
  

  

Abstract—A basic control problem in a nuclear research 
reactor consists of increasing or decreasing the neutron power 
from a certain level R0 to a new desired level R1 and maintain 
the reactor stable at the new power level. For security reasons, 
this task must be performed in such a way that, during the 
power ascent, the instantaneous period of the reactor must 
always be greater than or equal to a lower limit value. To solve 
this problem, avoiding the difficulties associated with the 
physical modeling of the nuclear process, in this paper, we 
propose to use an indirect adaptive control scheme in which a 
single layer second order differential neural network achieves 
the on-line identification based only on three variables: the 
external reactivity, the fuel temperature, and the neutron 
power. The mathematical model provided by this identification 
process is employed to accomplish the control action in two 
stages. During the transient stage, the controller objective is to 
maintain the plant on a constant period. Once the desired 
power is reached, the control action is switched to a regulation 
stage. This identifier-controller is tested by simulation. Instead 
of the real plant, an eighth order physical model of a TRIGA 
reactor considered as a black box is used. The results show a 
good performance of the suggested approach. 

I. INTRODUCTION 
uring almost five decades, TRIGA reactors have 

constituted an important factor for the development of 
peaceful applications of nuclear energy. Nowadays, as a 
result of their prompt negative temperature coefficient of 
reactivity which guarantees an intrinsically safe operation, 
they are the most widely used research reactors in the world 
with an installed base of 65 reactors in 24 countries [1]. In 
Mexico, the National Institute of Nuclear Research (ININ) 
has a 1-MW TRIGA Mark III reactor which is mainly used 
for the study of radiation effects in several substances 
(neutron activation analysis, aging analysis, etc.). Likewise, 
it is used for personnel training and for production of 
radioisotopes which are employed in medical, industrial and 
agricultural applications. During all these activities, the 
reactor power is increased or decreased from a certain level 
R0 to a new desired level R1 and then the reactor is 
maintained at that level. However, for security reasons, this 
task must be performed in such a way that, during the power 
ascent, the instantaneous period must always be greater than 
or equal to a lower limit value. In the event that this 
constraint is not complied, a scram (automatic shut down of 
the reactor) occurs. Currently, this reactor is controlled 
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manually by an expert operator or automatically by a PID-
type scheme with constrained control action. Although this 
scheme has been designed without any model of the reactor, 
its tuning process is time-consuming. Besides, regarding the 
capabilities of the reactor, the performance provided by this 
controller can be still improved, for example, reducing the 
transient time to get different levels of power. Given the 
constraints associated with the reactor control problem, it 
could be considered that, in this case, the natural solution 
consists of employing the classical optimal control theory. 
Nonetheless, the direct application of Pontryagin's maximum 
principle or Bellman's dynamic programming to find online 
the optimal control could be very costly from a 
computational point of view. Moreover, these techniques 
tolerate neither modeling errors nor unforeseen 
perturbations. To overcome these drawbacks, some works 
have been reported in which the basic operation of the 
reactor is carried out automatically and in a minimum time 
satisfying, at the same time, the period constraint without 
resorting to the direct use of the optimal control theory. For 
example, in [2], it was established that the unique optimal 
solution to the reactor control problem is to achieve the 
control action in two stages: 1) During the transient stage, 
the instantaneous period of the reactor must be maintained 
equal to a minimum allowable limit. 2) Starting from the 
time in which the specified power level is attained, the 
neutron power must remain constant. Using this principle, 
Aleksakov developed a controller based on the physical 
model of the reactor. In a completely independent way using 
another approach, in [3], the same principle of the 
Aleksakov's work was found. With this principle, Bernard 
developed the MIT-SNL Period-Generated Minimum Time 
Control Laws approach. This approach needs the dynamic 
period equation which is derived from the physical model. 
Unfortunately, for our particular case, the last two 
approaches are not effective because we do not know the 
current values of the Mexican TRIGA reactor's parameters 
(the last time these values were computed was in 1994 [13]). 
On the other hand, in [4], it was proposed an associative 
stochastic automaton for reactor power ascent. Although this 
system does not require any physical model of the plant, its 
performance is inferior with respect to Bernard's controller. 
In addition, a long previous training process is required. In 
pursuit of a model-free controller (but still with a relatively 
simple structure) able to work satisfactorily during long 
periods of time and with a very short off-line learning phase, 
we are particularly interested in applying a special kind of 
artificial neural networks (ANN), the so called differential 
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neural networks (DNN). For the aforementioned control 
problem of the reactor, this approach is particularly 
attractive and promising due to its capability of robust 
universal approximation. Roughly speaking, ANN can be 
classified as static ones, using the, so called, back-
propagation technique [5] or as recurrent ones [6]. In the 
first kind of networks, the system dynamics is approximated 
by a static mapping; therefore, the output of these networks 
is uniquely determined by the current inputs and weights. 
These networks have two major disadvantages: a slow 
learning rate and a high sensitivity to the training data. On 
the other hand, the second approach incorporates feedback 
in its structure. Thus, recurrent neural networks overcome 
many problems associated with the first ones such as global 
extrema search and consequently they have better 
approximation properties. Depending on their structure, 
recurrent neural networks can be classified as (discrete-time) 
difference ones or (continuous-time) differential ones. 
Although there exist previous works which report the usage 
of ANN for nuclear reactor control [7-11], generally the 
networks employed have been static or discrete multilayer 
recurrent with a long preliminary off-line learning phase or 
else, they lack a rigorous proof of the stability of the 
corresponding closed-loop system based on the ANN. 
Surprisingly, to the best of our knowledge, no author has 
considered the possibility of applying DNN to control 
nuclear processes. Thereby, in this paper, the reactor control 
problem subjected to the period constraint is solved by the 
following way: First, to avoid the use of observers, and since 
the internal dynamics associated with the non measurable 
variables is stable, a single layer second order DNN is used 
to accomplish the identification of the uncertain measurable 
dynamics using only the external reactivity, the fuel 
temperature, and the neutron power. Second, based on the 
obtained DNN model, the general control strategy proposed 
in [2] is implemented. The convergence for each control 
stage is assured by the use of the power derivative which 
can be calculated from the period measurement. The 
workability of the suggested approach is illustrated by a 
simulation example in which an eighth order nonlinear 
model of the Mexican TRIGA reactor considered as a black 
box is used instead of the real plant.  

