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Abstract— We propose a method to compute invariant sub-
sets of the region-of-attraction for the asymptotically stable
equilibrium points of polynomial dynamical systems with
bounded parametric uncertainty. Parameter-independent Lya-
punov functions are used to characterize invariant subsets of
the robust region-of-attraction. A branch-and-bound type re-
finement procedure is implemented to reduce the conservatism.
We demonstrate the method on a two-state example from
the literature and five-state controlled short period aircraft
dynamics with and without time delay in the input to the plant.

I. INTRODUCTION

We consider the problem of computing invariant subsets

of the region-of-attraction (ROA) for uncertain systems with

polynomial vector fields. Since computing the exact ROA,

even for systems with known dynamics, is hard, researchers

have focused on finding Lyapunov functions whose sublevel

sets provide invariant subsets of the ROA [8], [9], [18].

Recent advances in polynomial optimization based on sum-

of-squares (SOS) relaxations [11] are utilized to determine

invariant subsets of the ROA for systems with known

polynomial and/or rational dynamics solving optimization

problems with matrix inequality constraints [14], [7], [13],

[16]. Ref. [4] provides a generalization of Zubov’s method

to uncertain systems and [10] investigates robustness of

the ROA under time-varying perturbations and proposes an

iterative algorithm that asymptotically gives the robust ROA.

Parametric uncertainties are considered in [5], [12], [17].

The focus in [5] is on computing the largest sublevel set

of a given Lyapunov function that can be certified to be an

invariant subset of the ROA. [12], [17] propose parameter-

dependent Lyapunov functions which lead to potentially

less conservative results (compared to parameter-independent

Lyapunov functions) at the expense of increased computa-

tional complexity.

In this paper, we use a characterization for invariant

subsets of the robust ROA based on parameter-independent

Lyapunov functions, i.e., a common Lyapunov function is to

certify the local stability of systems over the entire parameter

uncertainty set. Similar to quadratic stability analysis [3],

where a single quadratic Lyapunov function proves the
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stability of an entire family of uncertain linear systems,

this characterization is conservative, i.e., it leads to con-

servative estimates for the robust ROA. As a remedy for

this conservativeness Lyapunov functions with polynomial

parameter dependence are proposed in [5], [12]. Although

SOS optimization can be used with parameter dependent

Lyapunov functions theoretically , the ensuing optimization

problem is computationally harder than that for parameter-

independent Lyapunov functions. Uncertain parameters in-

crease the size of the optimization problem in two ways:

(i) uncertain parameters are treated as new variables in

addition to state variables, and (ii) SOS constraints in the

resulting problem are supposed to be satisfied for certain

sets in the parameter space introducing extra set containment

constraints, and, consequently, extra decision variables in

corresponding multipliers. Moreover, choosing a polyno-

mial basis for parameter-dependent Lyapunov functions is

less intuitive than the parameter-independent case since the

dependence on uncertain parameters in the optimization

problem is different than that on state variables. Motivated

by these difficulties, we restrict our attention to parameter-

independent Lyapunov functions and propose a branch-and-

bound based refinement procedure where the uncertainty set

is partitioned and a different parameter-independent Lya-

punov function is computed for each cell of the partition.

This iterative procedure computes lower and upper bounds

on a measure of the size of the computed invariant subset

of the robust ROA (detailed in section II) at each iteration.

These bounds approach each other as the partition gets finer

and localizes the optimal value of this measure (this optimal

value would be achieved if a different Lyapunov function

could be computed for every singleton in the uncertainty

set). This procedure is potentionally more flexible than

using parameter-dependent Lyapunov functions since it does

not require a parametrization of the dependence on the

uncertainty and reduces the conservativeness by partitioning

the uncertainty set. Moreover, computations at each iteration

trivially parallelize yielding implementations more suitable

for parallel computing.

The rest of the paper is organized as follows: We formulate

the problem of computing invariant subsets of the robust

ROA for system with affine parametric uncertainty as a

bilinear SOS problem in section II and propose a branch-

and-bound based refinement procedure in section III. After

a generalization of the method to systems with polynomial

parametric uncertainty in section IV, we discuss a compu-

tationally efficient implementation of the method in section

V. Illustration of the method on three examples is followed
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by conclusions.

