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Abstract— Control in an uncertain environment often in-
volves a trade-off between exploratory actions, whose goal is
to gather sensory information, and ”regular” actions which
exploit the information gathered so far and pursue the task
objectives. In principle both types of action can be modeled
by minimizing a single cost function within the framework
of stochastic optimal control. In practice however this is
difficult, because the control law must be sensitive to estimation
uncertainty which violates the certainty-equivalence principle.
In this paper we formalize the problem in a way which
captures the essence of the exploration-exploitation trade-off
and yet is amenable to numerical methods for optimal control.
The key to our approach is augmenting the dynamics of the
partially-observable plant with the Kalman filter dynamics, thus
obtaining a higher-dimensional but fully-observable plant. The
resulting control laws compare favorably to other more ad-hoc
approaches. Our formalism is also suitable for modeling human
behavior in tasks which benefit from active exploration.

I. INTRODUCTION

Active exploration is a powerful approach for dealing
with uncertainty. It is widely used throughout biology -
examples include movable eyes, ears and whiskers, fingers
used to explore surface properties, and muscle spindles with
tunable sensitivity. The importance of active exploration is
also increasingly recognized in engineering. The challenge is
to incorporate information gains and control actions within
the same formalism and define a notion of utility which is
equally applicable to both.

In principle, the general framework of stochastic optimal
control under uncertainty can be applied. In this framework
one uses an optimal/Bayesian estimator which computes the
posterior probability density over the state space at each
point in time, and an optimal feedback controller which
maps probability densities into actions. Although probability
densities are infinite-dimensional objects one can rely on
finite-dimensional estimators such as the Kalman filter which
is optimal in a 2-norm setting. Interestingly the variance
of the noise does not affect the optimal control law, thus
defeating the purpose of active exploration. This property
(known as the separation principle, and controllers based on
this are often referred to as certainty equivalence, or CE,
controllers) is normally considered a virtue, but from the
present perspective it is a deficiency. A modified formalism
is needed, where the estimator is still finite-dimensional but
the control law is sensitive to uncertainty and generates
actions aimed at reducing uncertainty. Here we develop such
a formalism.

Active exploration can be classified into two categories.
The first includes actions that only affect the flow of sensory
feedback, thus having indirect consequences on achieving
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control objectives. Eye movements are a good example. The
second category includes actions that not only affect the flow
of sensory feedback but also have direct consequences on
control objectives. Finger movements which simultaneously
sense and manipulate objects are an example such actions.
This second category, which involves an interesting tradeoff
between optimization of sensory information and achieving
the control objective, is the focus of the present paper.

The concept of control actions reducing uncertainty in
unknown parameters through adaptation has previously been
studied both from a deterministic and stochastic perspective,
and there is a wide literature [18], [6], [2], [9], [8], [12].

From the deterministic side, passive identifiers represent
one approach (though dependent on the certainty equivalence
principle). Other examples are adaptive backstepping, adap-
tive Lyapunov design with tuning functions, and modular
estimation-based designs. The latter three do not depend
on the certainty equivalence principle, but are limited in
their ability to remain stable for large nonlinearities. Iterative
identification and control [17], [5] is another deterministic
approach to producing control while building a model of
the plant. However this is an offline optimization and iden-
tification; then the parameters of the control remain static
once computed. However, they are insufficient here where the
parameters have large or rapid variations, and uncertainties
may be large.

Exploration and exploitation taking place simultaneously
(through online estimation and control) is necessary in these
types of problems where the plant is partially-observable
and non-stationary. There are adaptive dual control (ADC)
techniques which approach this problem by generating a
’cautious’ control signal for tracking, with an additional
excitation signal that accelerates parameter estimation [18],
[2]. A unique characteristic of the present method is that
it does not generate a reduced gain (cautious) tracking sig-
nal (which ADC controllers do), instead triggering pseudo-
random actions when needed which are combined with a
nominal tracking signal to produce an optimal action. Addi-
tionally, most of the approaches in the ADC literature center
around discrete time systems, whereas here we develop an
elegant continuous time method (there are some continuous
time ADC methods such as the bicritical method but it
approximates the original problem, whereas here the orig-
inal problem is solved). Task-relevant versus task-irrelevant
uncertainty, an important but rarely addressed distinction,
is also considered in this paper. Finally, it is emphasized
that the development of this model for control actions is
centered around modeling human exploration/exploitation
control actions.