II. PHYSICAL MODEL OF A TRIGA REACTOR 
One of the simplest ways of describing the dynamic 
behavior of a nuclear reactor is to use the following eighth 
order nonlinear model with six groups of delayed neutron 
precursors and one thermal feedback mechanism [12] 
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where constant parameters are defined as: Λ is the effective 

prompt neutron lifetime (s), λi is the radioactive decay 
constant of ith group neutron precursor (s-1), βi is the 
fraction of ith group delayed neutrons, β  is the total delayed 
neutron fraction (β=∑6

i=1βi), α is the negative temperature 
reactivity coefficient (°C-1), K is the reciprocal of the reactor 
heat capacity (°C/(W⋅s)), γ is the reciprocal of mean time for 
heat transfer to the coolant (s-1), T0 is the initial average 
temperature, n0 is the initial power. Likewise, the model 
variables are defined as: nt is the neutron power (W) (from  
1W to 1.1MW for the Mexican TRIGA reactor), Ci,t is the 
power of the ith group delayed neutron precursor (W), Tt is 
the fuel average temperature (°C), and ρext,t is the external 
reactivity which ranges from 0 to 1.4354 (dimensionless). 
The external reactivity is associated with the displacement of 
the control rods. The relationship between these variables 
can be inferred as a static mapping by correlations 
determined empirically and off-line. Since we do know this 
relationship, from now on the external reactivity can be 
considered as the control input of the nuclear system and 
will be denoted as tv . The nominal parameters [13], 
corresponding to Mexico TRIGA MARK III reactor are as 
follows: α=0.01359875°C-1, β1=0.240×10-3, β2=1.410×10-3  
β3=1.255×10-3, β4=2.525×10-3, β5=0.737×10-3, β6= 
0.266×10-3, β=6.433×10-3, λ1=0.0124s-1, λ2=0.0305s-1, λ3=   
0.1140s-1, λ4=0.3013s-1, λ5=1.1360s-1, λ6=3.0130s-1,      Λ= 
38μs, γ=0.2s-1, K=1/5.21045×104 °C/(W·s). Due to the 
assumptions employed to deduce it, discrepancies between 
the actual plant and the physical model here studied are 
inevitable. Next, some limitations and drawbacks associated 
with the use of this model are summarized: 

