilitates a

convenient method to connect blocks. Consider two sub-

systems modeled by W1 and W2, which are connected in

serial (i.e. in flow-shop configuration). Assuming that there

is no transportation delay for jobs going from System 1 to

System 2, we have u2 = x1 and v1 = y2. Hence, the serial

composition of the sub-systems can be represented by a block

diagram shown in Figure 2.

IV. COMPOSITION OF MANUFACTURING

SYSTEMS

A manufacturing system can be represented as a network

of smaller subsystems where flow of jobs from one subsys-

472

tem to another is specified by a routing matrix. In this section

we derive equations for an aggregate system.

Let M be a system composed from a set of manufactur-

ing subsystems M = {m1, m2, . . . , mM}, such that each

subsystem is represented by an equation of the form (1) or,

specifically,
[
xi

yi

]

=

[
Ai Bi

Ci Di

] [
ui

vi

]

, (3)

for mi ∈ M. Let the inputs and the outputs of M be denoted

by uext, vext and xext, yext, respectively.

Let J in and Jout be ordered sets of jobs defined with

respect to M. Likewise let J in
i and Jout

i be ordered sets of

jobs defined with respect to mi. Define N = |J in| = |Jout|
and Ni = |J in

i | = |Jout
i |.

Next, the problem of routing jobs through systems is

addressed. Consider job z which enters system mi from an

upstream system mj . Suppose that z ≡ [J out
j]l ≡ [J in

i]k.

Since [Jout
j]l and [J in

i]k both refer to job z, what is the

correspondence between index l and index k?

Let Kj,i be a set of jobs, which are routed from mj to

mi. Define Ri,j , where

[Ri,j]k,l =

{

e if [Jout
j]l ≡ [J in

i]k ∈ Ki,j

ε otherwise,

where k ∈ {1, 2, . . . , Ni} and l ∈ {1, 2, . . . , Nj}. Ri,j is an

Ni × Nj matrix describing routing of jobs from m i to mj .

Let Kin,i be a set of jobs routed from J in to mi. Define

matrix Qi, where

[Qi]k,l =

{

e if [J in]l ≡ [J in
i]k ∈ Kin,i

ε otherwise,

where k ∈ {1, 2, . . . , N} and l ∈ {1, 2, . . . , Ni}. Qi,j is an

N × Ni matrix describing routing of jobs from J in to mi.

Let Ki,out be a set of jobs routed from mi to Jout. Define

matrix Si, where

[Si]k,l =

{

e if [Jout
i]l ≡ [Jout]k ∈ Ki,out

ε otherwise,

where k ∈ {1, 2, . . . , Ni} and l ∈ {1, 2, . . . , N}. Si,j is an

Ni × N matrix describing routing of jobs from m i to Jout.

Define R, such that [R]i,j = Ri,j , where i, j ∈
{1, . . . , M}. Similarly, define

Q =








Q1

Q2

...

QM








, and S =
[
S1 S2 . . . SM

]
.

Each row and each column of Q, R or S should contain at

most one e, while the rest of its elements are equal to ε. Let

ũ =








u1

u2

...

uM








, ṽ =








v1

v2

...

vM








, x̃ =








x1

x2

...

xM








, ỹ =








y1

y2

...

yM








.

Define

Ã =








A1 ε ε

ε A2 ε

. . .

ε ε AM








.

Similarly define B̃, C̃ and D̃.

Then we have
[
x̃

ỹ

]

=

[
Ã B̃

C̃ D̃

] [
ũ

ṽ

]

. (4)

Outputs of M can be expressed as

xext =
⊕M

k=1
(Skxk) = Sx̃,

yext =
⊕M

k=1

(
QT

k yk

)
= QT ỹ

or, equivalently,
[
xext

yext

]

=

[
S ε

ε QT

] [
x̃

ỹ

]

. (5)

It is assumed that there are no explicitly defined delays

associated with transportation of jobs from one system to

another - rather these delays can be modeled by an appro-

priate manufacturing system mi. Suppose that job z ∈ Kk,i

is routed from mk to mi. Job z becomes available to mi

when it is ready to leave mk. Therefore we have

ui =
⊕M

k=1
(Ri,kxk) ⊕ Qiuext

=
[
Ri,1 Ri,2 . . . Ri,M

]
x̃ ⊕ Qiuext.

(6)

Job z gets removed from mk when it enters mi. Therefore

we have

vi =
⊕M

k=1

(

RT
k,iyk

)

⊕ ST
i vext

=
[
RT

1,i RT
2,i . . . RT

M,i

]
ỹ ⊕ ST

i vext.
(7)

Writing (6) and (7) in terms of ũ and ṽ we get

ũ = Rx̃ ⊕ Quext,

ṽ = RT ỹ ⊕ ST vext

or, equivalently,
[
ũ

ṽ

]

=

[
R ε

ε RT

] [
x̃

ỹ

]

⊕

[
Q ε

ε ST

] [
uext

vext

]

. (8)

The block diagram illustrating the concept of routing jobs

through sub-systems is shown in Figure 3.