Notation: Rn denotes n-dimensional real vector space and

C
1 denotes the set of real valued continuously differentiable

functions on Rn. A function f : Rn → R is called

positive semidefinite (definite) if f(0) = 0 and f(x) ≥ 0
(f(x) > 0) for all x ∈ Rn (nonzero x ∈ Rn). f is called

negative (semi)definite if −f is positive (semi)definite. For

x ∈ Rn, x � 0 means that xk ≥ 0 for k = 1, · · · , n. For

a symmetric matrix X ∈ Rn×n, X � 0 (X ≻ 0) means

that X is positive semidefinite (definite). For X ∈ Rn×m,

XT ∈ Rm×n denotes the transpose of X . R[x] represents

the set of polynomials in x with real coefficients. The subset

Σ[x] := {π ∈ R[x] : π = π2
1+π2

2+· · ·+π2
m, π1, · · · , πm ∈

R[x]} of R[x] is the set of SOS polynomials. For π ∈ R[x],
∂(π) denotes the degree of π.

II. COMPUTATION OF ROBUSTLY INVARIANT SUBSETS OF

THE ROA FOR AFFINE PARAMETRIC UNCERTAINTY

Consider the system governed by

ẋ(t) = f(x(t)), (1)

where x(t) ∈ Rn is the state vector and f : Rn → Rn

is such that f(0) = 0, i.e., the origin is an equilibrium

point of (1) and f is locally Lipschitz on Rn. Let ϕ(ξ, t)
denote the solution to (1) with the initial condition ξ. If

the origin is asymptotically stable but not globally attractive,

one often wants to know which trajectories converge to the

origin as time approaches∞. This gives rise to the following

definition of the region-of-attraction:

Definition 2.1: The region-of-attraction R0 of the origin

for the system (1) is

R0 :=
{

ξ ∈ Rn : lim
t→∞

ϕ(ξ, t) = 0
}

.

For η > 0 and a function V : Rn → R, define the η-

sublevel set of V as

ΩV,η := {ξ ∈ Rn : V (ξ) ≤ η}.

For simplicity, ΩV,1 is denoted by ΩV . Lemma 2.1, which is

a modification of similar results in [19] and derived in [12],

provides a characterization of invariant subsets of the ROA

in terms of sublevel sets of appropriate Lyapunov functions.

Lemma 2.1: If there exists a C
1 function V : Rn →R

such that

V (0) = 0 and V (x) > 0 for all x 6= 0, (2)

ΩV is bounded, and (3)

ΩV \ {0} ⊂ {x ∈ R
n : ∇V (x)f(x) < 0} , (4)

then for all ξ ∈ ΩV , the solution of (1) exists, satisfies

ϕ(ξ, t) ∈ ΩV for all t ≥ 0, and limt→∞ ϕ(ξ, t) = 0, i.e.,

ΩV is an invariant subset of R0.

Now, consider the system governed by

ẋ(t) = f(x(t), δ), (5)

where x ∈ Rn is the state vector, δ ∈ Rm is the parameter

vector which satisfies δ ∈ ∆ ⊂ Rm for some polytope ∆
in Rm and f(0, δ) = 0 for all δ ∈ ∆. The robust ROA is

the intersection of the ROAs for all systems governed by (5)

and formally defined as

Definition 2.2: The robust ROA Rr
0 of the origin for

systems governed by (5) is

Rr
0 :=

⋂

δ∈∆

{ξ ∈ Rn : lim
t→∞

ϕ(ξ, t; δ) = 0},

where ϕ(ξ, t; δ) denotes the solution of (5) with the initial

condition ξ.

