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Abstract— Resonance tracking control of oscillatory plants
whose natural frequency is unknown is investigated from a
Lyapunov stability perspective. In particular, an event-triggered
discrete-time system is investigated for this purpose. The
proposed resonance tuner is time-synchronized with periodic
sampling of the harmonic plant’s output to ensure that an
analytical relationship exists between the period of the driving
squarewave and the tracking error. This relation defines a class
of discrete-time nonlinear systems whose origin, is shown to be
asymptotically stable.

I. INTRODUCTION

Many scientific instruments and engineering applications

operate with maximal performance when driven harmoni-

cally to a state of resonance. These applications include,

but are not limited to, ultrasonic motors [7], piezoelectric

transducers [5], [18], [3], [2], [19], micromachined gyro-

scopes [6], cyclotrons [4], plasma processing systems [16],

microwave and induction heating systems [21], [14], [15],

and wireless communication systems [20]. Typically, the lock

between the driving frequency and the resonant frequency

of a load is achieved by an automatic control system that is

designed to update the drive frequency in the direction that

reduces the system phase angle [9], or equivalently, increases

the system admittance function [2], until the phase becomes

zero and the power factor is maximized.

However, the stability and performance of this resonance

lock is influenced by several factors including the initial

frequency, the feedback gain, the low-pass filter bandwidth,

the signal-to-noise ratio, the time-lag between the sensor

sample and the control update, as well as the drift rate of

the resonant frequency which increases with internal power-

dissipation [9], [2]. In the literature[17], [8], [10], [11], the

stability analysis of resonance tuning control systems has

generally been initiated after non-trivial simplifications have

been applied to the system model. For instance, in [17],

[9] and others, conventional phase detectors are investigated

according to a model that assumes the actuator current is al-

ways at steady-state. In this paper, this assumption is avoided.

Towards this end, a new resonance tuning approach based

on an event-triggered discrete-time system is introduced. An

advantage of this approach is that the stability of the closed-

loop system can be determined as a function of the feedback

and filter gains without making the assumption that the gain-

dependent transients of the plant are negligible.

The rest of the paper is organized as follows. In Section

2, some notation is introduced and the resonance seeking

control problem is defined. In Section 3, the closed-loop
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dynamics are derived, and in Section 4, we prove a closed-

loop stability result for this system. A simple example of

a harmonic oscillator is given in Section 5, followed by

conclusions in Section 6.

II. PRELIMINARIES AND PROBLEM DEFINITION

Regarding notation, we assume the following: N denotes

the set of positive integers. R denotes the set of real numbers.

R
+ denotes the set of positive real numbers. Im is the m×

m identity matrix. ‖ · ‖ denotes the 2-norm for vectors and

matrices. Lastly, for a matrix T , σmin(T ) and σmax(T ) denote

its minimum and maximum singular values, respectively.

To demonstrate the resonance seeking control problem, we

consider linear time-invariant (oscillatory) systems given by

ẋ(t) = Ax(t)+bu(t) (1)

y(t) = cTx(t)

where b,c∈R
n×1 and A∈R

n×n has the following properties,

(i) A = EDE−1, D is diagonal (i.e. distinct eigenvalues)

(ii) ℜ{D} < 0, (i.e. A is Hurwitz)

(iii) D includes a complex-conjugate pair.

To achieve resonance, we are interested in driving (1) by

the following variable-period square-wave input,

u(t) =

{

vo, t ∈ [tk, tk + τk/2)
−vo, t ∈ [tk + τk/2, tk + τk)

tk+1 = tk + τk, k = 1,2, . . . (2)

where vo > 0 is the amplitude of the square-wave (a constant),

t1 = 0 is the initial time, and τ1 ∈ R
+ is the initial period of

the square-waveform chosen by the user. For this system, we

assert that there exists an unknown resonant period denoted

by τ∗ with the following property,

{τk =τ∗ : k=1,2, . . .} ⇒ lim
k→∞

y(tk) = 0 (3)

for some choice of c ∈ R
n×1 in (1). This assertion follows

from the assumed properties of A, and will be proven later.

Intuitively, (3) implies that the input is in phase with the

output, a more familiar notion associated with resonance.

The control objective is to make adjustments to the period

of the square-wave input τk for k=1,2, . . ., until it is tuned

to the unknown resonant period τ∗ of the plant (1). That is,

lim
k→∞

τk = τ∗ (control objective)

Clearly, τ∗ cannot be used in feedback since it is unknown!