Equations (4), (8) and (5) provide composition rules for

aggregate system M. Using these equations one can easily

solve for

[
xext

yext

]

in terms of

[
uext

vext

]

. Substituting (8) into

(4) we get
[
x̃

ỹ

]

=

[
Ã B̃

C̃ D̃

] [
R ε

ε RT

] [
x̃

ỹ

]

⊕

[
Ã B̃

C̃ D̃

] [
Q ε

ε ST

] [
uext

vext

]

.

From Theorem 2.1 it follows that
[
x̃

ỹ

]

=

([
Ã B̃

C̃ D̃

] [
R ε

ε RT

])∗

(9)

⊗

[
Ã B̃

C̃ D̃

] [
Q ε

ε ST

] [
uext

vext

]

(10)

473

mi

Rik

ui

yi

xk

… Rqi
T

Rri
T

xi

vi

Si

Qi

vext

uext

Ril

xl

yq

yr

…

Fig. 3. Composition of manufacturing systems

Substituting (10) into (5) we get
[
xext

yext

]

=

[
S ε

ε QT

] [
x̃

ỹ

]

=

[
S ε

ε QT

] ([
Ã B̃

C̃ D̃

] [
R ε

ε RT

])∗

⊗

[
Ã B̃

C̃ D̃

] [
Q ε

ε ST

] [
uext

vext

]

.

Therefore [
xext

yext

]

= W

[
uext

vext

]

, (11)

where W =

=

[
S ε

ε QT

]([
Ã B̃

C̃ D̃

] [
R ε

ε RT

])∗ [
Ã B̃

C̃ D̃

] [
Q ε

ε ST

]

.

(12)

Equation (12) gives general expression for the system matrix

of M. This proves that any composition of systems repre-

sented by (1) results in a system that is also represented by

(1).

Sometimes instead of explicitly specifying vext it is as-

sumed that jobs are removed from the system as soon as they

are ready to leave the system. In other words machines are

never blocked from outside of the system. Then we have

vext = xext = Sx̃. (13)

Substituting (13) into equations (4), (8) (5) and after some

algebraic manipulation it follows that
[
xext

yext

]

= Wnbuext (14)

where Wnb =

=

[
Wnb1

Wnb2

]

=

[
S ε

ε QT

] ([
Ã B̃

C̃ D̃

] [
R ε

STS RT

])∗

⊗

[
Ã B̃

C̃ D̃

] [
Q

ε

]

. (15)

Then Wnb1uext gives the times when jobs leave the sys-

tem and Wnb2uext gives the times when they entered the

system.

V. DEADLOCK DETECTION

Consider system M, modeled by matrix W. If the system

has deadlocks than some jobs that enter the system will never

be able to leave it. Suppose that job [J in]k is in deadlock and

cannot leave the system, then [x]l = +∞, where [Jout]l ≡
[J in]k. This means that W contains elements that are equal

to +∞; in other words W will not exist. On the contrary, if

W exists then the system is free of deadlocks.

Suppose that M is a network of subsystems mi as de-

scribed in the previous section, such that each m i is deadlock

free. Then from (12) it follows that W exists (and, therefore,

M is deadlock free) if and only if

([
Ã B̃

C̃ D̃

] [
R ǫ

ǫ RT

])∗

exists.

VI. MODELS OF MACHINES AND BUFFERS

Next, models of basic nodes in a manufacturing system,

such as machines and buffers, are presented.

A. Model of a machine

Consider a machine which processes a set of jobs J . Let

J be an ordered set specifying the order in which jobs are

processed by the machine. Let J in = Jout = J . Let [t]k
be the processing time required for job Jk on the machine

(no preemption is allowed). It is assumed that the machine

is initially empty.

The inputs, u and v, and the outputs, x and y, of

the system were defined in Section III. Event [y]1 occurs

when event [u]1 takes pace. For k > 1, event [y]k occurs

immediately after both events [u]k and [v]k−1 take place.

Therefore,

[y]k =

{

[u]k ⊕ [v]k−1, for k > 1

[u]1, for k = 1.
(16)

The machine starts processing Jk as early as possible,

i.e. at time [y]k because the system is uncontrolled. Event

[x]k occurs when Jk is done processing on the machine.

Therefore

[x]k = [t]k[y]k = [t]k([u]k ⊕ [v]k−1). (17)

Writing (16) and (17) in vector form we get

y = u⊕ Hv,

x = Py = P(u ⊕ Hv),

where H =








ǫ ǫ ǫ

e ǫ ǫ

. . .

