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Abstract— We perform an input-output analysis of tran-
sition in boundary layers subject to free-stream turbulence,
which is modeled as a stochastic excitation to the Navier-
Stokes equations linearized around a parallel Blasius base
flow. The second order statistics of this excitation are de-
termined by modeling energy spectrum of the homogeneous
isotropic turbulence using the linearized Navier-Stokes equa-
tions. Our variance-amplification analysis identifies the near-
plate streamwise streaks as the most energetic flow structures
and theoretically predicts prevailing length-scales. The results
of our analysis are in good agreement with the experimental
and numerical studies of the free-stream-turbulence-induced
boundary layer transition.

Index Terms— Boundary layers; energy amplification; free-
stream turbulence; Navier-Stokes equations.

I. INTRODUCTION

Boundary layers subjected to free-stream turbulence (FST)
have been a topic of several recent experimental [1]–[3]
and numerical [4], [5] studies. Despite simple geometry, the
mechanism of transition to turbulence in boundary layers is
not yet fully understood. The energy growth of background
disturbance in these flows is considered as an important
phase in the transition process [6]. The study of evolution of
kinetic energy of perturbations reveals that nonlinear mecha-
nism redistributes energy among different wavenumbers but
has no effect on net change of energy [7]. On the other hand,
linear mechanism is responsible for the growth of disturbance
energy [5].

In this paper, we study the energy amplification of the
linearized Navier-Stokes equations (LNSE) around paral-
lel Blasius boundary layer (BBL) profile subject to free-
stream turbulence (FST). We determine a class of spatio-
temporal stochastic inputs to the linearized model capable of
producing second order statistics of homogeneous isotropic
turbulence (HIT). More precisely, we determine the second
order statistics of forcing to the LNSE that yields energy
spectrum of HIT and then study the energy amplification
when forcing is introduced at different wall-normal locations
of the parallel BBL flow. From our computations of the
energy amplification, it is observed that the near-wall ex-
citations are more amplified than the free-stream excitations.
Our variance-amplification analysis identifies the near-wall
streamwise streaks as the most energetic flow structures and
theoretically predicts prevailing length-scales. The results of
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our analysis are in good agreement with the experimental
and numerical studies of the free-stream-turbulence-induced
boundary layer transition.

The paper is organized as follows: in Section II, we
describe the geometry configuration for the BBL problem.
In Section III-A, we briefly summarize the energy spectrum
of homogeneous isotropic turbulence. In Section III, we
determine second order statistics of stochastic forcing by
modeling energy spectrum of HIT using the LNSE. We
present the state-space representation of the LNSE in Sec-
tion IV, and describe our computational results in Section IV-
B. The paper is concluded in Section V.

II. PROBLEM SETUP

We consider the incompressible linearized Navier-Stokes
equations in a Blasius boundary layer flow. The geometry
configuration is shown in Fig. 1. An infinite flat plate is
subject to a uniform streamwise flow U∞. The base velocity
varies from zero value at the plate to the value U∞ in
the free-stream. This nominal profile is homogeneous in the
spanwise (z-direction), but spatially varying in the stream-
wise (x) and the wall-normal (y) directions [8]. We evaluate
this nominal flow at one value of x and retain its dependence
of the wall-normal coordinate (in other words, we assume the
nominal flow to be parallel). This parallel flow assumption is
supported by [9], [10], among others. These studies show that
the transient growth exhibits similar trends for the parallel
and non-parallel boundary layer flows. The purpose of this
study is to investigate the energy amplification by introducing
certain stochastic inputs into different wall-normal locations
of BBL profile. The class of stochastic inputs of interest is
the one that generates HIT in a uniform stream.

Fig. 1. Geometry configuration of BBL problem.
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III. INPUT COVARIANCE USING LINEAR SYSTEM THEORY

In this section, we first briefly describe the general form
of energy spectrum in incompressible HIT. For rigorous
mathematical derivation and additional detail we refer the
reader to [11], [12]. We also determine the state-space
representation of the LNSE around uniform nominal profile.
This representation is used to determine input covariance that
reproduces second order statistics of HIT.

A. Energy spectrum of HIT

The initial point of this work can be concisely stated in
the following question.

