
  

  

Abstract—This paper examines the online estimation of 
onroad vehicles’ mass.  It classifies existing estimators based on 
the dynamics they use for estimation and whether they are 
event-seeking or averaging.  It then proposes an algorithm 
comparable to this literature in accuracy and speed, but unique 
in its minimal instrumentation needs and ability to provide 
conservative mass error estimates, in the 3σ sense.  The 
algorithm builds on the simple idea, inspired by perturbation 
theory, that inertial dynamics dominate vehicle motion over 
certain types of maneuvers.  A supervisory algorithm searches 
for those maneuvers, and feeds the resulting filtered data into a 
recursive least squares-based mass estimator and conservative 
mass error estimator.  Both simulation and field data 
demonstrate the viability of the resulting approach.  
 
Keywords: mass estimation, singular perturbation 
theory, recursive least squares, supervisory data 
extraction 

I. INTRODUCTION 
ROUND vehicle accidents annually kill at least 40,000 
Americans and injure 2.8 million more [1].  They are 
the leading killer for 2- to 33-year old civilians [1], and 

a recognized fatal threat to troops and peacekeepers as well 
[2].  They cost America $230.6 billion in the year 2000 
alone. 
 The past few decades have seen concerted efforts to 
improve vehicle safety.  These efforts have revolutionized 
automotive safety technologies, but progress in road safety 
has not been commensurate [3].  Factors explaining this 
discrepancy include increased traffic, increased road speeds, 
and a certain degree of risk compensation, perhaps to the 
extent of homeostasis, via behavioral feedback [3].  This 
implies that further technology leaps will be needed for 
making roads safer as they become more congested, vehicles 
become larger and more powerful, and drivers possibly 
become more aggressive.  
 Active safety technologies appear slated to spawn 
significant improvements in road safety in the coming years.  
One particularly promising active safety technology is 
electronic stability control.  It has the potential to increase 
drivers’ likelihood to maintain control of their vehicles 
during aggressive maneuvers by as much as 34% [4].  This 
may reduce sedan and SUV rollover likelihoods in single-
vehicle accidents by up to 71% and 84%, respectively [5].  
The resulting safety gains may be enormous, since rollovers 
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account for 62% of all deaths in SUV accidents [6].  For 
these reasons, new American legislation mandates electronic 
stability control on all vehicles heavier than 10,000lb by 
2009, and on all other vehicles by 2012.  Similar mandates 
have been legislated in Europe and other parts of the world 
[7].  
 The viability of an active safety controller depends on the 
accuracy of the vehicle model used in designing it.  This 
makes active safety system calibration challenging for 
vehicles with highly variable loads, such as trucks and 
SUVs.  Calibration to nominal loading may compromise 
safety at high loads, while calibration to maximal loading 
may visibly penalize handling at lower loads.  This 
necessitates adapting active safety systems to variations in 
loading.  Such adaptation requires the online estimation of 
inertial parameters, especially mass and c.g. height.  This 
paper focuses on mass estimation.  A following paper will 
address c.g. height estimation.   
 The literature presents many excellent mass estimators, 
but few vehicles outside the pricier market sectors 
incorporate them.  There are important practical needs that a 
mass estimator should meet to be viable, especially for 
economy-priced vehicles.  It should, for instance, be:  

• Simple enough to run in real time despite onboard 
processing limitations;  

• Accurate enough to estimate mass within, say, 3-
5%;  

• Fast enough to detect changes in a vehicle’s 
loading shortly after it is started and driven onto the 
road;  

• Reliable enough to operate successfully despite 
instrumentation failures;  

• Robust to road disturbances (e.g., road grade) and 
variations in vehicle dynamics (e.g., drag);  

• Capable of estimating not only vehicle mass, but 
also error bounds on this mass, in the 3σ sense; 
and,  

• Inexpensive enough to penetrate the economy-
priced vehicle market.  This often translates into a 
minimal instrumentation requirement.  

