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Abstract— In this paper, the problem of adaptive robust
stabilization of neutral time-delay systems with uncertainties
is investigated. It is assumed that the system parameters are
subject to uncertainties with unknown bounds, but with known
functional properties. A novel memoryless adaptive robust state
feedback controller is proposed, and an adaptive scheme is
introduced to estimate the bounds on uncertainties. A set
of time-dependent trajectories which follow specific switching
dynamic equations are utilized in the adaptive scheme and in
the adaptive robust control input to achieve the stability of the
closed-loop system. It is shown that by applying the proposed
adaptive robust control input the states of the resultant closed-
loop uncertain time-delay system will be uniformly ultimately
bounded. The simulation results elucidate the effectiveness of
the proposed approach.

I. INTRODUCTION

In recent years, there has been a burst of research activities
in the area of time-delay control systems. Problems of
this type appear, for example, in process control systems,
communication networks and power systems, to name only
a few [2], [3], [4]. It is known that neglecting time-delay in
the dynamics of the system in control design can lead to the
degradation of the control performance, and may even cause
instability.

Time-delay systems can be classified in two different cate-
gories: the ones expressed by retarded functional differential
equations (RFDE) and the ones described by neutral func-
tional differential equations (NFDE). RFDEs involve only
delay in the state, whereas NFDEs involve also derivatives
of the state with delays (see, e.g., [1], [2]).

In a practical environment, time-delay in the dynamics of
the system can be uncertain or time-varying. Furthermore,
the parameters of the system are often subject to perturbation,
uncertainties, and unmodeled dynamics. Robust stabilization
of time-delay systems has been extensively investigated in
the literature; e.g., see [4], [5], [6], [7], [8], [9], [10] and the
references therein.

Uncertain RFDE systems have been studied in [11], [12],
[13], [14]. A typical assumption in such problems is that
the upper bounds of the uncertainties are unknown. Thus, an
adaptive robust controller is employed to estimate the upper
bound of the uncertainties and consequently stabilize the un-
certain time-delay system. Various techniques are proposed
in the prior literature to design adaptive robust controllers
to stabilize the uncertain RFDE systems asymptotically as
well as exponentially. To the best of the knowledge of the
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authors, however, there are very few results on the stabi-
lization of NFDE systems (due to their complexity) when
the information on the upper bounds of the uncertainties is
unknown. An adaptive robust control scheme was proposed
in [15] to stabilize uncertain neutral-type time-delay systems.
However, the drawbacks of that work are that it assumes the
delay is known, and that it utilizes the delayed state of the
system in the adaptation process.

In this paper, the uncertain neutral time-delay systems
are investigated, and a novel adaptive memoryless state
feedback control scheme is proposed to uniformly ultimately
stabilize the system. It is assumed that the upper bounds
of the uncertainties are unknown. First, using the improved
adaptation laws with σ-modification and a set of time-varying
parameters which are governed by some dynamic equations,
the upper bounds of the uncertainties are estimated. Then,
using the updated parameters and the above mentioned
time-varying parameters, a new memoryless state feedback
adaptive control input is introduced to robustly stabilize the
uncertain neutral time-delay system. It is proved that the state
of the resultant closed-loop system is uniformly ultimately
bounded.

The remainder of the paper is organized as follows. The
problem statement and some essential assumptions are given
in Section II. An adaptive robust control design technique
is introduced in Section III as the main result of the paper.
Simulations are presented in Section IV to demonstrate the
efficacy of the proposed method, and finally some concluding
remarks are drawn in Section V.

II. PROBLEM FORMULATION

Consider the uncertain neutral type time-delay system
described by the following differential equation

ẋ(t)+Dẋ(t− h) = (A0 + ∆A0(ξ(t)))x(t)
+ (A1 + ∆A1(ξ(t)))x(t− h) + Bu(t) + ω(t)

(1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the input
vector, ω(t) ∈ Rn is the disturbance vector, D, A0, A1 ∈
Rn×n are system matrices, and ∆A0(·), ∆A1(·) represent
the system uncertainties. Moreover, h is the unknown time-
delay, which is assumed to be a positive constant value.