• What is the second order statistics of input forcing to
the linearized Navier-Stokes equations that generates
homogeneous isotropic turbulence?

The covariance of two velocity components is defined by

Rij(r) := E(ui(r, t)uj(x + r, t)), i, j = 1, 2, 3

where E(·) is the expectation operator, indices i, j de-
note the corresponding components of the velocity vector
u := [u1 u2 u3 ]T , and x, r are position vectors. Due
to homogeneity, Rij is only a function of difference r
between two points. Moreover, under isotropic assumption
Rij(r) becomes invariant under arbitrary rigid rotations and
reflections and its Fourier transform Φij := F(Rij) has the
following form [11]

Φij(κ) = E1(κ)δij + E2(κ)kikj , i, j = 1, 2, 3.

Here, k1, k2, and k3, respectively, denote the streamwise,
wall-normal and spanwise wavenumbers, κ := [ k1 k2 k3 ]T ,
κ2 := k2

1 + k2
2 + k2

3 , and δij is the Kronecker delta. In
incompressible flows, one can further simplify the above
expression and arrive at [11]

Φij(κ) =
E(κ)
4πκ2

(δij −
kikj

κ2
)

where E(κ) is a scalar function that determines the von
Karman spectrum [12]

E(κ) = LCvk
(κL)4

(1 + κ2L2)(17/6)
.

Here, Cvk is the normalization constant given by

Cvk =
Γ(17/6)

Γ(5/2)Γ(1/3)
≈ 0.48

and Γ(·) is the gamma function. The integral length scale
L ≈ 1.5 is numerically computed from DNS [13]. The above
given Φij(κ) determines the general form of energy spec-
trum in incompressible homogeneous isotropic turbulence.

B. State-space representation of LNSE around uniform nom-
inal flow

In this section, we consider LNSE and utilize spatial
Fourier transform to obtain a state-space representation pa-
rameterized by wavenumbers. To address the question raised

in Section III-A, we consider LNSE around uniform nominal
velocity ū,

∂tu = −∇ūu−∇uū−∇p +
1
R

∆u + d, (1)

0 = ∇ · u, (2)

where u is the fluctuation velocity, p is pressure fluctuation,
R is the Reynolds number, ∇ is the gradient, ∆ is the
Laplacian, and the operator ∇u is defined as ∇u := u · ∇.

We follow the standard conversion to obtain the evolution
form of (1,2). This conversion yields the state variable
ψ := [u2 η]T , determined by the wall-normal velocity u2

and vorticity η := ∂zu1 − ∂xu3. The uniform nominal flow
ū := [ U 0 0 ]T is constant in both space and time.
This fact brings spatial differential operators to algebraic
multiplication operators by application of Fourier transform
in all spatial directions. Hence, the state-space representation
of the parameterized system is given by

∂tψ(κ, t) = AH(κ)ψ(κ, t) + B(κ)d(κ, t),
u(κ, t) = C(κ)ψ(κ, t). (3)

Here, AH , B and C are given by

AH := −(k2/R + jk1U)I2×2,

B :=
[
−1/κ2 0

0 1

] [
k1k2 −k2 k2k3

jk3 0 −jk1

]
,

C := 1/k2

 −k1k2 −jk3

k2 0
−k2k3 jk1

 , k2 := k2
1 + k2

3,

I2×2 denotes the identity matrix of dimension two, and each
component of the stochastic input d := [d1 d2 d3]T is a
random process in time.

C. Determination of input covariance

The steady state covariance of the output and the state
variables are defined as

V (κ) := lim
t→∞

E(u(κ, t)u∗(κ, t)),

Σ(κ) := lim
t→∞

E(ψ(κ, t)ψ∗(κ, t)),

respectively, where (·)∗ denotes the complex conjugate
transpose. From state-space representation (3), these two
quantities are related by

V (κ) = CΣ(κ)C+,

where C+ denotes the adjoint of C. Using the fact that
C+C = I , the state covariance of homogeneous isotropic
turbulence is determined by

Σ(κ) = C+Φ(κ)C.

