
Remarks on computing the H2 norm of incompressible fluids using
descriptor state-space formulation

Rashad Moarref and Mihailo R. Jovanović

Abstract— This paper utilizes descriptor state-space formu-
lation for computation of energy amplification in incompress-
ible channel flows. The dynamics of velocity and pressure
fluctuations in these flows are described by a system of
partial differential-algebraic equations. Typically, the evolution
model is obtained by projecting the velocity fluctuations on a
divergence-free subspace which eliminates pressure from the
equations. This procedure results into a standard state-space
representation and the problem of quantifying receptivity of
velocity fluctuations to stochastic exogenous disturbances is
solved using well-known H2 formalism. In this paper, how-
ever, it is shown how energy amplification can be computed
directly from the original system of the linearized Navier-Stokes
and continuity equations. This approach avoids the need for
finding the evolution model which is advantageous in many
applications.

Index Terms—H2 norm; descriptor systems; distributed
systems; incompressible fluids; Navier-Stokes equations.

I. INTRODUCTION

Descriptor formulation of systems often arises from for-
mulating the underlying equations in terms of their natural
physical variables [1]. A particular class of physical problems
that can be written in descriptor formulation are those with
algebraic constraints. For example, systems of incompress-
ible fluids require the velocity fluctuations to lie on a
divergence-free subspace, hence, resulting in a differential-
algebraic equation.

It is a standard task in fluid mechanics to eliminate the
algebraic constraint from the equations and rewrite them in
a standard state-space formulation [2]. However, working
with the original descriptor formulation is advantageous in
many applications where obtaining the evolution formulation
is cumbersome and often results in a more complicated
representation in terms of the order of differential operators
involved.

In this paper, we consider channel flow of incompressible
fluids and show how the problem at hand can be approached,
alternatively, using the available theory of computing the H2

norm of finite dimensional descriptor systems [3], [4].
The paper is organized as follows: an introduction to

finite dimensional descriptor systems is provided in § II.
We briefly review the theory of computing the H2 norm of
finite dimensional descriptor systems in § III. The system of
incompressible channel flow is formulated in both descriptor
and standard state-space formulations in § IV. In § V,
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we show how the underlying operators are approximated
using collocation scheme. Comparison between the results
obtained using the standard and descriptor formulations is
given in § VI and concluding remarks are provided based on
the above comparison.

II. PRELIMINARIES

Descriptor formulation is particularly suitable for defin-
ing systems of ordinary differential equations in time with
algebraic constraints.

We consider the following linear time-invariant system

E ∂tψ(x, t) = Aψ(x, t) + B u(x, t),
φ(x, t) = C ψ(x, t),

(1)

where x and t denote spatial and temporal coordinates, ψ,
u, and φ denote the spatio-temporal system state, input,
and output, respectively, and E, A, B, and C are bounded
operator valued matrices of appropriate dimensions. We
denote by ∂t the first derivative operator in time.

Remark 1: We note that if E is nonsingular, system (1)
can be transformed into standard state-space representation
by pre-multiplying the first equation by E−1 from the
left. However, if E contains differential operators in x,
one should be careful about implementation of boundary
conditions when inverting E. This can be very difficult
especially for problems involving complicated geometry or
boundary conditions. Therefore, even when E is nonsingular,
definition and analysis of certain systems in descriptor form
is preferred.

The spatial differential operators involved in system (1)
together with their boundary conditions can be approximated
in descriptor form in a systematic way. However, this ap-
proximation is not always trivial if one decides to transform
the system into a standard state-space representation by
eliminating the constraints from the equations. Moreover,
approximating the boundary conditions numerically may
result in overspecification of the boundary conditions [5].

For computational purposes, we numerically approximate
the underlying differential operators in (1). Once we obtain
finite dimensional approximation of the infinite dimensional
descriptor system (1), we can use the theory developed for
the finite dimensional descriptor systems.