The initial condition for the system (1) is expressed as

x(t) = φ(t), t ∈ [t0 − h, t0] (2)

where φ(t) is a continuous function on [t0 − h, t0]. To
proceed further, the following assumptions are made.

Assumption 1: The pair {A0, B} given in (1) is com-
pletely controllable.
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Assumption 2: All admissible uncertainties can be de-
scribed as follows

∆A0(ξ(t)) =E1(ξ(t))F (3a)
∆A1(ξ(t)) =E2(ξ(t))F (3b)

ω(t) =BE3(t) (3c)

where E1(·), E2(·) and E3(·) are unknown matrices with
appropriate dimensions and the following bounds

max
ξ∈Ω

||E1(ξ)|| ≤ α1, max
ξ∈Ω

||E2(ξ)|| ≤ α2, (4a)

max ||E3(t)|| ≤ α3 (4b)

(α1, α2 and α3 are positive constants), and F is a known
matrix with appropriate dimension. The uncertainty ξ(t) ∈
Ω ⊂ Rk is Lebesgue measurable and takes values in known
compact bounded set Ω.

It is to be noted, from Assumption 1, that for any given
positive definite matrix Q ∈ Rn×n, there exists a unique
positive definite symmetric matrix P ∈ Rn×n such that the
following algebraic Riccati equation is satisfied

AT
0 P + PA0 − ωPBBT P = −Q (5)

where ω is a given positive constant. Define

ρ :=
ω

2
(6)

It is desired now to design a state feedback controller to
stabilize the closed-loop uncertain time-delay system.

III. ADAPTIVE ROBUST CONTROLLER DESIGN

Consider the system (1) and suppose that the conditions of
Assumptions 1 and 2 are met. The following state feedback
controller is proposed

u(t) = −ρBT Px(t) + p̃1(t) + p̃2(t) (7)

where ρ is defined in (6) and

p̃1(t) = −1
2
θ̂1(t)BT Px(t)− 1

2
µ1(t)BT Px(t) (8a)

p̃2(t) =


−θ̂2(t)B

T Px(t)
||BT Px(t)|| − µ2(t)BT Px(t),

||BT Px(t)|| ≥ δx

−θ̂2(t)B
T Px(t)

||BT Px(t)||+σ2(t)
− µ2(t)BT Px(t),

||BT Px(t)|| < δx

(8b)

(θ̂1(t), θ̂2(t), µ1(t), µ2(t) and σ(t) will be introduced later).
δx in the above equation is a positive constant design
parameter, P ∈ Rn×n is the solution of the Riccati equation
(5), such that the following LMIs with respect to positive
constants εi, i = 1, ..., 9, the positive definite matrices
Q1, Q2, Q3 ∈ Rn×n and given positive definite matrix
Q ∈ Rn×n and positive constant ρ is satisfied

Ẽ =

 Ẽ11 Ẽ12 Ẽ13

∗ Ẽ22 Ẽ23

∗ ∗ Ẽ33

 < 0 (9a)

PBQ3B
T P ≥ FT F (9b)

where Ẽ11 = −Q + DT Q2D + P (ε1 + ε2)P , Ẽ12 = PA1,
Ẽ13 = −PBρBT P +AT

0 P , Ẽ22 = −Q1, Ẽ23 = AT
1 P , Ẽ33 =

−Q2 + 1
2

∑10
i=5 PBεiB

T P +
∑4

i=3 PεiP + 1
2PBε9B

T P .
Define now

θ∗1 := λmax(Q3)[(ε−1
1 + ε−1

4 )α2
1 + (ε−1

2 + ε−1
3 )α2

2] (10a)
θ∗2 := 2α3 (10b)

where α1, α2 and α3 are defined in (4). Furthermore, θ̂1(t)
and θ̂2(t) in (8) represent the estimates of the unknown pa-
rameters θ∗1 and θ∗2 , respectively, which are updated through
the following adaptation laws

dθ̂1(t)
dt

=
1
2
γ1||xT (t)PB|| − γ1θ̂1(t) (11a)

dθ̂2(t)
dt

=
1
2γ2||xT (t)PB|| − γ2θ̂2(t), ||BT Px(t)|| ≥ δx

1
2γ2

||xT (t)PB||
||xT (t)PB||+σ2(t)