II. EXAMPLE OF EXPLORATION TASK

We develop our method via an example, which is later
used to compare the optimal solution to experimental data
obtained from human subjects. The task can be thought of as
tracking a screen target using an uncertain computer mouse:
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we do not know how the mouse works and the way the
mouse works changes all the time. More precisely, let h (t) ∈
ℜnh denote a state variable which is fully observable and
controllable (say the position of the hand), and s (t) ∈ ℜns

denote a target which needs to be tracked. The unknown
mapping from h-space to s-space has a hidden state m (t) ∈
ℜnsnh which undergoes Brownian motion. The mapping is
assumed to be a linear projection from hand to target space

h → M [m]h. (1)

Here M is a linear operator which reshapes the vector m (t)
into an ns-by-nh projection matrix.

III. FORMULATION AS A STOCHASTIC OPTIMAL

CONTROL PROBLEM

The dynamics are assumed linear-Gaussian:

dh = u(t)dt, ds = dωs, dm = dωm, (2)

in which u (t) ∈ ℜnh is the control signal which is generated
in order to modify the hand state and ωs (t) and ωm (t)
are Brownian motion processes with covariances Ωs and
Ωm respectively.1 We assume that h(t) and s(t) are directly
observable, while m(t) is not directly observable and needs
to be estimated. The observation process is modeled as

dy = M [m(t)]h(t)dt + dωy, (3)

where y(t) ∈ ℜns corresponds to the integral of the
(noisy) cursor position. dy is the ns-dimensional obser-
vation/measurement vector, and dωy is the corresponding
measurement error. In this observation model m(t) is the
unknown state and h(t) plays the role of an observation
”matrix”. In usual estimation problems the latter would be
fixed, but here the subject can control it directly by changing
hand position. This makes apparent the exploratory nature
of hand movements in our setting. To put this observation
model in a more familiar form, define the ns-by-nsnh matrix
H [h(t)] such that H [h(t)]m(t) = M [m(t)]h(t). With this
notation, we rewrite (3) as

dy = H [h(t)]m(t)dt + dωy. (4)

Now suppose the prior over the initial state of the mapping
is Gaussian, with mean m̂ (0) and covariance Σ (0). Then
the posterior over m (t) remains Gaussian for all t > 0.
Given the additive, Gaussian white noise model, the optimal
estimate of the mean and error covariance of the map is
propagated by the well-known Kalman-Bucy filter [1], [14]:

dm̂ = K (dy − H [h(t)] m̂(t)dt) , (5)

K = Σ(t)H [h(t)]
T

Ω−1
y ,

dΣ = Ωmdt − K(t)H [h(t)] Σ(t)dt,

with measurement equation (4), and H [h(t)] appropriately
sized. The properties of the noise and disturbances do not
change over time. The mean and covariance of the state esti-
mate is m̂(t) and Σ(t), respectively, and dωy is a white, zero-
mean Gaussian random process as well, with covariance Ωy .

1In this study we apply deterministic hand dynamics and assume a first-
order model where the control signal corresponds directly to hand velocity.
A more sophisticated biomechanical arm model (in the case of modeling
biomechanical systems) can be used but is not necessary in order to capture
the trade-off of interest.

dωm and dωy are assumed to be uncorrelated2. The Kalman
filter can be written in innovations form by expressing m̂ (t)
as another stochastic process:

dm̂ = Kdω bm. (6)