A. Finite dimensional descriptor form

Consider the following linear time-invariant system

E
d
d t
ψ(t) = Aψ(t) + B u(t), φ(t) = C ψ(t), (2)

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

ThC04.1

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 3064



where ψ, u, and φ denote system state vector, input, and
output, respectively, and E, A, B, and C are matrices of
appropriate dimensions. We assume that the pencil (sE −A)
is regular, i.e., there is a s ∈ C for which the resolvent
operator (sE − A)−1 exists. Then, (sE − A)−1 can be
uniquely written in terms of its Laurent parameters around
s = ∞ [4]

(sE − A)−1 = s−1
∞∑

k =−ν

ζk s
−k, (3)

where ζk denotes the Laurent parameters and ν is called
the nilpotency index of the pencil (sE − A). The Laurent
parameters are very useful in analysis of descriptor systems
because they separate the eigenspaces associated with finite
(slow) and infinite (fast) generalized eigenvalues of the pencil
(sE − A) [3]. Another important property of the Laurent
parameters is that Pr := ζ0E and Qr := −ζ−1A are
projections on the space spanned by the eigenvectors ξi
corresponding with the finite and infinite eigenvalues λi of
the eigenvalue problem λiE ξi = Aξi, respectively. Also
Pl := E ζ0 and Ql := −Aζ−1 are projections on the
space spanned by the eigenvectors ξi corresponding with the
finite and infinite eigenvalues λi of the eigenvalue problem
λi ξiE = ξiA, respectively [4].

The Laurent parameters are determined from the elements
of the Weierstrass canonical form of the pair (A,E). How-
ever, it is well-known that canonical forms involving Jordan
structures are not numerically robust. Therefore, for compu-
tational purposes, it suffices to consider the Weierstrass-like
canonical form of the pair (A,E) [6].

Weierstrass-like form: For a pair (A,E), one can find
invertible matrices U and V such that

E = V

[
Ef 0
0 E∞

]
U, A = V

[
Af 0
0 A∞

]
U,

(4)
where Ef , Af , and A∞ are upper triangular invertible
matrices and E∞ is upper triangular and nilpotent. In the
new coordinate system, we have

ψ = U−1

[
ψ1

ψ2

]
, B = V

[
B1

B2

]
, C =

[
C1 C2

]
U,

where ψ1 and ψ2 denote slow (causal) and fast (impulsive
or noncausal) parts of the state vector, respectively. The
projections on the fast and slow subspaces in Weierstrass-
like form are determined from

Pl = V

[
Ef 0
0 0

]
V −1, Pr = U−1

[
Ef 0
0 0

]
U,

Ql = V

[
0 0
0 −A∞

]
V −1, Qr = U−1

[
0 0
0 −A∞

]
U.

Details regarding computation of the Weierstrass-like form
is included in § III-A.

III. COMPUTING THE H2 NORM

The H2 norm of (2) is determined by [4], [6], [7]

‖H‖2
2 = trace(C (Gc + Gnc)C∗), (5)

where Gc and Gnc , the causal and non-causal reachability
Graminas, satisfy the following generalized Lyapunov equa-
tions

EGc A∗ + AGc E∗ = −PlBB
∗ P ∗l ,

E GncE
∗ − AGncA

∗ = QlBB
∗Q∗l .

(6)

Under certain reachability conditions for the pairs (Af , B1)
and (E∞, B2) , unique projected solutions to (6) can be
obtained by the following projections [4], [6]

Gc = Pr Gc Pr, Gnc = Qr GncQr. (7)

The approach towards solving the generalized Lyapunov
equations relies heavily on the use of Weierstrass canonical
form. Therefore, we first see how the Weierstrass transfor-
mation is obtained.

A. Obtaining the Weierstrass-like form

We use MATLAB’s QZ algorithm to compute the general-
ized Schur form of (A,E) such that

E = W

[
Ef Eu

0 E∞

]
T, A = W

[
Af Au

0 A∞

]
T,

(8)
where Ef , Af , and A∞ are nonsingular upper-triangular
matrices and E∞ is nilpotent upper-triangular. To this end,
one needs to use ordqz.m function in order to put all the
finite generalized eigenvalues of (A,E) in Ef .

The invertible matrices U and V in the Weierstrass-like
form (4) are determined by

V = W

[
I Z
0 I

]
, U =

[
I −Y
0 I

]
T,

where Z and Y are obtained from the following system of
generalized Sylvester equation [6]

Ef Y − Z E∞ = −Eu,

Af Y − Z A∞ = −Au.
(9)

A fast algorithm for solving the system of Sylvester equa-
tions is given in [8].

B. Solving the generalized Lyapunov equation

We use the Weierstrass-like form discussed in § II-A to
reduce the generalized projected Lyapunov equations (6,7)
to standard Lyapunov equations. This is not a trivial task,
without using the Weierstrass transformation.

The causal reachability Gramian is determined by

E Pr Gc P
∗
r A

∗ + APr Gc P
∗
r E

∗ = −PlBB
∗ P ∗l .