+ 1
2γ2

σ2(t)
||xT (t)PB||+σ2(t)

− γ2θ̂2(t),

||BT Px(t)|| < δx

(11b)

where σ(t) follows the dynamic equation given below

σ̇(t) =8><>:
−σ(t), ||BT Px(t)|| ≥ δx

− σ(t)θ̂2(t)

||xT (t)PB||+σ2(t)
− σ(t), ||BT Px|| < δx, σ(t) ≥ δσ

− σ(t)θ̂2(t)

||xT (t)PB||+σ2(t)
− σ(t) + εσ, ||BT Px|| < δx, σ(t) < δσ

(12)

In addition, µ1(t) and µ2(t) in (8) are updated through the
dynamic equations in (13). In (13) εµ1 , εµ2 , δµ1 and δµ2 are
design positive constants. Moreover, η1(t) and η2(t) in (13)
are updated through the dynamic equations in (14). Note
in (14) that εη1 , εη2 , δη1 , δη2 are positive constant to be
designed. Note also that the initial conditions η1(t0), η2(t0),
µ1(t0), µ2(t0) and σ(t0) can be any positive real numbers.

Remark 1: It is to be noted that the dynamic equations
introduced in (12)-(14) guarantee that the time-varying vari-
ables µ1(t), µ2(t), η1(t), η2(t) and σ(t) remain positive and
do not cross zero.

The following theorem addresses the stability of the sys-
tem (1) with the input defined in (7).

Theorem 1: Consider the uncertain time-delay system
(1). Suppose that the conditions of Assumptions 1 and 2
are satisfied. The system (1) with the control input (7) is
uniformly ultimately stable if there exist a positive definite
matrix P ∈ Rn×n which satisfies the Riccati equation (5),
positive constants εi, and positive definite matrices Q1 ∈
Rn×n and Q2 ∈ Rn×n such that the LMIs in (9) becomes

5163



dµ1(t)

dt
=

8<:||xT (t)PB||2 − 1
2ε6

µ1(t)||xT (t)PB||2 − 1
2ε5

µ1(t)θ̂2
1(t)||xT (t)PB||2

µ2
1(t)+η1(t)2

− µ1(t), µ1(t) ≥ δµ1

||xT (t)PB||2 − 1
2ε6

µ1(t)||xT (t)PB||2 − 1
2ε5

µ1(t)θ̂2
1(t)||xT (t)PB||2

µ2
1(t)+η1(t)2

− µ1(t) + εµ1 , µ1(t) < δµ1

(13a)

dµ2(t)

dt
=

8<:||xT (t)PB||2 − 1
2ε7

µ2(t)||xT (t)PB||2 − 1
2ε8

µ2(t)θ̂2
2(t)

µ2
2(t)+η2(t)2

− µ2(t), µ2(t) ≥ δµ2

||xT (t)PB||2 − 1
2ε7

µ2(t)||xT (t)PB||2 − 1
2ε8

µ2(t)θ̂2
2(t)

µ2
2(t)+η2(t)2

− µ2(t) + εµ2 , µ2(t) < δµ2

(13b)

dη1(t)

dt
=

8<:− 1
ε5

η1(t)θ̂2
1(t)||xT (t)PB||2

η1(t)2+µ1(t)2
− η1(t) , η1(t) ≥ δη1

− 1
ε5

η1(t)θ̂2
1(t)||xT (t)PB||2

η1(t)2+µ1(t)2
− η1(t) + εη1 , η1(t) < δη1

(14a)

dη2(t)

dt
=

8<:− 1
ε8

η2(t)θ̂2
2(t)

η2(t)2+µ2(t)2
− η2(t) , η2(t) ≥ δη2

− 1
ε8

η2(t)θ̂2
2(t)

η2(t)2+µ2(t)2
− η2(t) + εη2 , η2(t) < δη2

(14b)

negative definite for a given positive constant ρ and a positive
definite matrix Q ∈ Rn×n.