• Although the parameters were assumed to be 
constants, in fact, they vary according to changes in 
operating conditions. 

• The effect of sensors and actuators is not considered. 
• Due to instruments for measuring power of 6 groups 

of delayed neutron precursors in a nuclear reactor are 
not available, a control design based on this model 
could result in complex structured closed loop system 
since a robust nonlinear observer is required. 

Finally, two facts should be noted: First, if the output of the 
system is nt then the relative degree of the physical model is 
1. Second, although we do not know the current values of 
the reactor's parameters we can assure that these ones are 
always positive. Consequently, the dynamics associated with 
the ith group delayed neutron precursor power is stable. This 
can be seen from the equation (2). 

A. Period Constraint 
The instantaneous period of the reactor can be defined as                      

                                : t
t

t

n
n

τ = �
                                   (4) 

This variable is generally available for measurement and 
plays a very important role in the plant control. For security, 
the power ascent must be achieved in such a way that the 
instantaneous period must be always maintained greater than 
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or equal to a minimum allowable value, that is, min.tτ τ≥  
For Mexico TRIGA reactor, the theoretical minimum 
allowable period is min 3sτ = . However, how the 
experienced operators of this reactor know, due to the 
limitations associated with real instrumentation, to avoid 
frequent scrams is suitable to maintain the instantaneous 
period at levels greater than or equal to 10s. Thus, in terms 
of this practical minimum value, the period constraint can be 
expressed as             

                                   mintτ τ ∗≥                                    (5) 
where min 10sτ ∗ = . 

III. SINGLE LAYER NEURAL IDENTIFIER 

A.  Uncertain Dynamics and Basic Assumptions 
Suppose that the N-order global dynamics of the reactor 
under consideration is stable. Likewise, consider that the n-
order uncertain measurable dynamics (n ≤ N) of this system 
can be described, in general, as  
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Notice that an alternative representation for (6) always could 
be done as follows: 
        ( ) ( , , )t t t t t tx Ax W x Bv f x v tσ∗= + + + Δ�        (7) 
where n nA ×ℜ∈  is a Hurwitz matrix, n nW ∗ ×ℜ∈  is a 
constant matrix, n qB ×ℜ∈  is the input matrix, ( )σ ⋅  is the 
activation vector-function with sigmoidal components, that 
is, ( )σ ⋅ := ( ) ( )[ ]1 ,  ...,  nσ σ⋅ ⋅  
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and  
( ) ( )( , , ) : , ,t t t t t t tf x v t f x v t Ax W x Bvσ∗Δ = − − −  

Hereafter we consider that the following assumptions are 
complied: 
A.1) System (6) satisfies the (uniform on t) Lipschitz 

condition, that is, 

        ( ) ( ) 1 2
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A.2) The function ( )σ ⋅  satisfies sector conditions:                                       
                         TT

t t tt Dσ σσ σΛ ≤ Δ Δ� �  
        where                  

                          : tt tx xΔ = −�                            (10)     

              : ( ) ( )t t tx xσ σ σ= −��                  (11) 

       and ,n n
σ

×Λ ℜ∈ n nDσ
×ℜ∈ are known constant          

       positive definite matrices.  
A.3) Admissible controls are bounded, to be precise,  

{ }2: :adm
tU v v v= ≤ < ∞ . Besides, tv  is 

such that does not violate the existence of the solution 
to ODE (6). 