We focus on computing invariant subsets of the robust

ROA characterized by sublevel sets of appropriate Lyapunov

functions. To this end, we modify Lemma 2.1 such that

condition (4) holds for (5) for all δ ∈ ∆.
Proposition 2.1: If there exists a C

1 function V : Rn →
R such that, for all δ ∈ ∆, conditions (2)-(3), and

ΩV \ {0} ⊂ {ξ ∈ R
n : ∇V (ξ)f(ξ, δ) < 0} , (6)

hold, then for all ξ ∈ ΩV and for all δ ∈ ∆, the solution

of (5) exists, satisfies ϕ(ξ, t; δ) ∈ ΩV for all t ≥ 0, and

limt→∞ ϕ(ξ, t; δ) = 0, i.e., ΩV is an invariant subset of Rr
0.

We restrict our attention on a special case, where the

dependence of f on δ is affine, to obtain conditions that

are equivalent to (6) for this special case and more suitable

for numerical verification. A more general case, where

polynomial dependence on the parameter δ is allowed, will

be discussed later. Now, assume that the vector field in (5)

is

ẋ(t) = f0(x(t)) +

m
∑

i=1

δifi(x), (7)

where f0, f1, . . . , fm : Rn → Rn. Further, denote the set

of vertices (extreme points) of ∆ by E∆. Note that, if

ΩV \ {0} ⊆

{

ξ ∈ Rn : ∇V (ξ)(f0(ξ) +

m
∑

i=1

δifi(ξ)) < 0

}

(8)

holds for all δ ∈ E∆, then it holds for all δ ∈ ∆. A proof

for this straightforward argument is given in [15].

In order to enlarge the computed invariant subset of the

robust ROA, we define a variable sized region Pβ :=
{ξ ∈ Rn : p(ξ) ≤ β}, where p ∈ R[x] is a fixed, positive

definite, convex polynomial, and maximize β while imposing

constraints (2)-(3), (8), and Pβ ⊆ ΩV . This can be written

as an optimization problem.

max
V ∈V,β>0

β subject to

(2)− (3), (8), Pβ ⊆ ΩV .
(9)

In order to make the problem in (9) amenable to numerical

optimization (specifically SOS programming), we require

f0, f1, . . . , fm to be polynomial and restrict V to be a

polynomial in x of fixed degree. We use the well-known

sufficient condition for polynomial positivity [11]: for any

π ∈ R[x], if π ∈ Σ[x], then π is positive semidefinite.

Using the generalized S-procedure [13], we obtain sufficient

conditions for set containment constraints. Specifically, let

l1 and l2 be a positive definite polynomials (typically ǫxTx
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with some (small) real number ǫ). Then, since l1 is radially

unbounded, the constraint

V − l1 ∈ Σ[x] (10)

and V (0) = 0 are sufficient conditions for (2) and (3). If

s1 ∈ Σ[x], then

− [(β − p)s1 + (V − 1)] ∈ Σ[x] (11)

implies Pβ ⊆ ΩV . If for each δ ∈ E∆ there exist s2δ, s3δ ∈
Σ[x] such that

−

[

(1− V )s2δ + (∇V (f0 +

m
∑

i=1

δifi))s3δ + l2

]

∈ Σ[x]

(12)

holds, then (8) holds.

For a polytopic subset D of ∆, we now define the

quantity βD(Vpoly,S) (which is also going to be used in

later sections) as

βD(Vpoly,S) := max
V,β,s1,s2δ,s3δ

β such that

β > 0, s1 ∈ S1, s2δ ∈ S2δ, s3δ ∈ S3δ,
V (0) = 0, V ∈ Vpoly, and
(10)− (12) hold ∀ δ ∈ E∆.

(13)

Here, Vpoly and S’s are prescribed finite-dimensional sub-

spaces of R[x] and Σ[x], respectively. Note the optimal value

of β in problem (13) depends on ∆, Vpoly , and S. For

simplicity, we will omit the dependence on Vpoly and S in

notation hereafter. By the definition in (13), a lower bound

on the optimal value of β in (9) is β∆(Vpoly ,S).

The optimization problem in (13), when applied with D =
∆, provides a method for computing invariant subsets of the

robust ROA characterized by a single Lyapunov function.