Proof: In the following the proof is provided separately
for the two cases: ||xT (t)PB|| ≥ δx and ||xT (t)PB|| < δx.

Case 1: ||xT (t)PB|| ≥ δx. Substituting control input
(7) with ||xT (t)PB|| ≥ δx into (1) leads to the following
closed-loop system

ẋ(t) + Dẋ(t− h) = (A0 + ∆A0(t))x(t)− ρBBT Px(t)

+ (A1 + ∆A1(t))x(t− h)− θ̂1(t)BBT Px(t)

− µ1(t)BBT Px(t)− θ̂2(t)BBT Px(t)
||BT Px(t)||

− µ2(t)BBT Px(t) + ω(t)
(15)

Choosing the following positive definite Lyapunov-
Krasovsky functional candidate

V =[x(t) + Dx(t− h)]T P [x(t) + Dx(t− h)]

+
∫ t

t−h

xT (s)Q1x(s)ds +
∫ t

t−h

xT (s)DT Q2Dx(s)ds

+ (ε−1
2 + ε−1

3 )α2
2

∫ t

t−h

xT (s)PBQ3B
T Px(s)ds

+ γ−1
1 θ̃2

1(t) + γ−1
2 θ̃2

2(t)

+
1
2
µ2

1(t) +
1
2
µ2

2(t) +
1
4
η2
1(t) +

1
4
η2
2(t) +

1
2
σ2(t)

(16)

where P , Q1 and Q2 are symmetric positive definite matrices
and ε3 is a strictly positive constant, as mentioned earlier.
Define the parameter estimation errors as follows

θ̃1(t) := θ̂1(t)− θ∗1 , θ̃2(t) := θ̂2(t)− θ∗2 (17)

(note that θ∗1 and θ∗2 are defined in (10), and that θ̂1(t) and
θ̂2(t) are their corresponding estimates).

For t ≥ t0, the derivative of the Lyapunov-Krasovsky
functional introduced in (16) is obtained as follows

V̇ =2 [x(t) + Dx(t− h)]T P [ẋ(t) + Dẋ(t− h)]

+ xT (t)Q1x(t)− xT (t− h)Q1x(t− h)

+ xT (t)DT Q2Dx(t)− xT (t− h)DT Q2Dx(t− h)

+ xT (t)PBQ3B
T Px(t)(ε−1

2 + ε−1
3 )α2

2

− xT (t− h)PBQ3B
T Px(t− h)(ε−1

2 + ε−1
3 )α2

2

+ 2γ−1
1 θ̃1(t)

˙̂
θ1(t) + 2γ−1

2 θ̃2(t)
˙̂
θ2(t) + µ1(t)µ̇1(t)

+ µ2(t)µ̇2(t) +
1
2
η1(t)η̇1(t) +

1
2
η2(t)η̇2(t) + σ(t)σ̇(t)

(18)

Substituting (15) (with ||xT (t)PB|| ≥ δx) in (18) and using
(3) yield

V̇ =X T (t)ẼX (t) + 2xT (t)PE1Fx(t) + 2xT (t)PBE2Fx(t− h)

+ 2xT (t− h)DT PE1Fx(t)

+ 2xT (t− h)DT PE2Fx(t− h)

+ xT (t)DT Q2Dx(t)− θ̂1(t)||xT (t)PB||2

− µ1(t)||xT (t)PB||2 − θ̂2(t)||xT (t)PB||
− µ2(t)||xT (t)PB||2 − θ̂1(t)x

T (t− h)DT PBBT Px(t)

− µ1(t)x
T (t− h)DT PBBT Px(t)