We substitute the underlying matrices with their Weierstrass-
like form. After initial manipulation, we get[
Ef Ef 0

0 0

]
G̃c

[
E∗f A

∗
f 0

0 0

]
+

[
Af Ef 0

0 0

]
G̃c

[
E∗f E

∗
f 0

0 0

]
= −

[
Ef −Ef Z
0 0

]
F̃

[
E∗f 0

−Z∗E∗f 0

]
,

(10)
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where

G̃c :=
[
G̃c1 G̃c2

G̃c3 G̃c4

]
:= U Gc U

∗,

F̃ :=
[
F̃1 F̃2

F̃3 F̃4

]
:= W ∗BB∗W.

Note that because of the projections (7), only G̃c1 survives
in (10) and we obtain the following standard Lyapunov
equation

(E−1
f Af ) Ĝc1 + Ĝc1 (E−1

f Af )∗ =

−(F̃1 − F̃2 Z
∗ − Z F̃3 + Z F̃4 Z

∗),
(11)

where Ĝc1 := Ef G̃c1E
∗
f .

Therefore, G̃c1 = E−1
f Ĝc1E

−∗
f . The projection defined

in (7) requires all the other blocks of G̃c to be zero. Finally,

Gc = U−1 G̃c U
−∗ = T ∗

[
G̃c1 0
0 0

]
T. (12)

Note that uniqueness of G̃c is a direct consequence of
the uniqueness of the solution of the standard Lyapunov
equation (11).

Similar result is obtained for the noncausal reachability
Gramian determined by

EQr GncQ
∗
r E

∗ + AQr GncQ
∗
r A

∗ = QlBB
∗Q∗l .

After similar manipulations to those carried to obtain Gc, we
have

Gnc = U−1 G̃nc U
−∗ = T ∗

[
Y G̃nc4 Y

∗ Y G̃nc4

G̃nc4 Y
∗ G̃nc4

]
T,

(13)
where G̃nc4 = A−1

∞ Ĝnc4A
−∗
∞ and G̃nc4 is obtained by

solving the following standard Lyapunov equation

(A−1
∞ E∞) Ĝnc4 (A−1

∞ E∞)∗ − Ĝnc4 = F̃4. (14)

Below, we summarize the procedure of computing the H2

norm for the descriptor system (2)

1) Compute the generalized Schur form of the pair (A,E)
given in (8).

2) Solve the system of generalized Sylvester equation (9)
for Y and Z.

3) Compute Gc and Gnc from (11)-(14).
4) Finally, the H2 norm is determined by (5).

IV. INCOMPRESSIBLE PLANE CHANNEL FLOW

We consider motion of incompressible Newtonian fluids
between two infinite planes shown in Fig. 1. The linearized
Navier-Stokes equations govern evolution of velocity and
pressure fluctuations (v, p) around nominal velocity and
pressure (ū, P ) in the presence of forcing fluctuations d,
where v :=

[
u v w

]T
and d :=

[
d1 d2 d3

]T
.

We assume the following nominal velocity profile

ū =
[
U(y) 0 0

]T
, U(y) = 1 − y2.
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Fig. 1. Three dimensional channel flow.

Navier-Stokes equations for velocity fluctuations of incom-
pressible fluids linearized around above profile are given by

∂t u = ( 1
R ∆ − U ∂x)u − U ′ v − ∂x p + d1,

∂t v = ( 1
R ∆ − U ∂x) v − ∂y p + d2,

∂t w = ( 1
R ∆ − U ∂x)w − ∂z p + d3,

(15)

0 = ∂x u + ∂y v + ∂z w, (16)

where ∆ := ∂xx + ∂yy + ∂zz is the Laplacian operator
with homogenous Dirichlet boundary conditions and R is the
Reynolds number. Equation (16) is an algebraic constraint in
time, i.e., it does not involve partial derivatives in time.

The set of equations (15) and (16) can be summarized in
the following descriptor formulation

E ∂t ψ = Aψ + B d, v = C ψ, (17)

where ψ :=
[

v p
]T

denotes vector of system states.
Moreover,

E :=
[
I 0
0 0

]
, A :=

[
Ā −DT

D 0

]
, B = CT :=

[
I
0

]
,

where

Ā :=

 1
R ∆ − U ∂x U ′ 0

0 1
R ∆ − U ∂x 0

0 0 1
R ∆ − U ∂x

 ,
and D :=

[
∂x ∂y ∂z

]
.

Since the underlying differential operators are spatially
invariant in x and z directions, one can apply spatial Fourier
transform in x and z and algebrize the differential operators
in these directions. Differential operators in y direction will
be approximated numerically. Details of the numerical issues
are discussed in § V.