Instead, we assume that the period of the square-waveform
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is updated according to the following control law,

pk+1 = (1− ε)pk + εy(tk)

τk+1 = τk −hpk (4)

where h > 0 is chosen to set the feedback control bandwidth,

and ε ∈ (0,1) is chosen to set the bandwidth of the low-pass

filtered measurements. We assume that the initial state of the

filter p1 ∈ R is arbitrary. It is also assumed that {y(tk)|k =
1,2, . . .} are available discrete measurements of continuous

signal {y(t)|t ≥ 0} that are triggered by the rising-edge of

the square-wave input as defined by (2). As we shall see,

(2) defines an event-triggered discrete-time domain that can

be both implemented in hardware [1] and analyzed within a

Lyapunov stability framework.

III. CLOSED-LOOP DYNAMICS

A strong motivation for introducing the resonance seeking

control problem in an event-triggered discrete-time domain,

is that this approach yields closed-form analytic solutions

for the closed-loop plant trajectories. As such, the stability

of this class of systems can be analyzed using Lyapunov’s

second method. In prior work on resonance seeking control

[8], [9], [11], [12], the closed-loop stability analysis assumes

that the plant (i.e. harmonic oscillator) is always at steady-

state (or quasi-steady-state). Relaxing this assumption is

nontrivial since conventional phase detector models generally

assume steady-state. (i.e. only the steady-state amplitude

and phase of the actuator current is modelled). Although

this assumption is justified when the feedback gain is at

a low level, it increasingly becomes less valid as the gain

is increased since the transient response of the harmonic

oscillator becomes more apparent in this case. Using the

proposed approach taken here, the transient response need

not be neglected.

The goal of the following lemma is as follows: Express the

closed-loop trajectories analytically in terms of discrete-time

difference equations that are amenable to Lyapunov stability

analysis.

Lemma 1: Given n ∈ {2,3,4, . . .}, m = n+2, h,ε,vo > 0,

vectors b,c ∈ R
n×1 and a Hurwitz matrix A ∈ R

n×n such

that A = EDE−1 holds for a diagonal D and nonsingular E.

Suppose that xss : [0,∞) → R
n and vss : [0,∞) → R

n given by

xss(τ) = ED−1(I − eD(τ/2))E−1bvo (5)

vss(τ) = (−1/2)EeD(τ/2)E−1bvo

satisfy the following conditions

cT xss(τ
∗) = 0 (6)

cT vss(τ
∗) > 0

for some finite τ∗ > 0. Then, the closed-loop trajectories of

system (1) and (2) can be expressed in discrete-time as

xk = x̃k + xss(τk)

pk = p̃k + cT xss(τk)

τk = τ̃k + τ∗ (7)

where zk = col(x̃k, p̃k, τ̃k)∈R
m (m = n+2) is the state of the

following discrete-time system,

zk+1 = M(vk)zk +d(ℓk), d(0) = 0 (8)

vk =
[

0 1
]

ℓk

ℓk =
[

02×n I2

]

zk

with matrix function M : R → R
m×m and vector function d :

R
2 → R

m defined as follows:

M =





EeDrk E−1 0 0

εcT (1− ε) 0

0 −h gk



 =:

[

Fk 0

H Gk

]

d =
[

eT
k cT ek 0

]T

gk = 1−hαk ek = xss(rk)− xss(sk) (9)

rk = τ∗ + τ̃k sk = rk −h(p̃k + cT xss(rk))

αk =

{

(1/τ̃k)c
T xss(rk) , τ̃k �= 0

cT vss(τ
∗) , τ̃k = 0

where αk : R → R is a continuous function that satisfies

0 < k1 ≤ αk(q) ≤ k2 ∀q ∈ [−d,d] (10)

for some positive scalars k1, k2, d. Furthermore, the closed-

loop trajectories given by (7–9) are valid for all timesteps

k = 1,2, . . . ,∞, provided τk > 0 for all k ∈ N.