Therefore, results by (13) may be conservative: certified

invariant subset may be too small relative the robust ROA.

On the other hand, a less conservative estimate of the robust

ROA can be obtained by computing a different Lyapunov

function for each δ ∈ ∆. Then Pβ∗

∆
, where, for a subset

D ⊆ δ, β∗
D is defined as

β∗
D := min

δ∈D
β{δ}, (14)

is a subset of the robust ROA.1 In fact, Pβ∗

∆
is the largest

sublevel set of p that can be proven to be a subset of

the robust ROA using the optimization problem in (13).

However, computing β∗
∆ requires solving an optimization

problem for each δ ∈ ∆. In the following, we propose

a “branch-and-bound” type procedure for computing lower

and upper bounds for β∗
∆, i.e., localizing the value of β∗

∆.
The method is based on computing a different Lyapunov

function for each cell of a finite partition of ∆. Therefore, it

potentially leads to less conservative estimates of the robust

ROA compared to directly solving (13) with D = ∆ and

more conservative estimates compared to Pβ∗

∆
.

1Note that for a singleton {δ}, E{δ} = {δ}.

III. BRANCH-AND-BOUND IN THE PARAMETER SPACE

Branch-and-bound is an algorithmic method for global

optimization. The method is based on two steps: first the

search region is covered by smaller subregions and then

upper and lower bounds for the objective function restricted

to each subregion are computed. These steps are repeated

refining the partition of the search region until the gap

between the upper and lower bounds gets smaller than a

prescribed tolerance or a maximum number of iterations is

reached.

Now, let D := {Dk}
K
k=1 be a partition of ∆ and C be

defined as C := {ck}
K
k=1 where ck ∈ Dk for k = 1, . . . ,K.

Further define

LD := min
D∈D

βD,

UC := min
c∈C

β{c}.

Then, the following set of inequalities hold

β∆ ≤ LD ≤ β∗
∆ ≤ UC,

where the first inequality follows from the fact that D ⊆ ∆
for all D ∈ D, the second inequality follows from the fact

that for each δ ∈ ∆ there exists D ∈ D such that δ ∈ D,

and the last inequality is due to C ⊂ ∆. Using the lower and

upper bounds LD and UC for β∗
∆, the following branch-and-

bound algorithm adapted from [2] can be implemented for

localizing β∗
∆.

Branch-and-Bound Algorithm: Given an initial partition

D0 of ∆, corresponding C0, positive integer Niter , and

positive number ǫ > 0,

• k ← 0;

• compute LDk and UCk ;

• while k ≤ Niter and UCk − LDk > ǫ

– k ← k + 1;

– pick D̃ ∈ Dk−1 such that βD̃ = LDk−1 ;

– split D̃ into D̃I and D̃II ;

– form Dk from Dk−1 by removing D̃ and adding

D̃I and D̃II ;

– form Ck from Dk;

– compute LDk and UCk ;

• return Dexit := Dk, Cexit := Ck, and corresponding

lower and upper bounds, Lyapunov functions, multipli-

ers, and parameters.

Trivial but useful upper bounds for the value of β such

that the conditions in Proposition 2.1 and Pβ ⊆ ΩV hold

(and consequently on β∆) can be obtained by monitoring

the value of p along divergent (not converging to the origin)

trajectories of (7). These upper bounds are valid regardless

of the form of the Lyapunov function as long as it satisfies

conditions in Proposition 2.1. Tighter upper bounds for

β∗
∆(Vpoly,S) can be obtained by relaxing (some of) the

constraints in (14) and determining values of β for which

such relaxations cannot be feasible. Such a relaxation can be

obtained by modifying simulation-based convex relaxations

for local stability analysis from [16]. Upper bounds obtained
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this way are valid regardless of the degrees of the multipliers

used in (14).

With the convention that βD = 0 if the problem in (13) is

infeasible for some D ⊆ ∆, the algorithm first tries to find

a partition of ∆ such that for each cell there exists a local

stability certificate. Then, it increases the computed value of

LD using finer partitions D.