With a slight abuse of notation, we denote by (17) both
physical and frequency representations of our system. The
choice of either is clear from the context. Therefore, the
underlaying operators in frequency domain are determined
from

Ā :=

 1
R ∆ − i kx U U ′ 0

0 1
R ∆ − i kx U 0

0 0 1
R ∆ − i kx U

 ,
D :=

[
i kx I ∂y i kz I

]
,

where ∆ := −k2 + ∂yy and kx and kz denote wave numbers
in x and z directions, respectively, k2 := k2

x + k2
z and

i =
√
−1.

The H2 norm of system (17) is interpreted as energy
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amplification of stochastic disturbances which are white
zero-mean in y and t and are harmonic in x and z coordinates

E(kx, kz) :=

trace
(

lim
t→∞

E {v(kx, ·, kz, t) ⊗ v(kx, ·, kz, t)}
)
,

where E is the expectation operator, and ⊗ denotes the tensor
product operator. Another interpretation of E(kx, kz) is that
it determines energy of the impulse response of (17)

E(kx, kz) :=
∫ ∞

0

trace (v(kx, ·, kz, t) ⊗ v(kx, ·, kz, t) ) dt.

In § VI, we utilize the method discussed in § III to
compute the H2 norm of linearized plane channel flow given
in descriptor form (17). We will test our results by comparing
the H2 norm obtained from the descriptor formulation of
the system with the H2 norm obtained from the system
formulated in standard state-space formulation.

It is a standard task in fluid mechanics to write (15)
and (16) in standard state-space formulation [2]. This is done
by eliminating pressure p from (15) by writing p in terms
of velocity fluctuations and then using the algebraic con-
straint (16) to reduce the number of unknown fields to two.
Therefore, only two state fields suffice to fully represent the
system in standard formulation. A common choice of state
variables is Ψ :=

[
v η

]T
, where η := uz − wx is the

wall-normal vorticity. The standard state-space formulation
of (17) is determined by

∂t Ψ = AΨ + B d, v = CΨ, (18)

where

A :=
[
−∆−1(i kx (U ∆ + U ′′) + 1

R ∆2) 0
−i kz U

′ −i kx U + 1
R ∆

]
,

B :=
[
−i kx ∆−1 ∂y −k2 ∆−1 −i kz ∆−1 ∂y

i kz 0 −i kx

]
,

C := 1
k2

[
i kx ∂y k2 i kz

−i kz 0 i kx

]T

,

where ∆2 := ∂yyyy + 2 k2 ∂yy + (k2)2 with Dirichlet and
Neumann boundary conditions.

Remark 2: We note that while the number of elements
of the state vector in standard formulation is two, the de-
scriptor formulation requires four elements in its state vector.
Therefore, assuming that each of these infinite dimensional
elements are approximated with vectors of the same length,
the problem size in descriptor formulation will have twice the
size of the problem in standard formulation. In spite of the
above mentioned advantage of the standard formulation, one
sees that the entries in matrices A, B, and C are substantially
more complicated operators than those in E, A, B, or C. We
note the following

• The operator-valued matrices in the standard formu-
lation involve differential operators with two degrees
higher than those in the descriptor formulation. More-
over, they contain integral operators like ∆−1 which
add to complexity of the standard representation. We

note that these issues are treated very well for problems
with certain boundary conditions such as Dirichlet and
Neumann boundary conditions.

• We also note that we have arrived at the standard
formulation after certain analytical and algebraic manip-
ulations on the descriptor formulation of the system [9].
For problems with more complicated nominal velocity
profiles that involve components which also vary along
other spatial coordinates such as x and z, this is an
arduous undertaking [10], [11].

Therefore, simplicity of defining systems with algebraic
constraints in the descriptor formulation together with re-
duction in the order of numerically approximated differential
operators serve as important motivations for development of
efficient analysis tools for these systems. In § VI, we show
that the H2 norm obtained from the descriptor formulation
of plane channel flow compares very well to that obtained
from the standard formulation.

V. NUMERICAL APPROXIMATION OF SPATIAL OPERATORS

Over the past decades, many different schemes are devel-
oped for numerical approximation of differential operators, in
particular those with non-periodic boundary conditions [12].
These boundary conditions arise in applications with finite
domains where the differential operators lack invariance
under spatial shifting transformations. Many fluid systems
with bounded geometry like the channel flow system are of
this kind.