With these requirements in mind, this paper begins by 
surveying the many vehicle mass estimation algorithms 
described by the literature (Section II).  These algorithms are 
broadly classified based on whether they are event-seeking 
or averaging, and also based on the vehicle dynamics they 
utilize for mass estimation.  None of these algorithms are 
found to satisfy all of the above requirements 
simultaneously.  Furthermore, a closer examination of two 
particular averaging algorithms that utilize longitudinal 
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dynamics for mass estimation reveals that the absence of 
road grade measurements can significantly penalize 
estimation speeds (Section III).  To address this difficulty, 
we use simple ideas from perturbation theory to reveal the 
existence of a range of vehicle states and excitation 
frequencies over which inertial effects dominate longitudinal 
vehicle dynamics (Section IV).  Using this key idea, we 
construct a novel mass estimator that combines supervisory 
data extraction with recursive least squares to estimate both 
vehicle mass and mass error, in the 3σ sense (Section V).  
The viability of this estimator is demonstrated both in 
simulation and using field test data (Section VI).  Finally, 
the paper presents a discussion of these results plus some 
conclusions (Section VII).   

II. SURVEY OF MASS ESTIMATION LITERATURE 

The literature presents many algorithms for online vehicle 
mass estimation.  We classify these algorithms based on 
whether they are event-seeking or averaging.  An averaging 
algorithm is one that continuously updates its mass estimate 
based on measurements of certain vehicle inputs and 
outputs.  Event-seeking algorithms, in contrast, continuously 
monitor vehicle motion for events – such as very sharp 
accelerations – that conduce to mass estimation, and only 
estimate mass during such events.  We also classify the 
published mass estimation solutions based on the dynamics 
they use for such estimation.  In particular, the literature 
presents algorithms for mass estimation based on suspension 
dynamics, lateral/yaw dynamics, powertrain dynamics, and 
longitudinal dynamics.  Each of these categories is reviewed 
briefly below.  

• Suspension dynamics: Since vehicle mass directly 
affects vertical suspension deflections, the 
availability of suspension sensors such as LVDTs 
provides an excellent opportunity for mass 
estimation.  Rajamani and Hedrick capitalize on 
this fact in developing adaptive observers for 
estimating both suspension states and parameters, 
including vehicle mass [8].  Furthermore, Kim and 
Ro demonstrate the viability of quarter-car 
suspension models as bases for such estimation [9].  
Both papers adopt an averaging approach to mass 
estimation.  

• Lateral/yaw dynamics: The mass of a vehicle 
directly affects the relationship between its lateral 
accelerations and the forces (e.g., due to banking, 
steering, etc.) causing them.  Both Best and Gordon 
[10] and Wenzel et al. [11] capitalize on this fact in 
developing extended Kalman filters that estimate 
both vehicle states (e.g., yaw rate) and parameters 
(including mass) from lateral motion 
measurements.  This is an averaging approach.  

• Powertrain dynamics: The first natural frequency 
– also known as the shuffle frequency – of a 
vehicle’s cardan shaft depends directly on the 
vehicle’s mass.  Fremd [12] creatively capitalizes 
on this fact in proposing an averaging mass 

estimator whose input is a direct measurement of 
this shuffle frequency.  

• Longitudinal dynamics – averaging methods: 
The mass of a vehicle directly affects the 
relationship between the net longitudinal force on 
the vehicle and its longitudinal acceleration.  Many 
researchers capitalize on this simple fact in 
proposing vehicle mass estimators.  Bae et al. , for 
instance, propose an averaging recursive least 
squares estimator that utilizes longitudinal force, 
acceleration, and GPS-based road grade 
measurements to determine vehicle mass and 
aerodynamic drag [13].  Grieser proposes a similar 
averaging estimator in which aerodynamic drag 
forces are simulated online and subtracted from 
force measurements, rather than estimated [14].  
Vahidi et al.  propose a similar averaging estimator 
that does not require road grade measurements and 
estimates vehicle mass, drag, and road grade 
simultaneously using minimal instruments [15-17].  
The algorithm accommodates the time-varying 
nature of aerodynamic drag and road grade through 
multi-rate forgetting [15-17].  Finally, Winstead 
and Kolmanovsky propose an extended Kalman 
filter that estimates both longitudinal vehicle states 
and parameters (including mass) for adaptive cruise 
control [18].  