ǫ e ǫ








and P =








t1 ǫ ǫ

ǫ t2 ǫ

. . .

ǫ ǫ tn








. Therefore

[
x

y

]

=

[
P PH

E H

] [
u

v

]

. (18)

The block diagram representation of a machine is shown

in Figure 4.

474

H

u

y

x

v

P

Fig. 4. Model of machine

H

u

y

x

v

Fig. 5. Model of buffer of unit capacity

B. Model of a unit capacity buffer

McCormick et al. [6] show that a buffer of unit capacity

can be represented by a machine having zero processing time

for all jobs. Therefore for buffer of unit capacity equation

(18) becomes [
x

y

]

=

[
E H

E H

] [
u

v

]

, (19)

since P = E. Block diagram representing a buffer of

capacity one is shown in Figure 5.

C. Model of an unlimited capacity buffer

Consider a buffer having unlimited storage capacity. Let

J = Jout = J in. Jk enters the buffer as soon as it is

available to the buffer, therefore [y]k = [u]k. In addition Jk

is ready to leave the buffer immediately after it entered the

buffer, therefore [x]k = [y]k. The equations for an infinite

buffer are therefore

x = u

y = u,

or, in vector form,
[
x

y

]

=

[
E ǫ

E ǫ

] [
u

v

]

.

A block diagram representation of infinite buffer is pro-

vided in Figure 6.

D. Model of a machine followed by an infinite capacity

buffer

A machine followed by an infinite buffer is never blocked

because the buffer is able to hold all the parts that exit

the machine. Graphically, this model can be represented by

connecting a block diagram of machine with a block diagram

u

y

x

v

Fig. 6. Model of buffer of infinite capacity

H

P
u = u1

y = y1

x1= u2

v1= y2

x2 = x

v2 = v

Machine Infinite Buffer

Fig. 7. Model of a machine that is never blocked.

u x

vy

(HP)
*

P

Fig. 8. Alternative block diagram representation of machine that is never
blocked.

of infinite buffer as shown in Figure 7. Equations describing

the node can be obtained from that block diagram, i.e.

y = u⊕ Hx,

x = Py.

From which it follows that

y = u ⊕ HPy = (HP)∗u,

x = P(HP)∗u. (20)

Therefore the node is described by
[
x

y

]

=

[
P(HP)∗ ε

(HP)∗ ε

] [
u

v

]

. (21)

The outputs of the node do not depend on v which is due to

infinite buffer. Note that (HP)∗ always exist because HP

is a lower triangular matrix. Figure 8 provides an alternative

representation of the node which is based on (21).

VII. EXAMPLE

Consider the following example. A job shop system is

represented as a network whose nodes are machines as shown

in Figure 9. The numbers above nodes represent the order

in which jobs are to be processed on the machines (i.g. 3-4

above m3 indicates that m3 will first process job 3 followed

by job 4). The labels above arcs indicate routes of jobs

through the machines (e.g. jobs 3,4 arrive to machine m 3

from m2). The numbers inside a node show processing times

for all jobs processed by the machine in the order in which

operations are performed (e.g. {4, 2} inside m3 means that

processing times for jobs 3 and 4 on m3 are 4 and 2 time

units, respectively). It is assumed that there is no intermediate

storage between the machines (in general, buffer storage can

be modeled by appropriate nodes representing buffers).

Processing time matrices are

P1 =

[
1 ε

ε 3

]

P2 =

[
3 ε

ε 5

]

P3 =

[
4 ε

ε 2

]

P4 =





3 ε ε

ε 2 ε

ε ε 1



 .

475

1

2 3 4

1-2-3-4

1-2

1-2-3-4

3-4 3-4 2-3-4

{3,5} {4,2} {3,2,1}

{1,3}1,2

3,4

3,4 3,4

2,3,4

1

2

Fig. 9. Sample manufacturing layout

The routing of jobs is represented by routing matrices Q,

R and S, whose values can be obtained directly from the

manufacturing layout in Figure 9. For example, routing of

jobs from m1 to m4 is given by

R4,1 =





ε e

ε ε

ε ε



 .

Job 2 is routed directly from m1 to m4, it is the 1-st job to

be processed on m4 and is the 2-nd job to be processed on

m1. Therefore, [R4,1]1,2 = e.

Each machine mi is modeled by an equation of the form

(18). For m1 we have

W1 =

[
A1 B1

C1 D1

]

=

[
P1 P1H

E H

]

=







[
1 ε

ε 3

] [
ε ε

3 ε

]

[
e ε

ε e

] [
ε ε

e ε

]







.