− θ̂2(t)x
T (t− h)DT PBBT Px(t)

||xT (t)PB||
− µ2(t)x

T (t− h)DT PBBT Px(t)

+ xT (t)PBQ3B
T Px(t)(ε−1

2 + ε−1
3 )α2

2

− xT (t− h)PBQ3B
T Px(t− h)(ε−1

2 + ε−1
3 )α2

2

+ 2xT (t)PBE3(t) + 2xT (t− h)DT PBE3(t)

+ 2γ−1
1 θ̃1(t)

˙̂
θ1(t) + 2γ−1

2 θ̃2(t)
˙̂
θ2(t) + µ1(t)µ̇1(t)

+ µ2(t)µ̇2(t) +
1

2
η1(t)η̇1(t) +

1

2
η2(t)η̇2(t) + σ(t)σ̇(t)

(19)

where

X (t) = [xT (t), xT (t− h), xT (t− h)DT ]T (20a)

Ẽ =

 −Q + DT Q2D PA1 −PBρBT P + AT
0 P

∗ −Q1 AT
1 P

∗ ∗ −Q2


(20b)
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Note that there exist positive constants εi, i = 1, ..., 8 such
that using (4), one can write the following inequalities

2xT (t)PE1Fx(t) ≤λmax(Q3)α
2
1ε
−1
1 ||xT (t)PB||2

+ xT (t)Pε1Px(t)
(21a)

2xT (t)PE2Fx(t− h) ≤α2
2ε
−1
2 xT (t− h)PBQ3B

T Px(t− h)

+ xT (t)Pε2Px(t)
(21b)

2xT (t− h)DT PE2Fx(t− h) ≤
xT (t− h)DT Pε3PDx(t− h)

+ α2
2ε
−1
3 xT (t− h)T PBQ3B

T Px(t− h)
(21c)

2xT (t− h)DT PE1Fx(t) ≤
xT (t− h)DT Pε4PDx(t− h) + α2

1ε
−1
4 λmax(Q3)||xT (t)PB||2

(21d)

−θ̂1(t)x
T (t− h)DPBBT Px(t) ≤

1

2
xT (t− h)DT PBε5B

T PDx(t− h)

+
1

2
ε−1
5 θ̂2

1(t)||xT (t)PB||2
(21e)

−µ1(t)x
T (t− h)DT PBBT Px(t) ≤

1

2
xT (t− h)DT PBε6B

T PBDx(t− h)

+
1

2
ε−1
6 µ2

1(t)||xT (t)PB||2
(21f)

−µ2(t)x
T (t− h)DT PBBT Px(t) ≤

1

2
xT (t− h)DT PBε7B

T PDx(t− h)

+
1

2
ε−1
7 µ2

2(t)||xT (t)PB||2
(21g)

− θ̂2(t)x
T (t− h)DT PBBT Px(t)

||BT Px(t)|| ≤

1

2
xT (t− h)DT PBε8B

T PDx(t− h)

+
1

2
ε−1
8 θ̂2

2

(21h)

2xT (t)PBE3 ≤ 2||xT (t)PB||α3 (21i)

2xT (t− h)DT PBE3 ≤ε−1
9 α2

3

+ xT (t− h)DT PBε9B
T PDx(t− h)

(21j)

Substituting (21) in (19) yields

V̇ ≤X T (t)ÊX (t)− θ̃1(t)||xT (t)PB||2 + 2γ−1
1 θ̃1(t)

˙̂
θ1(t)

− θ̃2(t)||xT (t)PB||+ 2γ−1
2 θ̃2(t)

˙̂
θ2(t)

− µ1(t)||xT (t)PB||2 +
1

2
ε−1
5 θ̂2

1(t)||xT (t)PB||2

+
1

2
ε−1
6 µ2

1(t)||xT (t)PB||2 + µ1(t)µ̇1(t)

− µ2(t)||xT (t)PB||2 +
1

2
ε−1
7 µ2

2(t)||xT (t)PB||2

+
1

2
ε−1
8 θ̂2

2(t) + µ2(t)µ̇2(t)