We use the matrix differentiation suite developed by
Weideman and Reddy [13] to numerically approximate dif-
ferential equations in wall-normal direction, y. This tools
is based on computation of differentiation matrices using
collocation method. Chebyshev polynomials are selected as
basis functions, since these polynomials are most appropriate
for bounded non-periodic domains.

In collocation methods, one-to-one mapping is established
between the selected basis function and a non-uniform set
of grid points chosen such that the approximation error
decays exponentially as the number of grid points increases.
Therefore, convergence rate of spectral methods (O(e−c N ))
are by far superior to that of finite difference methods
(O(N−c)), where N is the number of degrees of freedom
in the expansion series for spectral methods or the number
of grid points in the case of finite difference and spectral
collocation methods.

Boundary conditions are implemented either with Galerkin
schemes based on choice of Chebyshev polynomials or with
boundary bordering method that eliminates first and last rows
and columns of the differentiation matrix in the case that
boundary points satisfy the boundary conditions.

A. Operators and their adjoints

We consider (N+2) grid points to approximate differential
operators in wall-normal direction using the Galerkin spectral
collocation scheme with Chebyshev polynomials. Effectively,
functions and operators are approximated by finite vectors
and matrices, respectively. We note the following
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• Elements of the velocity and vorticity fields (u, v, w, η)
satisfy Dirichlet boundary conditions and the first and
last entries in their corresponding vector approximation
are always zero and they can be removed. Therefore,
the velocity and vorticity fields are approximated with
N -dimensional vectors. On the other hand, there is
no boundary condition on pressure p, nor there is
one on input d. So, the pressure and input fields are
approximated with (N + 2)-dimensional vectors.

• The first and last columns of the differentiation matrices
acting on these functions can be removed due to the
Dirichlet boundary conditions. Also the first and last
rows of the operators resulting in velocity and vorticity
fields can be removed.

Therefore, for example, E and A are (4N+2)×(4N+2), Ā
is 3N×3N , D is (N+2)×3N , and B is (4N+2)×(3N), etc.
Note that we have used the same notation for the functions
and operators and their numerical approximations.

Operator adjoints are needed for the purpose of norm
computations. To obtain the matrices approximating operator
adjoints, one can analytically find the adjoint operators and
then approximate them numerically. An alternative way is
computing the adjoint operators directly from approximated
operators.

Adjoints of A and E are determined from

〈ψ1, Aψ2〉 =
〈
A+ ψ1, ψ2

〉
, 〈ψ1, E ψ1〉 =

〈
E+ ψ1, ψ2

〉
,

(19)
where + denotes the adjoint operator and 〈·, ·〉 denotes the
L2[−1, 1] inner product

〈f, g〉 :=
∫ 1

−1

f∗ g dy. (20)

To numerically approximate the integral in (20), we use
the integration matrix that contains appropriate integrating
weights to account for the non-uniform distribution of the
grid points in y [14]. Therefore, numerically

〈f, g〉 ≈ f∗ S g =
N∑

i = 1

f(yi) si g(yi), (21)

where yi’s denote selected grid points, si’s denote the
appropriate integrating weights, and S is the positive definite
diagonal matrix containing the integrating weights, si. We
note that size of the integration weights are determined
by size of the corresponding numerically approximated
functions, i.e., N for (u, v, w) and (N + 2) for p. Let
S(N) be the appropriate integrating weights for functions
approximated by N grid points. To compute the necessary
integrals needed for computing the adjoints numerically, we
need the following integrating weight matrices

S1 :=


S(N) 0 0

0 S(N) 0

0 0 S(N)

 ,

S2 :=


S(N) 0 0 0

0 S(N) 0 0

0 0 S(N) 0

0 0 0 S(N + 2)

 .
From (19) and (21), we have

ψ∗1 S2Aψ2 = (A+ ψ1)∗ S2 ψ2.

Finally, adjoints of A and E are determined by

A+ = S−1
2 A∗ S2, E+ = S−1

2 E∗ S2.

Adjoint of ζk can be obtained from A+ and E+ from (3).
Adjoint of the projection operators onto subspaces associ-
ated with the finite and infinite eigenvalues of (A,E) are
obtained similarly. For example, ζ+

k and P+
r are numerically

approximated by

ζ+
k = S−1

2 ζ∗k S2,

P+
r = (ζ0E)+ = E+ ζ+

0 = S−1
2 P ∗r S2.