• Longitudinal dynamics – event-seeking 
methods: Sharp longitudinal accelerations and 
decelerations excite a vehicle’s mass significantly, 
thereby making this mass easier to estimate.  With 
this in mind, Breen proposes using sharp controlled 
accelerations and decelerations as part of an event-
seeking mass estimation method [19].  Similarly, 
Klatt proposes to estimate vehicle mass specifically 
during the sharp accelerations and decelerations 
introduced by gear shifting [20].  Reiner et al. 
propose a similar mass estimator that explicitly 
compensates for wheel inertia [21].  Further 
interesting extensions of this event-seeking 
approach are proposed by Genise [22], Zhu et al. 
[23-24], and Bellinger et al. [25].  

Given the wealth and depth of the above literature, one 
may wonder why many commercial vehicles have yet to be 
equipped with online mass estimation.  A full examination 
of this question is beyond the scope of this paper, which 
briefly highlights some key limitations of this literature 
instead.  Many of the above estimation algorithms require 
sensors that may be too expensive for economy-priced cars.  
Shuffle frequency sensors, for example, may not be 
available on all cars due to their cost.  Similarly, suspension 
stroke sensors may also be too expensive for economy-
priced cars, especially since every tractor and trailer in an 
articulated vehicle must be equipped with them in order for 
total vehicle mass to be estimated.  Event-seeking estimators 
are often susceptible to noise during the events used for 
mass estimation.  They are also often vehicle-specific.  A 
mass estimator that targets gear shift events as a basis for 
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estimation, for instance, may not be applicable in vehicles 
with continuously variable transmissions.  Estimating 
vehicle mass by correlating longitudinal or lateral forces and 
accelerations through an averaging algorithm (e.g., recursive 
least squares or extended Kalman filtering) is promising.  
However, one must keep in mind that the total longitudinal 
or lateral force acting on a vehicle is influenced not only by 
inertial effects, but also by road banking/grade, aerodynamic 
drag, etc.  This leads to an important question: can vehicle 
mass be estimated without direct measurement of road 
grade and aerodynamic drag?  To answer this question, 
Section III compares two mass estimators that utilize 
averaging and longitudinal dynamics for estimation, namely, 
Vahidi et al.’s algorithm [15-17] and Bae et al.’s algorithm 
[13].  The former estimates road grade and accommodates 
for its variation through multi-rate forgetting, while the latter 
measures road grade directly.  

III. INFLUENCE OF ROAD GRADE MEASUREMENTS ON MASS 
ESTIMATION 

Figure 1 examines the problem of estimating the mass of 
a generic sport utility vehicle (from CarSim [26]) using the 
algorithms by Vahidi et al. (labeled: RLS-MFF) and Bae et 
al. (labeled: RLS with GPS).  It shows the mass estimates 
based on these two algorithms, plus the vehicle’s true mass 
and ±500 lb bounds on this mass.  In implementing these 
algorithms, we manually tuned the forgetting factors in 
Vahidi et al.’s algorithm to furnish near-optimal results.  We 
also simulated ideal noise-free sensors for all measured 
quantities.  The vehicle follows a standard FTP-72 velocity 
profile, as shown in Figure 2.a.  Very small road grades are 
imparted on the vehicle through the terrain profile in Figure 
2.b. 

 
Figure 1: Mass Estimation Comparison 

 
Figure 2: Inputs for Estimator Comparison 

As Figure 1 shows, both Vahidi et al.’s and Bae et al.’s 
algorithms gradually converge towards the correct vehicle 
mass range.  The convergence is generally faster, however, 
when direct road grade measurements are available through, 
say, GPS sensors.  In other words, the absence of road grade 
measurements can significantly affect the speed of vehicle 
mass estimation.  This raises an interesting question, 
namely, is it possible to eliminate road grade from the 
vehicle mass estimation problem?  In other words, is it 
possible to estimate vehicle mass without measuring or 
estimating road grade?  Section IV addresses this question in 
depth. 