+
1

2
η1(t)η̇1(t) +

1

2
η2(t)η̇2(t) + σ(t)σ̇(t) + ε−1

9 α2
3

(22)

where θ̃1(t) and θ̃2(t) are defined in (17). Furthermore,

Ê =

 Ê11 PA1 −PBρBT P + AT
0 P

∗ −Q1 AT
1 P

∗ ∗ Ê33

 (23)

where Ê11 = −Q + Q1 + DT Q2D + P (ε1 + ε2)P , Ê33 =
−Q2 + 1

2

∑8
i=5 PBεiB

T P +
∑4

i=3 PεiP + PBε9B
T P .

Notice that in this case (i.e. ||xT (t)PB|| ≥ δx), the
dynamic equations governing µ1(t), µ2(t), η1(t) and η2(t)
depend on their current values, and that, σ(t) is governed
by only one dynamic equation. There will be 16 different
scenarios based on the relative values of µ1(t), µ2(t),
η1(t) and η2(t). Two of these scenarios characterized by (i)
µ1(t) ≥ δµ1 , µ2(t) ≥ δµ2 , η1(t) ≥ δη1 , η2(t) ≥ δη2 ; and
(ii) µ1(t) < δµ1 , µ2(t) < δµ2 , η1(t) < δη1 , η2(t) < δη2

will be investigated here, and the other scenarios will be
addressed briefly, as they can be treated in a similar fashion.
Note that the controller switches to the appropriate scenario
at the propoer time instant based on the values of the
aforementioned parameters. Therefore, the objective here is
to find the upper bound of the derivative of the Lyapunov-
Krasovsky functional (16).

Regarding scenario (i) defined above, substitute (11), (12)
and (13) in (22), and use the inequalities µ1(t) ≥ δµ1 ,
µ2(t) ≥ δµ2 and ||xT (t)PB|| ≥ δx. Then, the derivative
of the Lyapunov-Krasovsky functional (16) (associated to
scenario (i)) can be expressed as

V̇ ≤X T (t)ÊX (t)

− 2θ̃1(t)θ̂1(t)− 2θ̃2(t)θ̂2(t)− µ2
1(t)− µ2

2(t)− σ2(t)

+
1

2ε5

η1(t)θ̂2
1(t)||xT (t)PB||2

η2
1(t) + µ2

1(t)

+
1

2ε8

η2(t)θ̂2
2(t)

(η2
2(t) + µ2

1(t))

+
1
2
η1(t)η̇1(t) +

1
2
η2(t)η̇2(t) + ε−1

9 α2
3

(24)

Furthermore, by substituting (14) in (24), and considering
η1(t) ≥ δη1 , η2(t) ≥ δη2 and ||xT (t)PB|| ≥ δx, one can
write

V̇ ≤X T (t)ÊX (t)− 2θ̃1(t)θ̂1(t)− 2θ̃2(t)θ̂2(t)

− µ2
1(t)− µ2

2(t)−
1
2
η2
1(t)− 1

2
η2
2(t)− σ2(t) + ε−1

9 α2
3

(25)

Note that since the matrix inequality in (9a) is negative-
definite, it is straightforward to show that Ê is negative-
definite as well. Note also that

−2θ̃1(t)θ̂1(t) ≤ −θ̃2
1(t) + θ∗21 ,−2θ̃2(t)θ̂2(t) ≤ −θ̃2

2(t) + θ∗22

(26)
Cosidering the above inequalities and on noting that all
eigenvalues of Ê are in the open left-half plane, the inequality
(25) can be rewritten as follows
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V̇ ≤λmax(Ê)||x(t)||2 − θ̃2
1(t)− θ̃2

2(t)− µ2
1(t)− µ2

2(t)

− 1
2
η2
1(t)− 1

2
η2
2(t)− σ2(t) + θ∗21 + θ∗22 + ε−1

9 α2
3

(27)