A.4) Unmodeled dynamics is bounded by  
                                 2( , , )

ft tf x v t ηΛΔ ≤      
   where n n

f
×Λ ℜ∈  is a constant positive definite matrix. 

A.5) The matrix W ∗  is bounded in the following sense 
                               1 TW W Wσ

∗ − ∗Λ ≤  
         where n nW ×ℜ∈  is a known positive definite matrix. 
A.6) There exits a strictly positive defined matrix Q0 such  

that if the matrices R and Q are defined as  

                                    
1

0

:

:
fR W

Q Q Dσ

−= + Λ

= +
                       (12) 

       then the following matrix Riccati equation  
                          0TA P PA PRP Q+ + + =            (13) 
   has a positive solution P  (In [15] there are given  

       conditions for matrices A, R and Q which guarantees    
       the existence of P>0).   
It is worth mentioning that the preceding assumptions are 
not unusual. On the contrary, they are generally met for 
physically meaningful dynamic systems and a nuclear 
reactor is not the exception.  

B. Differential neural network 
Consider the neural identifier with the following structure 

                     ( )ˆ ˆ ˆt t t t t
d x Ax W x Bv
dt

σ= + +             (14)     

where n
tx ℜ� ∈  is the state of the neural network and Wt  

n n×ℜ∈  is the weight matrix which is adjusted on-line by a 
learning law to minimize the identification error Δt. The 
neural network (14) can be classified as a Hopfield-type one 
[14]. In spite of its simple structure, the neural network (14) 
is adequate for our purposes since excepting the pulsed 
mode and accidents, the reactor dynamics change relatively 
slowly and therefore it can be sufficiently well approximated 
by the aforementioned neural identifier. In addition, the 
controller design based on this structure is considerably 
simpler. Next, the basic result on the identification process 
of measurable dynamics (6) by the neural network (14) is 
formulated: 
 Theorem 1: If the assumptions A.1-A.6 are satisfied and 

the weight matrix Wt of the neural identifier (14) is adjusted 
by the differential learning law 

                0( ) ,  T
tt tW KP x W Wσ ∗= − Δ =� �          (15) 

where K is a positive definite matrix and P is the solution of 
matrix Riccati equation given by (13) then, the “averaged” 
identification error has the following upper bound  

                   0
0

1limsup
T T
t t

T
Q dt

T
η

→∞
Δ Δ ≤∫               (16) 

  Proof: First, the dynamics of the identification error must 
be determined. From (10), the first derivative of Δt is  

     t t tx xΔ = −
ii i
�                             (17) 

Substituting (14) and (7) into (17) yields  
( )( )tt t t tA W x W x fσ σ∗Δ = Δ + − −Δ� �      (18) 
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Adding and subtracting the term ( )t̂W xσ∗  and taking into 
account equation (11), (18) can be expressed as 

j ( )t ttt tA W x W fσ σ∗Δ = Δ + + −Δ� � �       (19) 
where j :t tW W W ∗= − . On the other hand, the Lyapunov 
function candidate is selected as  

                 j j1: TT
t tt t tV P tr W K W−⎡ ⎤= Δ Δ + ⎢ ⎥⎣ ⎦

         (20) 

The first derivative of  Vt is  
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iii
         (21) 
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i

 is  
given by (15). Consequently,  
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T

T
tt t tttr W K W PW xσ−

⎡ ⎤
⎢ ⎥ = − Δ⎢ ⎥⎢ ⎥⎣ ⎦

i
�         (22) 

Therefore substituting (19), and (22) into (21) yields 
2 2 2T T T

tt t t t t fV PA PW Pσ∗= Δ Δ + Δ − Δ Δ� �  

We need to find an upper bound for tV� . To accomplish this 
task, first we consider the term 2 T

tt PW σ∗Δ � . Since this 
term is an scalar, it is possible to express it alternatively as  

2 T T TT
t tt t ttPW PW W Pσ σ σ∗ ∗ ∗Δ = Δ + Δ� � �  

From assumptions A.2 and A.5 and using the matrix 
inequality proved in [15] 