IV. RELATIVE DOMINANCE OF INERTIAL, DRAG, AND ROAD 
GRADE FORCES 

Figure 3 compares the power spectral densities of the 
various forces acting on the vehicle examined in Section III 
for the maneuver in Figure 2.   
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Examination of Figure 3 shows that inertial forces 

dominate longitudinal vehicle dynamics, and hence almost 
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equal the difference between the engine and brake forces, 
over almost all frequencies.  Drag, road grade-induced, and 
rolling resistance forces only affect vehicle dynamics at low 
frequencies.  To gain further insight into these observations, 
consider the following simple longitudinal vehicle dynamics 
model: 

21 sin cos
2

x e b d d x rmv F F A C v mg mgfρ ς ς
•

= − − − −    (1)  

In this equation, m  denotes the mass of the vehicle and xv  
denotes its longitudinal velocity.  The net longitudinal force 
acting on the vehicle equals the effective engine force at the 
wheels, eF , minus the effective braking force at the wheels, 

bF , the aerodynamic drag force, the road grade-induced 
longitudinal force, and the rolling resistance force.  
Aerodynamic drag is expressed in terms of air density, ρ , 
effective frontal area, dA , a drag coefficient, dC , and 
longitudinal vehicle velocity squared.  Both the rolling 
resistance force and the road grade-induced force depend on 
the vehicle’s mass, the acceleration of gravity, g , and the 
road grade angle, ς .  Finally, total rolling resistance is 
assumed to be a constant fraction, rf , of vehicle weight.  
Linearizing Equation (1) for very small deviations around a 
constant velocity and constant road grade furnishes: 

cos sin
x e b d d x x

r

m v F F A C v v
mg mgf

δ δ δ ρ δ
ςδς ςδς

•

= − −
− +

         (2) 

where the symbol δ denotes a small deviation in a given 
quantity.  Now suppose that the velocity deviation, xvδ , is a 
sinusoidal function of time with some frequency ω .  Then, 
using the Bachman-Landau order symbols [27], we find 
that: 

2( )
( )

x
x d d x x

d d x x

m v O m v A C v v
A C v v O

δ ω δ ρ δ
ρ δ ω

•
•⎫⎪= ⇒ >>⎬

= ⎪⎭
    (3) 

where the order symbols are defined in the limit as ω ↑ ∞ .  
In other words, we conclude that inertial effects dominate 
Equation (2) vis-à-vis aerodynamic drag at infinitely 
increasing frequencies.  This is a very intuitive result, but 
the Bachman-Landau order symbols and the broader theory 
of singular perturbations provide it with some mathematical 
grounding [27].  Furthermore, suppose that road grade 
deviations, δς ,  diminish more rapidly as ω ↑ ∞  than 
velocity deviations, xvδ , i.e., xvδς δ<< .  Then we conclude 
that inertial dynamics will dominate the longitudinal 
behavior of the given vehicle at increasing frequencies.  This 
simple idea is the foundation for the mass estimation 
algorithm in Section V. 

V. PROPOSED MASS AND MASS ERROR ESTIMATION 
ALGORITHMS 

The proposed mass estimator builds on the simple 
proposition that when vehicle motion is predominantly 
longitudinal, the high-frequency component of that motion 
obeys: 

x e bm v F Fδ δ δ
•

= −                 (4) 

Equation (4) is a singularly perturbed version of Equation 
(2), valid only in the limit as ω ↑ ∞ .  The proposed 
estimator explicitly searches for conditions under which 
Equation (4) is approximately valid, then uses Equation (4) 
as a basis for mass estimation. Specifically, mass estimation 
proceeds in five steps: 

Step 1: At every estimation time step, measure/obtain the 
following quantities: 

1. Longitudinal acceleration, /xdv dt , using an 
onboard accelerometer; 

2. Vehicle yaw rate, obtained from a yaw rate sensor; 
3. An estimate of the total longitudinal engine and 

braking force acting on the vehicle, e bF F− , 
available from the vehicle’s electronic control units 
(ECUs);   