With some algebra, one can readily obtain the following
expression

Σ(κ) =
E(κ)
4πκ2

I2×2.
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The key quantity of interest is the covariance of input forcing;
for temporally stationary white process d we have

Π(κ)δ(t1 − t2) = E(d(κ, t1)d∗(κ, t2)),

where Π(κ) is a Hermitian matrix of dimension three for
any triple of wavenumbers. The state covariance at steady
state Σ(κ) and the covariance of inputs Π(κ) satisfy the
Lyapunov equation [14],

AH(κ)Σ(κ) + Σ(κ)A+
H(κ) = −B(κ)Π(κ)B+(κ). (4)

Our objective is to determine Π(κ) that gives the covari-
ance matrix of HIT. It is easy to show that

E(κ)
4πκ2

I2×2 = B(κ)Π(κ)B+(κ). (5)

To solve (5) for Π(κ), one may observe that there is a
discrepancy between the number of variables and the number
of equations. On the one hand, there are six unknowns
in the 3-by-3 Hermitian matrix Π(κ); on the other hand,
there are only three equations due to the fact that left hand
side of (4) has dimension of two. This implies that the
solution for Π(κ) is not unique. Equivalently, the input
matrix B(κ) is not left invertible. However, the underlying
reason for the loss of uniqueness can be traced back to
the LNSE (1,2) where we eliminated one velocity variable
due to continuity constraint. To obtain uniqueness, one may
accordingly devise an appropriate constraint between input
variables. In this paper, we will consider solenoidal, i.e.,
divergence-free inputs

∇ · d = 0.

In a similar fashion for state variables, the inputs are orga-
nized as ds := [d2 dη] which transforms the B-matrix to
Bs := I2×2.

The main reason for this choice of constraint stems from
the direct numerical simulations showing that solenoidal
inputs with bounded spectrum is capable of generating
isotropic turbulence [15]. Moreover, both operator B and
its adjoint B+ then simplify to identity operator. Hence, the
covariance of solenoidal inputs is determined by

Πs(κ) =
E(κ)
4πκ2

I2×2.

This covariance is used in the next section to model a
stochastic excitation to the Navier-Stokes equations lin-
earized around a parallel Blasius base flow.

IV. STOCHASTICALLY FORCED BLASIUS BOUNDARY
LAYER

In this section, we determine the state-space representation
of the Navier-Stokes equations linearized around BBL profile
and compute the energy amplification [16], [?] for the input
forcing with covariance determined in Section III.

A. State-space representation of LNSE around BBL profile

As described in section II, the BBL nominal flow profile
is homogeneous in spanwise direction but not in streamwise

and wall-normal directions. Under the assumption of parallel
base flow, we can apply spatial Fourier transform in both
streamwise and spanwise directions. Hence, the state-space
representation of LNSE around BBL nominal profile UB(y)
is given by

∂tψ(k1, y, k3, t) = [AB(k1, k3)ψ(k1, k3, t)](y) +

[B(k1, k3)d(k1, k3, t)](y)

u(k1, y, k3, t) = [C(k1, k3)ψ(k1, k3, t)](y).
(6)

The operators AB , B and C are given by

AB :=
[

A11 0
A21 A22

]
,

B :=
[

∆−1 0
0 I

] [
−jk1∂y −k2 −jk3∂y

jk3 0 −jk1

]

C :=

 Cu1

Cu2

Cu3

 = 1/k2

 jk1∂y −jk3

k2 0
jk3∂y jk1

 .

Here

A11 := −jk1∆−1UB∆ + jk1∆−1U ′′
B + 1

R∆−1∆2,

A21 := −jk3U
′
B ,

A22 := −jk1UB + 1
R∆,

where U ′
B := dUB(y)/dy, ∆ := ∂yy − k2, and ∆2 :=

∂yyyy − 2 k2 ∂yy + k4. The boundary conditions are given
by

v(k1, 0, k3, t) = ∂yv(k1, 0, k3, t) = 0,

v(k1,∞, k3, t) = ∂yv(k1,∞, k3, t) = 0,

η(k1, 0, k3, t) = η(k1,∞, k3, t) = 0,

∀k1, k3 ∈ R, ∀t ≥ 0.

We will consider the situation in which input forcing
d(x, y, z, t) has an intensity that varies with the wall-normal
direction. More precisely, we assume that a filtered excitation
d := f(y)ds enters the state equation, where f(y) is a
smooth filter function

f(y) :=
1
π

(atan(y − y1)− atan(y − y2)).