In a similar way, we find W2, W3 and W4, which allows us

to obtain Ã, B̃, C̃ and D̃. Assuming that jobs are removed

from the system as soon as they are ready to leave, it follows

from (15) that

[
xext

yext

]

=















1 ε ε ε

7 6 6 6
9 8 9 8
10 9 11 9
e ε ε ε

1 e e e

ε ε e ε

e e 3 e















uext (22)

Suppose that all the jobs are made available to the system

at time zero, which means that uext =
[
e e e e

]T
. It

follows from (22) that the times when the jobs actually enter

the system are given by yext =
[
e 1 e 3

]T
and the

times when the jobs are ready to leave the system are given

by xext =
[
1 7 9 11

]T
. Job 4 is the last job to leave

the system (at time 11), therefore the system’s makespan is

11 time units.

VIII. CONCLUSION

Described in this paper is the new approach to model

deterministic manufacturing systems. The approach is based

on block diagrams. The model is hierarchial - it is shown

how a network of blocks can be combined into one block

that has the same input output structure. The models of basic

modeling blocks of manufacturing systems such as machines

and buffers were developed.

The approach can be readily implemented in computer

software as it basically involves operations performed on

matrices in the max-plus algebra. The underlying max-plus

equations describing the model provide means to calculating

performance characteristics of the system, such as makespan,

work in process, machine utilization, etc.

The modeling approach can be used in manufacturing

system design and scheduling applications. The approach

is not limited to deterministic manufacturing systems; for

example, with minor modifications it can be applied to

modeling parallel computer processing networks.

REFERENCES

[1] D. Findeisen. System Dynamics and Mechanical Vibrations: An

Introduction. Springer, 2000.
[2] M. Zhou and K. Venkatesh. Modeling, Simulation, and Control

of Flexible Manufacturing Systems: A Petri Net Approach. World
Scientific, 1999.

[3] Christos G. Cassandras and Stephane Lafortune. Introduction to

Discrete Event Systems. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2006.

[4] J. Banks, J.S. Carson, B.L. Nelson, and D.M. Nicol. Discrete-Event

System Simulation. Prentice Hall; 3 edition, 2000.
[5] R.M. Karp. A characterization of the minimum cycle mean in a

digraph. Discrete Mathematics, 23:309–311, 1978.
[6] S. Thomas McCormick, M. Pinedo, Scott Shenker, and Barry Wolf.

Sequencing in an assembly line with blocking to minimize cycle time.
Oper. Res., 37(6):925–935, 1989.

[7] E.V. Levner. Optimal planning of parts machining on a number of
machines. Automation and Remote Control, 12:1972–1978, 1969.

[8] Tae-Eog Lee and M.E. Posner. Performance measures and schedules
in periodic job shops. Operations Research, 45(1):72–90, 1997.

[9] H.P. Hillion and J.-M. Proth. Performance evaluation of job-shop
systems using timed event-graphs. IEEE Transactions on Automatic

Control, 34(1):3–9, Jan 1989.
[10] A. Di Febbraro, R. Minciardi, and S. Sacone. Deterministic timed

event graphs for performance optimization of cyclic manufacturing
processes. IEEE Transactions on Robotics and Automation, 13(2):169–
181, Apr 1997.

[11] S. C. Ren, D. Xu, F. Wang, and M. Tan. Timed event graph-
based cyclic reconfigurable flow shop modelling and optimization.
International Journal of Production Research, 45(1):143–156, 2007.

[12] B. Heidergott. A characterisation of (max,+)-linear queueing systems.
Queueing Systems, 35(1–4):237–262, 2000.

[13] G. Cohen, S. Gaubert, and J. Quadrat. Max-plus algebra and system
theory: Where we are and where to go now. Elsevier Annu. Rev.

Control, 23:207–219, 1999.
[14] F. Baccelli, G. Cohen, G.J. Olsder, and J.P. Quadrat. Synchronization

and Linearity. John Wiley and Sons, West Sussex, England, 1992.
[15] Tae-Eog Lee. Stable earliest starting schedules for cyclic job shops:

A linear system approach. International Journal of Flexible Manufac-

turing Systems, 12(1):59–80, 2000.
[16] N. Krivulin. The max-plus algebra approach in modelling of queueing

networks. In Summer Computer Simulation Conference, pages 485–
490, Portland, OR, July 1996.

[17] A Doustmohammadi and E.W. Kamen. Direct generation of event-
timing equations for generalized flow shop systems. In Proc. SPIE on

Modeling, Simulation, and Control Technologies for Manufacturing,
volume 2596, pages 50–62, November 1995.

[18] B. Heidergott, G.J. Olsder, and J. van der Woude. Max Plus at Work:

Modeling and Analysis of Synchronized Systems: A Course on Max-

Plus Algebra and Its Applications. Princeton University Press, 2005.

476