Here ω bm (t) is a standard Brownian motion process with
unit covariance. The advantage of the innovations form is
that we are now dealing with a fully observable system
where m̂ (t) and Σ (t) act as state variables. The latter
is a symmetric matrix, therefore it is uniquely defined by
its upper-triangular part. Let σ (t) ∈ ℜnsnh(nsnh+1)/2 be
the vector of upper-triangular elements of Σ (t). Similarly
to M and H above, we will define the linear operators
f and F which transform between the vector and matrix
representations of the covariance, namely σ(t) = f [Σ(t)]
and Σ(t) = F [σ(t)]. We can now define the composite state
vector of our system which includes the mean and covariance
(a measure of uncertainty) of the estimates:

x(t) = [h(t); s(t); m̂(t);σ(t)] , (7)

and write its stochastic dynamics in the control-affine form
[15]

dx = (a (x) + Bu) dt + C (x) dω. (8)

In the next three equations explicit time-dependence is tem-
porarily omitted for clarity (e.g. h(t) → h). The uncontrolled
dynamics a (x) are needed to represent the evolution of the
covariance matrix:

a (x) =





0
0
0

f
[
Ωm − F [σ]H [h]

T
Ω−1

y H [h]F [σ]
]



 . (9)

The controlled dynamics Bu capture the evolution of the
hand state:

B = [ I 0 0 0 ]
T

. (10)

The noise-scaling matrix C (x) captures the dependence of
the innovation process on the filter gain matrix, as well as
the covariance of the target drift:

C (x) =





0 √
Ωs

F [σ]H [h]
T

Ω−1
y

0



 . (11)

Here
√

Ωs denotes the symmetric matrix square root, and
ω (t) is a vector of standard Brownian motion processes with
unit covariance.

The main idea behind our work is to define a sensible
cost function for the control task, and then induce an indirect
cost over exploratory actions by considering how they affect
uncertainty. Since we have a tracking task, the obvious state-
dependent cost rate is

‖M [m(t)]h(t) − s(t)‖2
.

2Note that K (t) is the filter gain matrix. It is clear that K is a
deterministic function of the other quantities and does not have to be
propagated through time explicitly. Unlike usual estimation problems where
K (t) can be precomputed, here it needs to be computed online because
we do not know in advance how the state h(t) and thereby the observation
matrix H [h(t)] will evolve over time.
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This cost rate depends on the true state of the mapping
m(t) which is not part of our composite state vector x.
However we know that m(t) has a Gaussian distribution
with mean m̂(t) and covariance F [σ(t)], and both m̂(t) and
σ(t) are part of x(t). Therefore we can compute the cost
rate by taking an expectation over m(t). Using the identity
H [h(t)]m(t) = M [m(t)]h(t), we have (again omitting
time-dependence):

q (x) = E
(
‖M [m]h − s‖2

)
, (12)

= ‖M [m̂]h − s‖2
+ tr

(
H [h]

T
F [σ]H [h]

)
,

where tr(·) denotes the trace. We also incorporate a quadratic
control cost, to obtain the following cost rate:

ℓ (x, u) = q (x) + 1
2 ‖u‖

2
. (13)

Thus we have transformed our partially-observable tracking
problem to the fully-observable non-linear stochastic optimal
control problem defined by equations (8) and (13).

The cost terms defined in q(x) each have a unique signifi-
cance. The first term in (12) represents a simple tracking cost,
quantifying the control objective to minimize the distance
between the cursor and target. The second term in (12)
represents an uncertainty cost. This comes into play only
when the system moves into a region where there is larger
uncertainty. The advantage of this term is the triggering
of random ’exploratory’ actions which by nature reduce
the uncertainty and allow the first cost term to once again
dominate. The final term in (13) is a quadratic control cost
to penalize overly large control.

The cost function for the set of problems discussed in this
paper is taken to be an infinite horizon discounted cost, since
there is no expected final time for the behavior.