IV. POLYNOMIAL PARAMETRIC UNCERTAINTY

We now extend the development in section II to systems

with polynomial parametric uncertainty. Specifically, we

consider the system

ẋ(t) = f0(x(t)) +

m
∑

i=1

δifi(x(t)) + g(δ)fm+1(x(t)), (15)

where f0, f1, . . . , fm are as before, g ∈ R[δ] is a scalar

valued polynomial function, and fm+1 : Rn → Rn is a

vector valued polynomial function satisfying fm+1(0) = 0.
System in (15) has only one polynomial uncertainty. We later

comment on the case with multiple polynomial uncertainties.

Our approach is based on replacing g(δ) by an artificial

parameter φ. Then, the dynamics in (15) can be written as

ẋ(t) = f0(x(t)) +

m
∑

i=1

δifi(x(t)) + φfm+1(x(t)), (16)

which is affine in the parameters (δ, φ). The graph of g is an

m-dimensional manifold in Rm+1. Next step is to cover this

the graph of g by the polytope Γ ⊂ Rm+1. At this point,

results from section II are applicable to the system in (16)

since the dependence on the parameters (δ, φ) is affine.

A polytope covering the graph of g can obtained by

bounding g by an affine function aT
1 δ + b1 from below and

by another affine function aT
2 δ + b2 from above over the

set ∆. Here, a1, a2 ∈ R
m and b1, b2 ∈ R, and the volume

of the polytope depends on the choices for the parameters

a1, a2, b1, and b2. Then, the polytope with smallest volume

among such covering polytopes can be computed through the

optimization

min
a1,a2,b1,b2

Volume(Γ(a1, a2, b1, b2)) such that

Γ(a1, a2, b1, b2) :=







(ζ, ψ) ∈ Rm+1 :
δ ∈ ∆,
aT
1 ζ + b1 ≤ ψ
aT
2 ζ + b2 ≥ ψ







,

g(δ)− (aT
1 δ + b1) ≥ 0, ∀δ ∈ ∆,

g(δ)− (aT
2 δ + b2) ≤ 0, ∀δ ∈ ∆.

(17)

The function

Volume(Γ(a1, a2, b1, b2))

:=

∫

∆

(a2 − a1)
T ζ + (b2 − b1) dζ1 . . . dζm

= (a2 − a1)
T

∫

∆

dζζ + (b2 − b1)

∫

∆

dζ

is linear in its arguments a1, a2, b1, and b2. Using the

generalized S-procedure, 2 an upper bound for the optimal

value in problem (17) can be computed by a linear SOS

optimization problem. To this end, let affine functions hi,

i = 1, . . . , N , provide an inequality description for ∆, i.e.,

∆ = {ζ ∈ Rm : hi(ζ) ≥ 0, i = 1, . . . , N} .

Proposition 4.1: The optimal value of the optimization

problem

min
a1,a2,b1,b2,σui,σli

Volume(Γ(a1, a2, b1, b2)) such that

g(δ)− (aT
1 δ + b1)−

∑N
i=1 σui(δ)hi(δ) ∈ Σ[δ],

−g(δ) + (aT
2 δ + b2)−

∑N
i=1 σli(δ)hi(δ) ∈ Σ[δ],

σui ∈ Sui, σli ∈ Sli , i = 1, . . . , N,
(18)

is an upper bound for the optimal value in problem (17).

Here S’s are finite dimensional subspaces of Σ[δ].
Remarks 4.1:

1) When there are mpu ≥ 1 polynomial uncertainties

g1, . . . , gmpu
in the description (15), m + 1 dimen-

sional polytopes Γ1, . . . ,Γmpu
covering the graph of

g1, . . . , gmpu
, respectively, can be determined using the

procedure proposed in this section repeatedly. Then, a

polytope covering the graph of (g1, . . . , gmpu
) is the

intersection Γ̃i∩. . .∩Γ̃mpu
, where, for i = 1, . . . ,mpu,

Γ̃i :=
{

(ζ, ψ) ∈ Rm+mpu : (ζ, ψi) ∈ Γi

}

.