(notice that λmax(Ê) is in the open left-half complex plane).
Define

ω(||x̃(t)||) := −λmax(Ê)||x(t)||2 + θ̃2
1(t) + θ̃2

2(t)

+ µ2
1(t) + µ2

2(t) +
1
2
η2
1(t) +

1
2
η2
2(t) + σ2(t)

(28a)

x̃(t) := [xT (t), θ̃1(t), θ̃2(t), µ1(t), µ2(t), η1(t), η2(t), σ(t)]T

(28b)

κ1 := θ∗21 + θ∗22 + ε−1
9 α2

3 (28c)

Substituting (28) in (27) results in

V̇ ≤ −ω(||x̃(t)||) + κ1 (29)

Now, consider scenario (ii), i.e., the case when µ1(t) ≤
δµ1 , µ2(t) ≤ δµ2 , η1(t) ≤ δη1 , η2(t) ≤ δη2 (with
||xT (t)PB|| ≥ δx). By substituting (11)-(14) into the deriva-
tive of the Lyapunov-Krasovsky functional defined in (16)
and following a procedure similar to the one presented in
scenario (i) with the new set of inequalities given above, the
following will be obtained

V̇ ≤− ω(||x̃(t)||) + θ∗21 + θ∗22 + µ1(t)εµ1 + µ2(t)εµ2

+
1
2
η1(t)εη1 +

1
2
η2(t)εη2 + ε−1

9 α2
3

(30)

where ω(·) and x̃(t) are defined in (28a) and (28b). Note
that with the set of inequalities in scenario (ii), it is easy to
verify that

V̇ ≤− ω(||x̃(t)||) + κ2 (31)

where,

κ2 := κ1 + δµ1εµ1 + δµ2εµ2 +
1
2
δη1εη1 +

1
2
δη2εη2 (32)

Recall that the controller can switch to any of the 16 dif-
ferent scenarios at any time, depending on the values of the
aforementioned parameters. Hence, following an argument
similar to the one presented in the first two scenarios, one
can obtain the upper bound of the derivative of the Lyapunov-
Krasovsky functional (16) for each active scenario as follows

V̇ ≤ −ω(||x̃(t)||) + κi, κi > 0, i = 1, ..., 16 (33)

where κi’s are defined below

κ3 := κ1 + δµ1εµ1 , κ4 := κ1 + δµ1εµ1 + δµ2εµ2

κ5 := κ1 + δµ1εµ1 + δµ2εµ2 +
1

2
δη1εη1

κ6 := κ1 + δµ1εµ1 + δµ2εµ2 +
1

2
δη2εη2

κ7 := κ1 + δµ1εµ1 +
1

2
δη1εη1

κ8 := κ1 + δµ1εµ1 +
1

2
δη2εη2

κ9 := κ1 + δµ1εµ1 +
1

2
δη1εη1 +

1

2
δη2εη2

κ10 := κ1 + δµ2εµ2 , κ11 := κ1 + δµ2εµ2 +
1

2
δη1εη1

κ12 := κ1 + δµ2εµ2 +
1

2
δη2εη2

κ13 := κ1 + δµ2εµ2 +
1

2
δη1εη1 +

1

2
δη2εη2

κ14 := κ1 +
1

2
δη1εη1 , κ15 := κ1 +

1

2
δη2εη2

κ16 := κ1 +
1

2
δη1εη1 +

1

2
δη2εη2

It is easy to verify that κ2 > κi, i = 1, 3, 4, ..., 16.
Therefore, it can be concluded that the inequality (31) hold
in all scenarios (with ||xT (t)PB|| ≥ δx).

Case 2: The rest of the proof for the case when
||xT (t)PB|| < δx is similar to the previous case, and is
presenterd here in brief.