The parameters y1 and y2 can be chosen to determine the
shape of filter f(y). For example, for y1 = 5, y2 = 10,
f(y) is plotted in Fig. 2. It is convenient to incorporate the
function f(y) into operator B by defining

BB := Bf(y)

=
[

∆−1(f(y)∆ + f ′(y)∂y) 0
0 f(y)

]
Then, (6) can be rewritten as

∂tψ(k1, y, k3, t) = [AB(k1, k3)ψ(k1, k3, t)](y) +

[BB(k1, k3)ds(k1, k3, t)](y)

u(k1, y, k3, t) = [C(k1, k3)ψ(k1, k3, t)](y).
(7)
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Fig. 2. The shape of filter function f(y) with y1 = 5, y2 = 10.

The purpose of this paper is to quantify receptivity of the
LNSE subject to white (in time) solenoidal stochastic exci-
tation with second order statistics determined in Section III.

B. Computation of energy amplification

We compute energy amplification utilizing the standard
fact that the H2 norm can be calculated from the solution to
the Lyapunov equation. The frequency response of system
(7) is given by

H(k1, k3, ω) = C(k1, k3)(jωI −AB(k1, k3))−1BB(k1, k3),

where ω is the temporal frequency. Therefore, the input-
output relationship of system (7) can be presented by

u(k1, y, k3, ω) = [H(k1, k3, ω)ds(k1, k3, ω)](y).

To study the energy amplification, we choose the H2 system
norm defined as

‖H‖22(k1, k3) :=
1
2π

∫ ∞

−∞
‖H(k1, k3, ω)‖2HSdω,

where ‖ · ‖HS is the Hilbert-Schmidt norm of an operator
defined by

‖H‖2HS := trace(HH+).

For fixed wavenumber pair (k1, k3) and fixed ω, H is an
operator in y-direction. The H2 norm quantifies the variance
(energy) amplification of harmonic (in x and z) stochastic (in
y and t) disturbances at any given wavenumber pair (k1, k3).
It is a standard fact that H2 norm can be computed using
solution to the operator Lyapunov equation

AB(k1, k3)X(k1, k3) + X(k1, k3)A+
B(k1, k3)

= −BB(k1, k3)Πs(k1, k3)B+
B(k1, k3).

(8)

The H2 norm is then determined by

‖H‖22(k1, k3) = trace(C(κ)X(k1, k3)C+(k1, k3))).

In the sequel, we briefly describe the numerical computa-
tion of H2 norm using a Chebyshev collocation scheme [17].
In the streamwise and spanwise directions, we grid over the

wavenumber space (uniformly in logarithmic scale in k1 with
k1min = 10−4, k1max = 10−1, and uniformly in linear
scale in k3 with k3min = 0.01, k3max = 1). In the wall-
normal semi-infinite direction, we approximate the domain
from plate boundary to the free-stream region with a box
y ∈ [0, Ly] of size Ly = 25. A Chebyshev collocation
scheme [17] is employed to discretize the operators AB ,
BB and C with N = 100 Gauss-Lobatto points in y. By
increasing both Ly and N , it is confirmed that the box-size
is large enough and the resolution of discretization is high
enough to secure convergence of numerical approximation.

C. Numerical computation results
We present results obtained by computing the H2 norm

of stochastically excited Blasius boundary layer with R =
500 (see Fig. 3 for nominal velocity profile). The flow
structures contributing most to the energy amplification are
also discussed in this section. The solenoidal excitation is

Fig. 3. Nominal BBL profile with R = 500.

first introduced to the free-stream region by filtering through
pre-specified function f(y). From Fig. 4, it is observed that
energy is most amplified at low streamwise wavenumber
value, k1 ≈ 0. However, a global peak takes place at
k3 ≈ 0.34. Note that the results are presented in logarithmic
scale of base ten.