2) In order to extend the applicability of the method

explained in section II to systems with polynomial

uncertainties, we proposed a procedure for covering

the graph of a polynomial parametric uncertainty by a

convex polytope. It may be possible to develop more

efficient and/or less conservative graph covering strate-

gies for a given polynomial uncertainty description.

3) Although we focused on polynomial uncertainties in

this section, the method proposed in section II can be

used for systems for which g in (15) is not polynomial

as long as polytopic cover for its graph is provided.

V. COMPUTATIONALLY EFFICIENT IMPLEMENTATION

The number of constraints in (13) (consequently the num-

ber of decision variables since each new constraint includes

new variables) increases exponentially with m (and mpu).

This difficulty can be alleviated by computing suboptimal

solutions for (13) in two steps [15]:

• compute a Lyapunov function for a particular system

from the family of systems in (7) solving (13) (in this

case, (8) is composed of one constraint);

• use this V as a local stability certificate for the entire

family of systems and compute largest value of γ such

that ΩV,γ (with γ ≤ 1) in the ROA for each system in

(7).

2Higher order relaxations for semialgebraic set containment based on
Positivstellensatz [11] can be used for less conservative results at the expense
of increased computational cost.
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Fig. 1. Polytopic cover for the graph of φ = δ2 with 2 cells (red) and 4
cells (yellow). Thick black curve is the graph of φ = δ2.

Once a Lyapunov function candidate is found in the first step,

the second step involves solving smaller decoupled linear

SDPs. We will illustrate this procedure in section VI.

As the state dimension increases, it may be challenging to

solve the problem in (13) for even a singleton D. In this case,

a recently developed methodology, merging formal proof

techniques and information from simulations for computing

invariant subsets of the ROA for systems with no uncertainty

[16], can be used in the first step of the two-step procedure

explained in the previous paragraph. Moreover, it is possible

to generalize this method to generate Lyapunov function

candidates for proving the local stability of the uncertain

system using simulation for systems corresponding to finite

sample of ∆, such as E∆.

VI. EXAMPLES

In all examples in this section, l1(x) = l2(x) = 10−6xTx
and p(x) = xTx.

A. An example from the literature

Consider the system [6] governed by ẋ1 = −x1+(−6x2+
x2

2 + x3
1)δ+ (4x2 − x

2
2)δ

2 and ẋ2 = 3x1− 2x2 + (−10x1 +
6x2 + x1x2)δ + (12x1 − 4x2)δ

2, where the uncertain scalar

parameter δ takes values in [0, 1]. Following the procedure

from section IV, we replaced δ2 by an artificial parameter φ.
Fig. 1 shows the set {(ζ, ψ) ∈ R2 : ζ ∈ [0, 1], ψ = ζ2}
(black curve) and polytopic covers with 2-cell (yellow region

in the small plot) and 4-cell (yellow region in the main plot)

partitions (obtained during the application of the branch-and-

bound refinement) of [0, 1]. With the initial partition {[0, 1]},
we applied the refinement for ∂(V ) = 2 and ∂(V ) = 4
using the two-step procedure. Upper and lower bounds for

β∗
[0,1] are shown in Fig. 2 (top for ∂(V ) = 2 and bottom for

∂(V ) = 4). Upper bounds are obtained either monitoring the

value of p along divergent trajectories or the value of β for

which certain convex relaxations for ROA analysis proposed

in the context of simulation-aided stability analysis in [16].
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Fig. 2. Upper and lower bounds for β∗
[0,1]

(top for ∂(V ) = 2 and bottom

for ∂(V ) = 4).
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Fig. 3. Estimates of the robust ROA: from [6] (black), using the branch-
and-bound based method for ∂(V ) = 2 (red) and ∂(V ) = 4 (green).