4. An estimate of vehicle velocity, xv , obtained from 
its wheel speed sensors; and,   

5. An estimate of tire slip ratios, obtained from the 
vehicle’s electronic stability controller.  

Step 2: Use a fuzzy supervisor to determine whether the 
vehicle’s motion is significant, and predominantly 
longitudinal.  Specifically, test to make sure that:  

1. The vehicle’s yaw rate is less than 1 degree/sec; 
2. Vehicle acceleration exceeds 1 m/s2; 
3. Vehicle velocity exceeds 10 km/h;  
4. Wheel slip ratios do not exceed 0.05; and, 
5. The net longitudinal force exerted by the engine 

and brakes on the vehicle (estimated by the 
vehicle’s ECUs) exceeds 500N.  

These conditions do not provide a rigorous definition of 
“significant, predominantly longitudinal” motion.  They do, 
however, act as a potentially trainable/tunable supervisor for 
the proposed mass estimator.  This supervisor can be strict, 
in the sense of only allowing mass estimation to proceed if 
the above rules are met exactly.  Alternatively, it can be 
implemented as a fuzzy supervisor which gradually switches 
mass estimation off based on proximity to the above rules.  

Step 3: Use a simple lead-lag band-pass filter to extract the 
high-frequency components of the vehicle acceleration and 
longitudinal force signals, while attenuating measurement 
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noise.  Denote those high-frequency force and acceleration 
components by * *

e bF F−  and *
xa , respectively.  

Step 4: Assuming that * * *
e b xF F ma− = , use the recursive 

least squares algorithm [28] to estimate vehicle mass.  

Step 5: Estimate the variance of the mass estimate as 
follows [see 28 for justification]: 

2
2

* 2
,( )M

x i
i

a
σσ =

∑
                 (5) 

In this equation, 2
Mσ  denotes the predicted variance of the 

mass estimate.  Using this variance, one can provide 
conservative mass error bounds, in the 3 Mσ±  sense.  The 
quantity *

,x ia  denotes the filtered longitudinal acceleration 
measurement for some time step i , and the denominator of 
Equation (5) squares this quantity at every estimation time 
step and sums the result over time.  The numerator, 2σ , of 
Equation (5) denotes the variance of the effective 
longitudinal engine and brake force measurement/estimation 
process.  The standard recursive least squares algorithm 
provides means for computing this quantity [28], but in this 
work, we assume that an upper bound on this sensor error 
variance is known a priori.  We use this upper bound in 
computing mass estimation error, thereby obtaining a 
conservative mass error estimate.  

This concludes the description of the mass and mass error 
estimators.  Section IV demonstrates these estimators’ 
viability. 

VI. MASS ESTIMATION CASE STUDIES 
Figure 1 compares the proposed mass estimation 

algorithm to Bae et al.’s and Vahidi et al.’s algorithms.  The 
proposed algorithm’s mass estimate (without error bounds) 
is labeled: “Band-Pass Filter”.  It converges to the ±500lb 
error range faster than the estimates based on Bae et al.’s 
and Vahidi et al.’s algorithms.  This is quite encouraging if 
one considers the fact that Bae et al.’s algorithm, in 
particular, assumes the availability of GPS-based road grade 
measurements, whereas the proposed algorithm does not.  A 
key strength of the proposed algorithm is that it filters road 
grade effects out, thereby eliminating the need for 
measurements or estimates of road grade.  To see this, 
examine Figures 4-6 below. 