Adjoints of B and C are determined form

〈ψ,B d〉 =
〈
B+ ψ,d

〉
, 〈v, C ψ〉 =

〈
C+ v, ψ

〉
.

and are numerically approximated by

B+ = S−1
1 B∗ S2, C+ = S−1

2 C∗ S1.

Remark 3: Note that the appropriate inner products for
definition of A+, B+, and C+ in the standard state-space
formulation (18) are different from that in (20). This is
because the state vector, Ψ, is not in L2[−1, 1]. Therefore,
one should use a weighted inner product that yields the
definition of energy of velocity fluctuations. See [9] for more
details.

B. Change of variables

The method of computing the H2 norm discussed in § III
is based on finite dimensional descriptor formulation in § II-
A. Therefore, in § V-A, we showed how the differentiation
operators and their adjoints are approximated numerically.
In order to compute the H2 norm of the infinite dimensional
system (17), we need to compute solutions of generalized
projected Lyapunov equations that involve numerical approx-
imation of operator adjoints. However, we saw that numerical
approximation of the adjoint operators are not equal to
complex conjugate transpose of numerically approximated
operators. Rather, to obtain the adjoint operators, one should
pre and post multiply the operators by symmetric positive
definite matrices S−1

i and Si of appropriate size, i = 1, 2.
In order to be able to utilize the tools developed for solving

the finite dimensional generalized Lyapunov equations in (6),
we introduce the following change of variables

Es := S
1
2
2 E S

− 1
2

2 , As := S
1
2
2 AS

− 1
2

2 ,

Bs := S
1
2
2 B S

− 1
2

1 , Cs := S
1
2
1 C S

− 1
2

2 ,
(22)

where S
1
2
i denotes matrix square root for a positive definite
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(a) (b)

Fig. 2. (a) H2 norm computed from descriptor and standard state-space
formulations for R = 2000 and kx = 0, (b) relative error.

matrix Si, i.e., (S
1
2
i )2 = Si. The same type of change of

variable as that for As and Es is done on projection operators
like Pr.

The change of variables in (22), effectively connects the
solution of the following generalized Lyapunov equations{

EGc A+ + AGc E+ = −PlBB
+ P+

l ,

E GncE
+ − AGncA

+ = QlBB
+Q+

l ,
(23)

{
EsGcs A∗s + AsGcs E∗s = −PlsBsB

∗
s P

∗
ls,

EsGncsE
∗
s − AsGncsA

∗
s = QlsBsB

∗
s Q

∗
ls,

(24)

via the following formulae

Gc = S
− 1

2
2 Gcs S

1
2
2 , Gnc = S

− 1
2

2 Gncs S
1
2
2 . (25)

Therefore, to solve the generalized Lyapunov equations
involving adjoint matrices (23), we first solve the general-
ized Lyapunov equations (24) involving complex conjugate
transpose of operators using the method discussed in § III-B,
and then we obtain the desired solutions using (25).

VI. RESULTS AND CONCLUDING REMARKS

We compute the H2 norm of plane channel flow both
from descriptor and standard state-space formulations, equa-
tions (17) and (18), respectively. We set R = 2000 and
N = 30 in all computations.

Fig. 2 shows the H2 norm computed from both formula-
tions as a function of kz for kx = 0. We see the the results
match with less than 10−3 relative error.

Remark 4: It turns out that the H2 norm associated with
the non-causal or impulsive response of system (17) is very
small (O(10−4)) and is negligible in comparison with the
H2 norm associated with the causal part. Therefore, only
the summation of the two is shown and we have not shown
separate plots for the causal and noncausal parts.

Fig. 3 shows the H2 norm computed from both formula-
tions as a function of kx for kz = 0. The results are very
close with less than 10−2 relative error.

From the above results, we see that the H2 norm com-
puted from the descriptor formulation compares very well
with the H2 norm computed from the standard state-space
formulation.

We note that size of the two standard Lyapunov equa-
tions (11) and (14) are determined by the number of finite

(a) (b)

Fig. 3. (a) H2 norm computed from descriptor and standard state-space
formulations for R = 2000 and kz = 0, (b) relative error.

and infinite generalized eigenvalues of (A,E), respectively.
In our problem with N = 30, these numbers turn out to
be 58 and 64. Size of the Lyapunov equation that needs
to be solved in standard formulation is equal to 60. Thus,
cost of solving the required Lyapunov equations in both
formulations is almost the same. Therefore, the difference in
computational cost of obtaining the H2 norm from the two
formulations is mainly determined by the cost of solving the
additional Lyapunov equation plus cost of the QZ algorithms
required for obtaining the Weierstrass transformation and
solving the system of generalized Sylvester equations (9).
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