IV. SOLUTION METHODS

One approach to approximating the solutions to continuous
optimal control problems is to discretize them. However
discretization methods such as in [10] and [3] are only
feasible in low-dimensional spaces, while the problems we
are dealing with tend to be rather high-dimensional. In
particular, the dimensionality of the augmented state x is

nx = nh + ns + nsnh + nsnh (nsnh + 1) /2. (14)

For nh = 2 and ns = 1, which is the simplest redundant
problem and corresponds to the experiments described below,
we have nx = 2 + 1 + 2 + 3 = 8. For nh = 3 and ns = 2,
corresponding to a mapping from 3D hand space to a 2D
screen, we have nx = 3+2+6+21 = 32. Thus we have to
focus on continuous function approximation methods - which
may lack theoretical guarantees in terms of convergence and
error bounds, but in practice turn out to have very appealing
properties.

The method begins with the continuous stochastic dynam-
ical equation defined as in (8)-(13).

Consider an infinite horizon discounted cost formulation,
with discount factor α > 0. The optimal value function
for our problem satisfies the Hamilton-Jacobi-Bellman (HJB)
equation for stochastic systems:

αv(x) = min
u

{
q(x) +

1

2
‖u‖2 + (a(x) + Bu)T vx (15)

+
1

2
tr(C(x)C(x)T vxx)

}
,

where the subscripts denote partial derivatives. The mini-
mization in (15) can be performed in closed form to yield
the optimal feedback control law

π(x) = −B(x)vx(x). (16)

Substituting (16) into (15) and dropping the min operator
we arrive at the minimized HJB equation

αv(x) = q(x) + a(x)T vx(x) (17)

+
1

2
tr(C(x)C(x)T vxx(x)) − 1

2
‖π(x)‖2.

Using (16) and (17) we now construct a function approx-
imation scheme based on the collocation method [4] to
approximate a continuous time optimal control law. We begin
with a general linear (in the parameters, nonlinear in the
state) function approximator

v(x,w) =
∑

i

wiφ
i(x) = φT (x)w, (18)

where {φi} is a set of predefined features, and wi are corre-
sponding to-be-determined weights. Function approximation
is a broad topic, and many choices are available for the
set {φi(x)}. The reader is referred to [13] for a survey of
techniques. It is possible to approximate any given function
to any desired accuracy given a sufficient number of terms
[11]. However, with sensible choices of terms an equivalent
quality of fit is obtained using many less terms. Since we
have a tracking task, we first choose to include the two cost
terms. We then choose the set of all quadratic terms of the
form xr, and xrxs to generally fit the function, with a set
of Gaussians to introduce corrections about the quadratic.

Before we can substitute (18) into (17), the first and second
derivatives of v(x) must also be computed:

vx(x,w) =
∑

i

wiφ
i
x(x) = φT

x (x)w, (19)

vxx(x,w) =
∑

i

wiφ
i
xx(x) = φT

xx(x)w. (20)

The idea is to reduce this nonlinear partial differential
equation to an equation of the form

Mw = d, (21)

which we can solve as a linear least squares problem, then
recompute d and iterate until appropriate convergence criteria
are met.

We get to (21) by rewriting (17) as

αv(x) − a(x)T vx(x) − 1

2
tr(C(x)C(x)T vxx(x)) (22)

= q(x) − 1

2
‖π(x)‖2,

Then substituting (18), (19), and (20) into (23) and simpli-
fying for w, defining M and d

M =
{

Mj,i =
(
αφi(xj)

T − a(xj)
T φi

x(xj)
T (23)

− 1

2
tr{C(xj)C(xj)

T φi
xx(xj)

T }
)
,∀i, j

}
,

d =
{

dj = q(xj) −
1

2
‖π(xj)‖2,∀j

}
. (24)
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Function Approximation Scheme (FAS) initialization: The
function approximation scheme is initialized in the following
way:

1) Generate a set of vectors {xj} and Gaussian centers
{cig

} which span the space of interest (in this case the
boundaries of the space are chosen to be equivalent to
the experimental boundaries) and nj > ni. Make sure
that at least one xj equals each ci. If S ∈ ℜr is the
state space,

xj = randj{S}, cig
= randig

{S}. (25)

2) Compute φi(xj), φi
x(xj), φi

xx(xj) and store the results
for all i, j.