Proof: Substituting (2) into (1) followed by time-

integration yields the equivalent discrete-time system,

xk+1 = Φ(τk)xk + f (τk) (11)

yk = cTxk

where xk denotes x(tk) and

Φ(τ) = eAτ = EeDτ E−1

f (τ) = (eAτ − I)

[

∫ τ/2

0
eAσ dσ

]

bvo

= E(I − eDτ)D−1(I − eDτ/2)E−1bvo (12)

Next, we show that for fixed τ = τk = τ̃k + τ∗, (11) has a

unique attractive fixed-point denoted by xss that satisfies

xss = Φ(τ)xss + f (τ) (13)

and is given by (5). That is, rearrangement of (13) yields

xss = E(I − eDτ)−1E−1 f (τ), provided inversion of I − eDτ is

permitted. Indeed, inversion of I − eDτ is permitted for all

τ > 0, since D is Hurwitz and diagonal (i.e. ∀τ > 0, ‖eDτ‖<
1 and I − eDτ is nonsingular). Finally, substitute (12) to get

xss = ED−1(I−eDτ/2)E−1bvo as in (5). Furthermore, one can

multiply (13) by E−1 to get E−1xss = eDτ E−1xss +E−1 f (τ),
which clearly defines a contraction map from E−1xss into

itself due to the fact that ‖eDτk‖ < 1.

To show (10), note that (6) and the smoothness of (5)

imply the sector condition,

q2k1 ≤ qcT xss(τ
∗ +q) ≤ q2k2, ∀q ∈ [−d,d] (14)
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for some positive scalars k1, k2 and d. Note that αk is the

unique continuous function that permits the factorization,

cT xss(τ
∗ +q) = αkq, ∀q ∈ (−τ∗,∞) (15)

Indeed, limq→0[(1/q)cT xss(τ
∗ + q)] = cT vss(τ

∗) > 0 shows

that cT vss = dcT xss/dτ at τ∗, and that αk is continuous and

locally positive in a neighborhood of τ∗. Hence, (10) holds.

To show (8), we assert that

zk+1 = λk −d(ℓk)

λk :=





Φ(τk)xk + f (τk)
(1− ε)pk + εcT xk

τk −hpk − τ∗





holds, and then substitute (7), (13) and (15) into λk, to get

λk =





Φ(τk)(x̃k + xss(τk))+ f (τk)
(1− ε)(p̃k + cT xss(τk))+ εcT (x̃k + xss(τk))
(τ̃k + τ∗)−h(p̃k + cT xss(τk))− τ∗





=





Φ(τk)x̃k + xss(τk)
(1− ε)p̃k + εcT x̃k + cT xss(τk)
−hp̃k +(1−hα(τ̃k))τ̃k



 = M(vk)zk

which is equivalent to (8).

The above result assumes that its possible to satisfy (6). In

the following lemma, we show that this is indeed the case.

Lemma 2: Let C denote the set of all unit-norm n-vectors

that have exactly one non-zero element, i.e.,

C :=

{

[0k−1 e 0n−k ]T ∈ R
n×1

∣

∣

∣

∣

k ∈ {1,2, . . . ,n}
e ∈ {−1, 1}

}

where 0m ∈ R
1×m is the zeros-vector. Then, for the linear

system (1) driven by a square-waveform of constant period

τ > 0 according to (2), it follows that there exists c ∈ C and

a τ∗ > 0 such that the resonance condition (3) holds.

Proof: It suffices to show that c ∈ C exists to satisfy

cT xss(τ
∗) = 0 and cT vss(τ

∗) > 0 for some τ∗ > 0, where

xss and vss are given in (5). Toward this end, we introduce

{xunit(t) : t ≥ 0} to denote the unit-step response of (1) with

initial condition x(0) = 0, and derive the following identity,

xss(2τ)+ xunit(τ)vo = 0, ∀τ ≥ 0 (16)

Clearly, xunit : [0,∞) → R
n includes two oscillatory trajecto-

ries due to the complex-conjugate pair of poles present in

(1). Without loss of generality, we let these trajectories be

denoted by xi(t) for i = 1,2 such that ẋ1 = x2. Hence, there

exists a finite time t∗ for which x1(t
∗) reaches maximum

overshoot and x2(t
∗) = 0. By choosing e ∈ C such that

eTxunit = x2, it follows from (16) that c = e and c = −e

satisfies cTxss(τ
∗) = 0 for τ∗ = t∗/2. This zero crossing

of cT xss(τ) at τ∗ is isolated (ı.e. unique on some finite

interval [−d,d]) because the state-trajectories are oscillatory

and smooth.

IV. CLOSED-LOOP STABILITY

Recall that the goal of the feedback controller (4) is to

drive the actual system state given by (xk, pk,τk) to the

state of resonance given by (xss(τ
∗),0,τ∗) in an efficient

and stable manner. When this occurs, resonance is achieved.