B. Controlled short period aircraft dynamics

Consider the plant dynamics ẋ1 = −3x1 − 1.35x2 −
0.56x3+(1+δ1)(0.08x1x2+0.44x2

2+0.01x2x3+0.22x3
2)+

(1.35 − 0.04x2)u, ẋ2 = 0.91x1 − 0.64x2 − 0.02x3 +
(1 + δ2)(−0.05x2

2 + 0.11x2x3 − 0.05x2
3) + 0.4u, ẋ3 = x1,

and y = [x1 x3]
T , where x1, x2 and, x3 are the pitch

rate, the angle of attack, and the pitch angle, respectively.

The input u is the elevator deflection and determined by

the dynamics ż1 = −0.60z1 + 0.09z2 − 0.06y1 − 0.02y2,
ż2 = −0.75y1 − 0.28y2, and u = z1 + 2.2z2, where z
is the controller state. Here, δ1 and δ2 are two uncertain
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TABLE I

LOWER BOUNDS FOR β∗
D

, WHERE IS D IS THE CORRESPONDING SUBSET

OF [−0.1, 0.1] × [−0.1, 0.1].

P
P

P
P

PP
δ1

δ2 [−0.1, −0.1
3

] [−0.1
3

, 0.1
3

] [ 0.1
3

, 0.1]

[−0.1, −0.1
3

]
12.7
9.1

12.5
8.5

11.6
7.9

[−0.1
3

, 0.1
3

]
12.2
8.7

12.0
8.1

11.2
7.6

[ 0.1
3

, 0.1]
11.1
8.4

11.1
7.8

11.1
7.3

TABLE II

LOWER BOUNDS FOR β∗
D , WHERE IS D IS THE CORRESPONDING SUBSET

OF [−0.1, 0.1] × [−0.1, 0.1].

P
P

P
P

PP
δ1

δ2 [−0.1, −0.1
3

] [−0.1
3

, 0.1
3

] [ 0.1
3

, 0.1]

[−0.1, −0.1
3

]
8.8
5.2

9.2
5.0

9.7
4.7

[−0.1
3

, 0.1
3

]
9.0
4.9

8.4
4.7

8.3
4.5

[ 0.1
3

, 0.1]
8.3
4.7

8.4
4.4

8.6
4.2

parameters introducing 10% uncertainty for the entries of the

plant dynamics that are nonlinear in x, i.e., δ1 ∈ [−0.1, 0.1]
and δ2 ∈ [−0.1, 0.1]. Here, the entries of the above dynamics

are shown up to three significant digits. The exact vector

field used for this example is available at [1]. We partitioned

∆ = [−0.1, 0.1]× [−0.1, 0.1] into 9 equal cubic sub-regions

and solved the problem in (13) using computationally more

efficient two-step implementation from section V. In the first

step, we generated the Lyapunov function candidates using

the simulation based method from [16] and found a diverging

trajectory with p(x) = 14.0 during the course of simulation

runs. Table I shows the lower bounds for β∗
D, where is D

is the corresponding subset of [−0.1, 0.1]× [−0.1, 0.1]. The

top value in each cell of Table I if for ∂(V ) = 4 and bottom

value is for ∂(V ) = 2.

C. Controlled short period aircraft dynamics with time delay

In this example, we introduced a time delay of 0.53 units

of time (which is 1/4 of the time delay margin of the

dynamics linearized around the origin) between the controller

and plant whose dynamics are given in section VI-B. We

modeled the dynamics of the time delay by a first order

Pade approximation and applied the analysis explained in

section VI-B. Table II shows the lower bounds for β∗
∆, with

∆ = [−0.1, 0.1]×[−0.1, 0.1]. An upper bound for β{(0.1,0.1)}

is provided by a diverging trajectory with p(x) = 11.2.

VII. CONCLUSIONS

We proposed a method to compute invariant subsets of the

region-of-attraction for the asymptotically stable equilibrium

points of polynomial dynamical systems with bounded para-

metric uncertainty. Parameter-independent Lyapunov func-

tions were used to characterize invariant subsets of the robust

region-of-attraction. A branch-and-bound type refinement

procedure was implemented to reduce the conservatism.

We demonstrated the method on a two-state example from

the literature and five-state controlled short period aircraft

dynamics with and without time delay in the input to the

plant.
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