It can be shown that the upper bound on the derivative of
Lyapunov-Krasovsky functional (16) with ||xT (t)PB|| < δx,
is obtained as follows

V̇ ≤ −ω∗(||x̃(t)||) + κ∗2 (34)

where x̃(t) is defined in (28a) and

ω∗(||x̃(t)||) := −λmax(Ē)||x(t)||2 + θ̃2
1(t) + θ̃2

2(t)

+ µ2
1(t) + µ2

2(t) +
1
2
η2
1(t) +

1
2
η2
2(t) + σ2(t)

(35a)

κ∗2 := κ1 + δµ1εµ1 + δµ2εµ2

+
1
2
δη1εη1 +

1
2
δη2εη2 + δσεσ

(35b)

Ē =

 Ē11 PA1 −PBρBT P + AT
0 P

∗ −Q1 AT
1 P

∗ ∗ Ē33

 (36)

where Ē11 = −Q+Q1 +DT Q2D+P (ε1 + ε2)P and Ē33 =
−Q2 + 1

2

∑7
i=5 PBεiB

T P +
∑4

i=3 PεiP + PBε9B
T P +

1
2PBε10B

T P .
Note that the upper bound on the derivative of the

Lyapunov function (16) is obtained in (31) and (34), for
||xT (t)PB|| ≥ δx and ||xT (t)PB|| < δx, respectively.
Define now

λ̃ := max(λmax(Ē), λmax(Ê)) (37a)

κ̃ := max(κ∗2, κ2) (37b)
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ω̃(||x̃(t)||) :=− λ̃||x(t)||2 + θ̃2
1(t) + θ̃2

2(t) + µ2
1(t)

+
1
2
η2
1(t) +

1
2
η2
2(t) + σ2(t) + µ2

2(t)
(37c)

It can be inferred from (37) for all t ≥ t0, that the upper
bound on the derivative of the Lyapunov function (16) is
expressed by

V̇ ≤ −ω̃(||x̃(t)||) + κ̃ (38)

Hence, using the Lyapunov stability theory for retarded
functional differential equations [1], [2] it can be shown
that the solution of the system (x(t), θ̃i(t), µi(t), ηi(t), σ(t))
(t; t0, x(t0), θ̃i(t0), µi(t0), ηi(t0), σ(t0)), i = 1, 2 is uni-
formly ultimately bounded.

IV. NUMERICAL EXAMPLE

Consider the uncertain time-delay system described by (1)
where

D =

»
0.5 0
−0.2 −0.1

–
, A0 =

»
−1 −1
0 −2

–
A1 =

»
1 0

1.1 1

–
, B =

»
0
1

–

∆A0 =

»
0 5− 5 cos(2t)
0 5 sin(3t)

–
, ∆A1 =

»
0 5 cos(3t)
0 5 sin(2t)

–

Let h be equal to 2. In order to stabilize the system, the
control input (7) is applied here by the following parameters

γ1 = 2, γ2 = 2, ρ = 1,

and the following initial conditions
µ1(t0) = 10, µ2(t0) = 10, η1(t0) = 10, η2(t0) = 10, σ(t0) = 10

x(t) = [10 25]T ,∀t ∈ [t0 − h, t0], θ̂1(t0) = 20, θ̂2(t0) = 20

where the design parameters in (11)-(14) are chosen as
follows
δx = .01, δµ1 = .01, δµ2 = .01, δη1 = .01, δη2 = .01, δσ = .01

εµ1 = .01, εµ2 = .01, εη1 = .01, εη2 = .01, εσ = .01

Using the above parameters, the results sketched in Figs. 1-2
are obtained. The state trajectories are given in Fig. 1, which
show that using the proposed adaptive control law, uniform
ultimate boundedness is achieved, as expected.

Fig. 1. State trajectoires for x1(t) and x2(t)

Fig. 2. The adaptive control input applied to the system

V. CONCLUSIONS

In this paper, robust stabilization of neutral time-delay sys-
tems with uncertainties has been investigated. It is supposed
that the uncertainties in the system matrices are bounded
with unknown bounds. A memoryless adaptive robust state
feedback controller has been developed which guarantees
the stability of the uncertain time-delay system. Simulation
results demonstrate the efficacy of this approach.
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