Inspection of equation (7), reveals that this occurs if the error

variables in zk = col(x̃k, p̃k, τ̃k) are driven to zero. That is,




x̃k

p̃k

τ̃k



 →





0

0

0



 implies





xk

pk

τk



 →





xss(τ
∗)

0

τ∗





Hence, the remaining task is to determine when the

discrete-time trajectories of (8) will asymptotically converge

to zero. Towards this end, a Lyapunov stability argument is

presented in the following theorem. Therein, we list simple

sufficient conditions that can be evaluated numerically, to

determine if the dynamics of the harmonic oscillator and the

resonance controller given by (8) converges with asymptotic

stability to the desired state of resonance. In the following

section, a control analysis example is illustrated based on the

results of this theorem.

Theorem 1: For the closed-loop system of (8) and (9)

subjected to a bounded external disturbance wk as follows,

zk+1 = M(vk)zk +d(ℓk)+wk (17)

vk =
[

0 1
]

ℓk

ℓk =
[

02×n I2

]

zk

‖wk‖ ≤ c1 k = 1,2, . . .

there exists positive scalars κ1, κ2, c0, c2 and r such that

‖T M(v)T−1‖ ≤ c0 < 1, ∀v ∈ B1
r (18)

‖T d(ℓ)‖ ≤ c2‖Nℓ‖, ∀ℓ ∈ B2
r

where Bm
r := {x ∈ R

m | ‖x‖ ≤ r} and T is given by

T =

[

E−1 0

0 N

]

, N =

[

κ1 0

0 κ2

]

Moreover, suppose that c0 and c2 also satisfy:

c0 + c2 < 1 (19)

Assuming conditions (17), (18) and (19) hold, then the

following statements are valid.

(i) Equilibrium point zk = 0 in (17) is stable if (18) holds

with c1 < (1− c0 − c2)rσmin(T )/σmax(T ), and asymp-

totically stable in the absence of external disturbances

(i.e. when c1 = 0).

(ii) The region of attraction is approximated (conserva-

tively) by the following compact set

Ω :=

{

z ∈ R
n

∣

∣

∣

∣

‖z‖ ≤ r
σmin(T )

σmax(T )
− ro

}

(20)

where ro is an arbitrarily small positive constant.

(iii) If c1 = 0, then every trajectory starting in Ω, remains

in Ω and approaches the origin as t → ∞.

Proof: Let k1 and k2 satisfy 0 < k1 ≤ αk ≤ k2 (sector

condition). To show that (18) is satisfied with c0 < 1, let

ao = min{|real(Dii)| : i = 1, . . . ,n} and choose κ2 = κ2
1 to get

T MT−1 =





eDrk 0 0

εcT Eκ1 (1− ε) 0

0 −hκ1 (1−hαk)




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Observe that as κ1 → 0, ‖T MT−1‖→ c∗0 where we define c∗0 :

= max{(1− ε), (1−hk1), exp(ao(r− τ∗))}. Clearly, c∗0 < 1

provided r, ε and h are chosen according to r < τ∗, ε < 1,

and 0 < h < 1/k2. Next, the existence of c2 satisfying (18),

follows from the fact that d(ℓ) is a vanishing perturbation, i.e.

d(0) = 0. Statements (i), (ii) and (iii) are verified as follows.

Consider the Lyapunov function candidate,

V (zk) = ‖T zk‖ (21)

Fix k ∈ N, and choose zk such that V (zk) < rσmin(T ). It

follows that ‖zk‖ < r, and ℓk ∈ B2
r , vk ∈ B1

r . Consequently,

(21) evolves along the trajectories of (17) as follows

∆V (zk) := V (zk+1)−V (zk)

= ‖T M(ℓk)zk +T d(ℓk)+Twk‖−‖T zk‖

≤ ‖T M(ℓk)zk‖+‖T (d(ℓk)+wk)‖−‖T zk‖

≤ (‖T M(ℓk)T
−1‖−1)‖T zk‖+‖T d(ℓk)‖+‖Twk‖

≤ (c0 −1)‖T zk‖+ c2‖Nℓk‖+ c1‖T‖

≤ (c0 −1)‖T zk‖+ c2‖T zk‖+ c1‖T‖

= −c3V (zk)+ c1σmax(T ) ⇐ c3 := 1− c0 − c2

Hence, ∆V (zk) < 0 if σmax(T )c1c−1
3 < V (zk) < rσmin(T ).