3) Initialize w0 in a sensible way :

w0 =

{
0 i 6= icost

1 i = icost
, (26)

where icost are the two locations of the cost terms in-
cluded in the function approximator. Then we initialize
our control policy as

π0(xj) = −Bφx(xj)
T w0. (27)

FAS Iteration: Given a set of control actions π(xj) for
every j, the update from iteration k to k+1 is as follows:

1) Substitute the constraints φi(xj), φi
x(xj), and φi

xx(xj)
into (34), and πk(xj) into (24) to obtain one constraint
on w for every j.

2) Find the least-squares solution to (21) and assign it to
wk+1. For the new setting of the function approxima-
tor, compute πk+1(xj) for every j using (16)

3) Stop if the stopping criterion is met. Many criteria are
possible, and the one used in the present results is

ek =
1

nj
‖Mwk − d‖2

2, dek = ek − ek−1, (28)

if({ek < γ}|{dek < β})−→break, (29)

where γ = 10−3 and β = 10−5 are tolerances . We
also test for divergence:

if({(dek) > λ}|{isnan(dek) == true})−→break,
(30)

where isnan is a test for invalid numbers, and λ =
10−3 is a positive constant which is arbitrary, but can
be on the order of one.

V. RESULTS

A. Optimality and convergence of the function approxima-
tion scheme

The FAS converged after only a few iterations. It is not
guaranteed to converge for very poor initializations of wj ,
however the algorithm is somewhat forgiving. |enom − ei|
for initializations spanning a full order of magnitude in
each parameter (wtrack, and wexplore) was consistently <
7.846e−4 in each case, and ‖wnom −wi‖ < 1e−15 where
wnom represents the set of weights in the first solution of
the group.

Thus the FAS converges to a similar solution in each
case given the same states and Gaussian centers. With a
smaller convergence criterion, less variability in the com-
puted weights is observed. In all cases, 1-5 iterations were

required for convergence, and typical Bellman error was
< 10−3, the tolerance selected.

The number of Gaussians to include could be determined
by posing the problem as an optimization to minimize Bell-
man error. However, it is known that minimizing the Bellman
error (Mw − d) does not necessarily correspond to the best
control performance possible for stochastic systems and thus
the resulting ’optimal’ control policy can be deceiving. A
more appropriate criterion here is to use the performance
criterion - the cost function history during simulation. The
optimal number of Gaussians over a range of 400-1000 was
712, with a variance (elongated appropriately in each axis)
of 0.0161.

B. Simulations

The FASC was compared to several ad-hoc controls, and
to human subject data for the same task. The other controllers
were 1)a CE-based controller with a Kalman filter estimating
the map parameters, 2) a non-adaptive controller (NAC)
which did not estimate uncertain parameters and used only
the error between cursor and target to drive actions, and 3)a
controller driven by white noise (RANDC). The RANDC
was used primarily to compare estimation performance.

To perform the simulations, the continuous time nonlinear
ordinary differential equation (8) was integrated with explicit
Euler integration and for comparison, predictor corrector
methods [7] both with a stepsize of 10−3sec. When nec-
essary, experimental data was interpolated linearly to match
the step size.

Map estimation and uncertainty reduction: The most
information can be gained by moving in such a way as to
cover as much of the unknown space as possible in a random
way. Indeed, it seems clear that replacing the controller with
a white noise signal generator of arbitrary gain could yield
the closest estimate of the map.

However, exploring the entire subspace is neither neces-
sary nor desired in our case. The measure of uncertainty can
be broken down into relevant parts to the task and irrelevant
parts in the following way. The task-relevant uncertainty is
measured by the trace term in (12), whereas the irrelevant
uncertainty can be quantified by finding the orthogonal com-
plement of h(t), defined by h(t)⊥. Then h(t)⊥ is substituted
in the trace term in (12), and the two uncertainty histories
are computed over several trials (Fig. 2(e), 2(f), and Table
I). These measures were compared for the FASC, CE and
RANDC (the latter using a gain of 50, which approximates
human bandwidth).