It is of interest to investigate energy amplification with
input forcing introduced to different locations in wall-normal
direction. The whole box range in wall-normal direction
[0, Ly] is divided equally into five regions with the notation
that the first region denotes [0, Ly/5] and the second region
denotes [Ly/5, 2Ly/5], etc.. The solenoidal input forcing
then excites BBL at each of the first four regions and the
results are given in Fig. 5. It turns out that the energy is
amplified most when flow is excited near plate boundary.
The peak value at 1st region is greater than peak values in
any other regions with a difference of more than half order of
magnitude. Another observation is that as inputs shift from
plate boundary towards free-stream turbulence region, the
peak in spanwise direction shifts to lower values of k3.

To obtain more detailed results at low frequency, we set
k1 = 0 and grid in k3 and then vice versa. In both these cases,
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log10(‖H‖22(k1, k3))

Fig. 4. Plot of log10(‖H‖2
2(k1, k3)) in BBL profile subject to FST with

R = 500.

1st region 2nd region

3rd region 4th region

Fig. 5. Plots of log10(‖H‖2
2(k1, k3)) in BBL flow with R = 500 subject

to stochastic excitation at each of four different wall-normal regions.

we introduce input forcing in different regions as before.
In case of streamwise constant excitation, i.e. k1 = 0, the
result in Fig. 6 confirms previous observations. First, near-
wall excitations are amplified most and their peak values
are at least one order of magnitude larger compared to the
the peak values obtained by exciting in other wall-normal
regions. Secondly, the peak shifts to lower values of k3

as the excitation region shifts from plate boundary to the
free-stream region. In case of spanwise constant excitation
k3 = 0, it is observed that the H2 norm is much smaller
than for streamwise constant perturbations. An interesting
and important observation can be made from Fig. 7. For
excitations entering in the 2nd, 3rd and 4th regions, the H2

norm decreases monotonically as k1 increases while a peak
is uncovered at k1 ≈ 0.31 in case of the near-wall excitation.

This peak corresponds to the Tollmien-Schlichting (TS)
wave, which represent the eigenfunctions corresponding to
the “poorly damped” system modes (that is, the eigenvalues
in the immediate vicinity of the imaginary axis).

‖H‖22(k1 = 0, k3)

Fig. 6. Plot of ‖H‖2
2(k1 = 0, k3) in BBL flow with R = 500 for

stochastic excitation at each of four different wall-normal regions. From
the top to the bottom, the four curves correspond to 1st, 2nd, 3rd and 4th
region, respectively.

The structure of eigenvector of state covariance X associ-
ated with the largest eigenvalue is of interest to observe. This
eigenvector determines the flow structures that produce most
variance in stochastically excited BBL flow. The eigenvector
ψ associated with the most amplified mode is computed by
eigenvalue decomposition of covariance matrix X . For exam-
ple, u1 := Cu1ψ represents the structure of the correspond-
ing streamwise velocity. The results are plotted in physical
domain as given in Fig. 8. Our variance-amplification analy-
sis show that free-stream turbulence penetrates the boundary
layer and produces the near-plate streamwise streaks as the
most energetic flow structures. The results of our analysis
are in good agreement with the experimental and numerical
studies of the free-stream-turbulence-induced boundary layer
transition.

V. CONCLUDING REMARKS

In this paper, we study the energy amplification of the
linearized Navier-Stokes equations around parallel Blasius
boundary layer profile subject to free stream turbulence.
It is shown that the LNSE model is capable of producing
second order statistics of HIT using the class of solenoidal
stochastic input forcing. We used this forcing as a stochastic
input to the linearized Navier-Stokes equations and illustrated
that regions in which excitation enters significantly influ-
ence the values of frequency response peaks. Our variance-
amplification analysis identifies the near-plate streamwise
streaks as the most energetic flow structures irrespective
of the region in which excitation enters. The results of
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‖H‖22(k1, k3 = 0)

Fig. 7. Plot of ‖H‖2
2(k1, k3 = 0) in BBL flow with R = 500 for

stochastic excitation at each of four different wall-normal regions. From the
bottom to the top (cf. Fig. 6), the four curves correspond to 1st, 2nd, 4th
and 3rd region, respectively.

u1(y, z)

Fig. 8. Flow structures that produce most variance in parallel BBL flow
with R = 500.

our analysis are in good agreement with the experimental
and numerical studies of the free-stream-turbulence-induced
boundary layer transition.
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