1T T T TX Y Y X X X Y Y−+ ≤ Γ + Γ          (23) 
which is valid for any , n kX Y ×ℜ∈  and for any positive 
definite matrix 0 ,T n n×< Γ = Γ ℜ∈  2 T

tt PW σ∗Δ �  can be 
bounded by  

2 T T T
tt t t t tPW PWP Dσσ∗Δ ≤ Δ Δ +Δ Δ�         (24) 

Likewise, it is possible to demonstrate that from (23) and 
assumption A.4  

12 T T
t f t f tP P P η−− Δ Δ ≤ Δ Λ Δ +              (25) 

Using (24) and (25) we can find that  tV�   is bounded by  
         2 T T T

t t t t t t tV PA PWP Dσ≤ Δ Δ +Δ Δ +Δ Δ�   
                1T

t f tP P η−+Δ Λ Δ +  

Adding and subtracting 0
T
t tQΔ Δ  into the right-hand side of 

the last inequality, the expression ( )1T
fA P PA P W P−+ + + Λ  

0D Qσ+ +  is formed. However, this expression, in accor-
dance with assumption A.6, is equal to zero. Then 

0
T

t t tV Q η≤ −Δ Δ +�  
Integrating both sides of this inequality from t = 0 up to t = 
T, we obtain  

 0 0 0
0

T T
t t TQ dt V V T V Tη ηΔ Δ ≤ − + ≤ +∫  

Dividing both sides of the last inequality by T yields  

    0
0

0

1 T T
t t

VQ dt
T T

ηΔ Δ ≤ +∫  

Finally, taking lim sup when T → ∞, the conclusion of 
theorem 1 is proved.                                                              

Since we will utilize only the external reactivity tv , the fuel 
temperature Tt and the neutron power nt then 2

tx ℜ∈  and 

tv ∈ ℜ . Because of the different ranges of the values 
associated with each reactor variable, these ones must be 
first normalized (each one is divided by its corresponding 
maximum value). Thus,  

      1, 2,
1 2
,   ,  t t

t t
n Tx x
g g

= =  

where g1 = max(nt), g2 = max(Tt). Such normalization does 
not affect the identification results. Instead, it permits to 
DNN (14) works satisfactorily. On the other hand, according 
to the structure of physical model and for convenience, it is 
reasonable to select B = [1  0]T.  

IV. CONTROL VIA THE NEURAL IDENTIFIER 
In this section, on the basis of the structure provided by the 
neural identifier (14), the control strategy established in [2] 
is implemented. Before presenting the controller two 
additional assumptions must be done: 
A.7) Considering that the reactor output is nt, the relative 

degree of system (6) is 1. 
A.8) System (6) is controllable and its internal dynamics is 

stable.                               
Both assumptions are based on the structure of the physical 
model presented in section II. However, as it will be seen, 
actually none knowledge of the parameters of this model 
will be required to control to the reactor. 

Proposition 2: A control law which achieves the power 
ascent of (6) from an initial level R0 to a desired level R1 (R1 
> R0 ) constrained to (5) in a minimum time is given by 
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a11 and a12 are elements of the matrix A, 11

tW  and 12
tW   

are elements of the matrix tW , and c is a positive constant. 
 Proof: As it was established in [2], during the transient 
stage, the instantaneous period of the reactor must be 
maintained equal to minimum allowable period to achieve 
the change of the power in a minimum time, that is, 

  mintτ τ ∗=  
but in accordance with the definition of instantaneous period 
(4), we can obtain 
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x
x τ ∗=�                               (29) 

The key question is how to find 1,tv  such that (29) is 

guaranteed. Notice that system (6) can be represented 
alternatively as 

( )t t t t t tx Ax W x Bvσ δ= + + +�        (30) 
where δt is the modeling error. Considering that B=[1  0]T  
and in accordance with (30), the first component of  tx�  is 

( )
( )

11
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12
2 2, 1,

t t t t t

t t t t

x a x a x W x

W x v

σ

σ δ
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+ + +

�
     (31) 

Substituting (31) into (29) and after some algebraic 
operations, we can obtain  

( )

( )