What is clear is that the FASC reduces the relevant
uncertainty the most of all methods compared. The FASC
emphasizes reducing the h-space uncertainty (which is rele-
vant in this task, effectively ignoring irrelevant uncertainty).
The CE controller does not achieve as much overall reduction
in uncertainty as the FASC since its design does not include
an exploratory component3. Only the white noise control
reduces both types of uncertainty; it does not differentiate
between the two types of uncertainty. However, the RANDC
does not achieve as large of a reduction of the task-relevant
uncertainty as the other two methods. By distributing con-
trol action over the whole space, without unlimited gain,

3Additionally, the CE gain affects this measure heavily - low gain reduces
uncertainty less, but high gains lead to instability which yield poor numerical
results.
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TABLE I√
Norm OF UNCERTAINTY QUANTITIES PLOTTED IN FIG. 2(E) AND

2(F), WHICH IS A STANDARD DEVIATION QUANTITY.

h-space h
⊥-space

FASC 8.8 36.7
CE 10.2 81.2

RAND 13.7 14.7
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Fig. 1. (a) Estimation error for FAS scheme, with a noise level of
0.1su, and estimation error for random signal generator, with a gain of
50. (b) ||ṁ(t)||2

2
, giving a measure of where the map is changing more

rapidly. (c) Map estimation error (over 1 trial), ‖mest − mtrue‖2

2
vs.

maximum amplitude of white noise ’controller.’ The estimation improves
with increasing white noise amplitude.

the RANDC wastes much of its resources reducing task-
irrelevant uncertainty. When considering the mean of the
estimation error, Fig. 1(c) shows that as the amplitude of the
white noise is increased, the averaged 2-norm of the mean
of the estimation error decreases. Mathematically this makes
sense. If the map were stationary, then the amplitude would
control the speed of convergence of the estimator to the true
map. Since the map is not stationary, the amplitude of the
random control inputs must be large enough that the current
map state is well estimated before it changes significantly.
Fig. 2(a) and 1(a) show that the FAS controller leads to a
comparable cursor estimation error (Sec. III) as a white noise
signal, while still tracking the target in a stable manner, and
as we have seen, reducing relevant uncertainty.

Controller performance: The controller’s performance
can be characterized by the behavior of the two compo-
nents of the cost function (Fig. 2(b)), and by summing the
total average cost per trial. The the NAC performed worst
(costtotal = 6.3e5), followed by the RANDC (this does not
diverge as far as the NAC, so the overall tracking cost is
lower) with a gain of 50 (costtotal = 1.6e5), the CE-based
control (costtotal = 4.7e4 or 4.2e7, depending on stability),
and then the best performance was achieved by the FASC
(costtotal = 1.5e4). This is attributed to the cost term that
triggers random movements when entering state space with
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Fig. 2. (a) A section of a 60 second trial displaying human subject data,
FAS, and proportional feedback controller tracking. (b) represents the two
portions of the cost - the tracking and exploration costs. Plot (c) shows the
true and estimated map. (d) shows the FAS control actions. (e) and (f) show
two measures of uncertainty - (e) is in h-space, and is given by the trace
term in 12, while (f) is the same, but in h

⊥-space.

large uncertainty, which happens periodically, as can be seen
in Fig. 2(b). In Fig. 2(b) it is clear that exploration cost
increases when tracking cost is low, and then tracking cost
increases during the resulting exploratory actions, leading
to a decrease in uncertainty and thus exploration cost. This
whole behavior is periodic since the map and target velocity
continuously change, requiring new information input at
varying speeds (i.e. when m(t) has a lower velocity - Fig.
1(b) - tracking can be achieved with less exploration, and as
uncertainty increases due to rapid changes in m(t), tracking
suffers during exploratory movements).