 
Figure 4: Raw Force and Inertial Force 

Measurements, Chrysler Proving Grounds 

 
Figure 5: Filtered Force and Inertial Force 

Measurements, Chrysler Proving Grounds 

 
 

Figure 6: Mass Estimation Results, Chrysler Proving 
Grounds 

Figures 4-6 were generated using experimental data 
obtained from an instrumented SUV tested in the Chrysler 
Proving Grounds (Chelsea, MI).  Figure 4 plots the vehicle’s 
measured acceleration multiplied by its true mass vis-à-vis 
its net wheel force.  Clearly, these two quantities do not 
match, because a significant portion of wheel force 
compensates for aerodynamic drag, road grade loads, rolling 
resistance, etc.  Figure 5, in comparison, plots the vehicle’s 
filtered net longitudinal wheel force vis-à-vis the vehicle’s 
true mass multiplied by its filtered acceleration.  These 
filtered force and acceleration quantities were obtained 
using Steps 1-3 in the proposed estimation algorithm.  The 
fact that they clearly match one another demonstrates the 
viability of the algorithm.  Finally, Figure 6 plots the 
estimated vehicle mass and its upper and lower bounds 
versus time.  The mass estimate converges very quickly to 
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an accurate value, but the upper and lower bounds do not 
converge nearly as fast.  This reflects the fact that the upper 
and lower bounds are quite conservative.  Thus, we have 
succeeded in developing a mass estimator that converges 
quickly and accurately to vehicle mass, but simultaneously 
provides very conservative upper and lower error bounds on 
this mass.  Those upper and lower bounds are more likely to 
be useful in practical implementation than the mass estimate 
itself. 

VII. DISCUSSION AND CONCLUSIONS 
This paper examines the problem of estimating an onroad 

vehicle’s mass online, in real time, using minimal 
instrumentation.  Such estimation is essential for adaptive 
calibration of active safety control systems.  Such adaptive 
safety controllers can potentially furnish significant 
improvements in vehicle safety – especially at higher loads – 
with minimal compromises in maneuverability at low loads.  
The literature presents many algorithms for vehicle mass 
estimation.  We review them herein, and classify them both 
based on the dynamics they use for mass estimation and 
based on whether they are averaging or event-seeking.  An 
important conclusion from this literature review is that while 
many excellent solutions exist for online vehicle mass 
estimation, few are ideally suited for economy-priced 
vehicles.  In particular, mass estimation based on 
longitudinal dynamics can be challenging in the absence of 
potentially expensive road grade measurement capabilities.  
This paper proposes an alternative approach that builds on 
simple ideas from singular perturbation theory.  Specifically, 
we emphasize the fact that the high-frequency components 
of vehicle dynamics are dominated by simple inertial effects 
when vehicle motion is significant and predominantly 
longitudinal.  We translate these conditions into a fuzzy 
supervisor that focuses only on those components of vehicle 
maneuvers dominated by inertial effects.  Using this 
supervisor in conjunction with recursive least squares results 
in an effective mass estimator plus a conservative mass error 
estimator.  Both simulation and experimental results 
demonstrate the viability of the proposed approach.  

In addition to its important advantages, the proposed 
approach does have some interesting caveats.  First, like 
many other mass estimators, its convergence is dependent on 
persistence of excitation, which in turn typically depends on 
driver aggressiveness.  Benign drivers are less likely than 
aggressive drivers to excite inertial dynamics to the point of 
enabling rapid mass estimation.  While one may argue that 
the need for mass estimation is lessened by benign driving, 
rapid convergence to accurate mass estimates may still be 
desirable even in benign driving.  In such situations, it may 
be necessary to intentionally disturb or dither the given 
vehicle’s dynamics to obtain good mass estimates.  Such 
dithering may provide persistence of excitation guarantees 
that may not exist otherwise.  Secondly, it is interesting to 
note that focusing mass estimation on those frequencies 
where vehicle dynamics are dominated by inertia but sensor 
measurements are still accurate may render the proposed 

estimator particularly vulnerable to powertrain shuffle 
dynamics.  If a vehicle shuffles sufficiently to prevent 
accurate mass estimation using the proposed approach, it 
may be necessary to limit estimation to braking conditions, 
which are not as vulnerable to drivetrain shuffle.  This is an 
interesting implementation caveat that the authors have yet 
to address.  Despite these two caveats, the authors believe 
that the proposed mass estimator addresses many practical 
mass estimation needs, and thus promises to be a potentially 
viable solution for practical applications. 
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