1, 11
11 1, 12 2, 1 1,

min
12

2 2, 1,  

t
t t t t t

t t t

x
v a x a x W x

W x

σ
τ

σ δ

∗= − − −

− −
    (32) 

Now we must find an expression for δ1,t. Since δt is 
continuously being minimized by the learning law (15), it is 
reasonable to consider that ( , , )t t tf x v tδ ≤ Δ  (in other 
case, to use (14) would be meaningless). But, in accordance 
with A.4, ( , , )t tf x v tΔ  is bounded and consequently δt is 
also bounded. If (14) is subtracted from (30) then δt is given 
by  

( ) ( ) ( ){ }ˆ ˆ t tt t t t t tA x x W x x x xδ σ σ= − + − + −
ii
�  

 
and in particular the first component of δt that is, δ1,t can be 
expressed as 

( ) ( )
( ) ( ){ }

( ) ( ){ }

1, 11 1, 1, 12 2, 2,

11
1 1, 1 1,

12
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t t t

t tt t t

a x x a x x

W x x

W x x x x

δ

σ σ

σ σ
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+ −

+ − + −
ii
�

   (33) 

Since τt is available for measurement, 

x1,t can be 

calculated using (4) and consequently δ1,t can be completely 
determined. Finally, if (33) is substituted into (32) then (27) 
can be deduced. On the other hand, when the desired power 
level R1 is attained, the control action is switched to a 
regulation stage. The regulation error is defined as 

1, 1t te x R= −                              (34) 

Now, the idea is to maintain the following error dynamics  
                                   0t te ce+ =�                               (35)     

Differentiating (34) yields 
                                    1,t te x=� �                                  (36) 

But if (33) is substituted into (31) and next (36) is 
substituted into (35), after some algebraic operations, finally 
(28) is obtained. Thus, whenever c > 0 the asymptotic 
stability of the regulation error can be guaranteed.               

V. SIMULATION RESULTS 
In this section, the identification and control process 
proposed in this work is illustrated by simulation. Instead of 
the real plant, an eighth order model of a TRIGA reactor is 
used with the nominal parameters given in section II. During 
the simulation, such model is, in reality, considered as a 
black box since apart from the assumptions on the stability, 
controllability and relative degree equal to 1, none previous 
knowledge of this model is required to achieve satisfactorily 
the control process. Due to, in real situations, variables such 
as the ith group delayed neutron precursor power are not 
available for measurement, here the identification is 
accomplished by a single layer second order DNN using 
only the external reactivity, the fuel temperature and the 
neutron power. The main parameters of the neural identifier 
(14) are selected as follows: 
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The variables nt and Tt are normalized by g1=1000000W and 
g2=122.55 °C, respectively. The constant c is selected equal 
to 40. The results of the control process are displayed in Fig. 
1-2. In Fig. 1 it can be observed that the neutron power is 
increased first from an initial level of 10 kW to 100kW and 
later from 100kW to 1MW. Because the ample range of 
variation, a logarithmic scale is employed. As it can be 
clearly appreciated (Fig. 1), a constant period is obtained 
during the transient stages and no overshoot occurs. In Fig. 
2, it is showed the control signal which is in general smooth. 
Finally, in Fig. 3, the components of the weight matrix are 
presented.  

VI. CONCLUSIONS 
In this work, it has been presented the application of an 
indirect adaptive controller based on a single layer second 
order DNN to solve the power ascent problem of a nuclear 
research reactor when only the external reactivity, neutron 
power and fuel temperature are available for measurement. 
The developed controller has a relatively simple structure. In 
addition, the tuning of the identifier-controller parameters 
can be accomplished quickly and easily. To verify its 
effectiveness, this controller was tested by simulation. 
Instead of the real plant, an eighth order nonlinear model of 
a TRIGA reactor considered as a black box was used. The 
simulation results confirm the workability of the suggested 
approach. 
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Fig. 1.  Control process result for power ascent. 
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Fig. 2.  The control signal vt (external reactivity). 
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Fig 3.  Time evolution of the components of the weight matrix Wt. 
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