The estimator parameters converge to a close enough
approximation of the true mapping to achieve good tracking.
A poor estimate would result in large control and possible
instability. The FAS improves estimates with larger control
inputs, so this acts to counter uncertainties, instabilities, and
errors. Fig. 2(d) shows the FAS control actions, which appear
to be near mirror images at certain time periods (e.g. - 0-
15sec). Comparing that figure with Fig. 2(c) it is clear that
the control in one axis becomes negative when the map is
negative, and a resulting desired cursor output is positive.

C. Comparisons to human subjects data

See Fig. 3 and caption for more specifics of the experi-
mental task described and modeled in section II. The human
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Fig. 3. Experimental setup. The subject sits in front of a monitor, holding a
3D absolute position sensor (Polhemus Liberty). Here nh = 2, ns = 1. The
center-stationary green circle is the target, whose diameter (s(t)) fluctuates
according to damped Brownian motion, and there is a concentric ’cursor’
(red circle) whose diameter is z(t) = m(t)T

h(t), with m(t) fluctuating
according to an independent damped Brownian motion. The subject is then
told to move however possible to try to keep z(t) = s(t). Trials are 1 min.,
started by a key-press and sampling rate is 50Hz.

subjects, as shown in Fig. 2(a), were able to track the target.
When the map’s velocity changed or for some other reason
they lost the map, they exhibited sudden large exploratory
movements and then tracked for another period of time.
Often both the model and human exhibited exploratory
movements at similar times.

It is notable that the FASC outperforms the human subject
in terms of tracking the target. This is not surprising since
a human subject has delays between perception, process-
ing and action, as well as biomechanical limitations. The
model is not approximating any of those processes, and
so should outperform humans. Though we cannot measure
(given the current experimental setup) the human exploratory
cost function, we can compute the associated tracking cost.
The average human tracking cost for 4 subjects over 24 trials
was 2.6e4. This is higher than the FAS control (1.1e4), but
within the same order, whereas the control which does not
adapt or explore had an average cost of 6.2e5 which was
the highest of control systems compared. The basic feedback
controller, when given a carefully tuned gain, had an average
tracking cost of 3.3e4, which is also comparable with hu-
mans, but when poorly initialized, or presented with highly
rapid map changes (which were part of the experiments),
the CE control diverged frequently (Fig. 2(a), around 30sec
where a rapid map change takes place, more complete loss of
stability at 50sec). The CE control did not exhibit exploratory
movements. Instead if the gain was too low it failed to track
sufficiently or to excite the system enough to estimate m(t),
and with a sufficient gain, deviations which occurred due to
map estimation errors led to explosive instability.

VI. CONCLUSION

We introduced a method of approximating optimal con-
trol laws in problems which involve a trade-off between
exploration and exploitation. This was done by treating the
Kalman-Bucy filter dynamics as part of the plant dynamics,

incorporating the estimation uncertainty in the state vector,
and applying a basis function approximation scheme to the
Hamilton-Jacobi-Bellman equation. Our method produced
control laws which outperformed other controllers. It not
only succeeded in achieving low tracking error, but also did
so with nonlinear time-varying system parameters and large
uncertainties. This approach shows promise in situations
where active exploration can reduce uncertainty. Addition-
ally, this method distinguishes between and reduces task-
relevant versus task-irrelevant uncertainty. That is advanta-
geous in real-world situations where there are limited control
resources.

The method was also compared to human data from an
uncertain tracking task similar to the one being modeled.
Although these comparisons are very preliminary, we already
see interesting similarities which will be pursued in future
work. In fact our motivation for developing the method is to
study human behavior. Stochastic optimal control combined
with Bayesian estimation is emerging as the leading theoreti-
cal framework for understanding sensorimotor function in the
brain [16]. However model-data comparisons are presently
limited to the few simple tasks where we can compute what
behavior is optimal. New methods such as the one developed
here, which allow us to extend optimality principles to more
interesting tasks, can accelerate progress in the field of
sensorimotor control. Of course such methods also are likely
to find engineering applications.
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