Furthermore, if c1 = 0, then ∆V (zk) < 0 for all ℓk ∈ B2
r

(asymptotic stability). Using the following inequality,

σmin(T )‖zk‖ ≤V (zk) ≤ σmax(T )‖zk‖

the region of attraction (20) can be derived [13].

V. EXAMPLE

In this section, we consider a simple example to illustrate

how the theorem can be used to analyze the stability domain

of a simple harmonic oscillator, whose plant parameters

defined in (1) are as follows.

A =

[

0 1

−1 −1

]

, b,c =

[

0

1

]

The plant is driven with a square-wave of amplitude vo = 1, a

feedback gain of h = 0.05, and a filtering constant of ε = 0.1.

For this system, we compute the constant c0 and c2 that

satisfy (18) as a function of the resonance tracking error τ̃

and the filtering error p̃ and plot the contour lines in Fig. 1.

Observing that c0 +c2 < 1 holds within the bold lines in Fig.

1, i.e. condition (18), we conclude that there exists an circle

within these bold lines that defines the region of attraction

of the closed-loop system.

VI. CONCLUSION

In this article, we introduce a new approach to resonant

frequency tracking by means of an event-triggered feedback

control. It is shown that the synchronization of the square-

wave driver waveforms with periodic sampling of the plants

output yields a closed-form analytical solution of the closed-

loop system trajectories (i.e. on-line time-integration is not

required). This feature is instrumental in proving asymptotic

stability of closed loop system using a simple Lyapunov

function. The region of attraction for this class of systems
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Fig. 1. Level curves of ‖T M(ℓ)T−1‖+ ‖T d(ℓ)‖/‖Nℓ‖ versus tracking
error τ̃ (x-axis) and filtering error p̃ (y-axis), where ℓ = (p̃, τ̃).

is estimated, based on derived sufficient conditions that

ensure stability of the resonance seeking control system.

Simulations demonstrate the feasibility of this approach.

Regarding future work, additional disturbance modelling is

needed to assess the stability and performance robustness

of the proposed controller in the presence of heavy external

disturbances and time-varying loads.

ACKNOWLEDGMENT

The research described in this article was carried out at the

Jet Propulsion Laboratory, California Institute of Technology,

under a contract with the National Aeronautics and Space

Administration.

REFERENCES

[1] J.B. Aldrich, S. Sherrit, X. Bao, M. Badescu, Y. Bar-Cohen, and
Z. Chang. “Lyapunov stability of periodically-modulated cosine
drivers for resonance-tuning of harmonic oscillators”. In Proc. SPIE

model., signal-proc. and control, volume 6523, 2007.

[2] J.B. Aldrich, S. Sherrit, Y. Bar-Cohen, X. Bao, M. Badescu,
and Z. Chang. “Extremum-seeking control of Ultrasonic/Sonic
Driller/Corer (USDC) driven at high-power”. In Proc. SPIE Modeling,

Signal Proc. and Control Conf., volume 6166, 2006.

[3] X. Bao, Y. Bar-Cohen, Z. Chang, B. Dolgin, S. Sherrit, D. Pal,
S. Du, and T. Peterson. “Modeling and Computer Simulation of
Ultrasonic/Sonic Driller/Corer (USDC)”. IEEE Trans. on Ultrasonics,

Ferroelectrics and Frequency Control, 50(9):1147–1160, 2003.

[4] F. Braun and W. Arnold. “Fast matching of load changes in the ion
cyclotron resonance frequency range”. In Proc. IEEE Fusion Eng.

Symp., pages 395–398, 1999.

[5] P. Cevc, T. Walczak, and H.M. Swartz. “Whole body L-band resonator
with a wide range frequency tuning using piezo actuator”. Current

Topics in Biophysics, 26(1):15–19, 2002.

[6] Y.-C. Chen, R.T. M’Closkey, T.A. Tran, and B. Blaes. “A Control
and Signal Processing Integrated Circuit for the JPL-Boeing Micro-
machined Gyroscopes”. IEEE Trans. on Control Systems Technology,
13(2):286–300, 2005.

[7] S. Furuya, T. Maruhashi, Y. Izuno, and M. Nakaoka. “Load-adaptive
frequency tracking control implementation of two-phase resonant
inverter for ultrasonic motor”. IEEE Trans. Power Electron., 7(3):542–
550, 1992.
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