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Abstract— Model predictive control (MPC) is a powerful
technique for optimizing the performance of control systems.
However, the high computational demand in solving optimiza-
tion problem associated with MPC in real-time is a major
obstacle. Recurrent neural networks have various advantages
in solving optimization problems. In this paper, we apply two
recurrent neural network models for MPC based on linear and
quadratic programming formulations. Both neural networks
have good convergence performance and low computational
complexity. A numerical example is provided to illustrate the
effectiveness and efficiency of the proposed methods and show
the different control behaviors of the two neural network
approaches.

I. INTRODUCTION

Model predictive control (MPC), which is more advanced
than the well-known PID-control, has achieved great success
in practical applications in recent decades. One of the key
advantages of MPC is its ability to deal with input and output
constraints; another is that MPC can be naturally applied for
multivariable process control. Because of these advantages,
MPC has been used in numerous industrial applications in
the refining, petrochemical, chemical, pulp, paper, and food
processing industries. Academic interests in MPC started
growing in the late seventies, several publications provide
a good introduction to theoretical and practical issues asso-
ciated with MPC technology [1]-[3].

Most control techniques do not consider the future im-
plication of current control actions. MPC applies on-line
optimization to a system model. By taking the current state
as an initial state, a cost-minimization control strategy is
computed at each sample time, and at the next computation
time interval, the calculation repeated with a new state. The
basic structure of MPC is shown in Fig.1. As the process
model of MPC is usually expressed with linear or quadratic
criterion, MPC problems can be generally formulated as
linear programming or quadratic programming problems. As
a result, they can be solved using solution methods for linear
and quadratic programming problems.

Over years, a variety of numerical methods have been
developed for solving linear and quadratic programming
problems. Compared with traditional numerical methods
for constrained optimization, neural networks have several
advantages: first, they can solve many optimization problems
with time-varying parameters; second, they can handle large-
scale problems with their parallelizable ability; third, they
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Fig. 1. Basic structure of MPC.

can be implemented effectively using VLSI or optical tech-
nologies [4]. Therefore, neural networks can solve optimal
control problems in running times at the orders of magnitude
much faster than the most popular optimization algorithms
executed on general-purpose digital computers. Application
areas of neural networks include, but are not limited to,
system modeling, mathematical programming, associative
memory, combinatorial optimization, pattern recognition and
classification, robotic and process control.

In the past two decades, recurrent neural networks for
optimization and their engineering applications have been
widely investigated. Tank and Hopfield proposed the first
working recurrent neural network implemented on analog
circuits [5], their work inspired many researchers to develop
other neural networks for solving linear and nonlinear opti-
mization problems. By the dual and projection methods, Hu,
Liu, Xia, and Wang developed several neural networks for
solving general linear and quadratic programming problems.
These neural networks have shown good performance in
convergence.

In this paper, we propose two neural network approaches
to the design of MPC by applying two recurrent neural
networks [6] and [7]. Both neural networks have desired
convergence property and relatively lower computational
complexity. A numerical example shows that the proposed
approaches are effective and efficient in MPC controller
design. Furthermore, a comparison was made between the
two neural network approaches.

The rest of this paper is organized as follows. In Section II,
we derive both linear and quadratic formulations for MPC
controller design. In Section III, we present two recurrent
neural network approaches to MPC based on linear and
quadratic programming. In Section IV, we provide a numer-
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ical example to illustrate the performance of the proposed
approaches. Finally, Section V concludes this paper.

II. PROBLEM FORMULATION

Consider the following linear discrete-time system:

x(k + 1) = Ax(k) + Bu(k),
y(k) = Cx(k),

(1)

with the constraints

umin ≤u(k) ≤ umax,

∆umin ≤∆u(k) ≤ ∆umax,

ymin ≤y(k) ≤ ymax,

(2)

which represents the dynamics of the plant under consid-
eration. In (1)-(2), k ≥ 0, x(k) ∈ �n is the state vector,
u(k) ∈ �m is the input vector, and y(k) ∈ �p is the output
vector. umin ≤ umax and ymin ≤ ymax are vectors of upper
and lower bounds.

Model predictive control is a step-by-step optimization
technique: at each sampling time, measure of estimate the
current state, obtain the optimal input vector by solving the
following optimization problem is solved at each time k.

A. Quadratic Programming Formulation

With a quadratic criterion, MPC can be formulated as the
following optimization problem:

min
N∑

j=1

[r(k + j|k) − y(k + j|k)]T Q[r(k + j|k)−

y(k + j|k)] +
Nu−1∑
j=0

∆u(k + j|k)T
R∆u(k + j|k)

s.t. umin ≤ u(k + j|k) ≤ umax, j = 0, ..., Nu − 1;
∆ umin ≤ ∆u(k + j|k) ≤ ∆umax, j = 0, ..., Nu − 1;

ymin ≤ y(k + j|k) ≤ ymax, j = 1, ..., N ;
(3)

where k is the current time step, y(k + j|k) denotes the
predicted output, r(k + j|k) denotes the reference trajectory
of output signal (desired output) at sampling instant k, and
∆u(k + j|k) denotes the input increment, where ∆u(k +
j|k) = u(k + j|k) − u(k − 1 + j|k). Q ∈ �p×p and
R ∈ �m×m are appropriate weighting matrices. N is the
predictive horizon (1 ≤ N ). Nu denote the control horizon
(0 < Nu ≤ N ). After Nu control moves, ∆u(k + j|k)
becomes zero.

According to the process model (1):

y(k + j|k) = CAjx(k) + C

j−1∑
i=0

AiBu(k + j − i − 1|k),

j = 1, ..., N.
(4)

Define following vectors:

ȳ(k) = [y(k + 1|k) · · · y(k + N |k)]T ∈ �Np,

ū(k) = [u(k|k) · · · u(k + Nu − 1|k)]T ∈ �Num,

∆ū(k) = [∆u(k|k) · · · ∆u(k + Nu − 1|k)]T ∈ �Num,

r̄(k) = [r(k + 1|k) · · · r(k + N |k)]T ∈ �Np,

where the reference trajectory r̄(k) is known in advance. The
predicted output ȳ(k) are expressed in the following form:

ȳ(k) = Sx(k) + Mū(k)
= Sx(k) + M∆ū(k) + V u(k − 1),

(5)

where

S = [CA CA2 · · · CAN ]T ∈ �Np×n,

V =




CB
C(A + I)B

...
C(ANu−1 + · · · + A + I)B
C(ANu + · · · + A + I)B

...
C(AN−1 + · · · + A + I)B




∈ �Np×m,

M =




CB . . . 0
C(A + I)B . . . 0

...
. . .

...
C(ANu−1 + ...I)B . . . CB
C(ANu + ...I)B . . . C(A + I)B

...
. . .

...
C(AN−1 + ...I)B . . . C(AN−Nu + ...I)B




,

M ∈ �Np×Num, I denotes the identity matrix. Define
vectors:

∆ūmax = [∆umax · · ·∆umax]T ∈ �Num,

ūmin = [umin · · ·umin]T ∈ �Num,

ūmax = [umin · · ·umax]T ∈ �Num,

H =




I 0 · · · 0
I I · · · 0
...

...
. . .

...
I I I I


 ∈ �Num×Num.

Thus, the optimization problem (3) can be expressed in
the following form:

min [r̄(k) − Sx(k) − M∆ū(k) − V u(k − 1)]T Q[r̄(k)−
Sx(k) − M∆ū(k) − V u(k − 1)] + ∆ūT (k)R∆ū(k)

s.t. ūmin ≤ ū(k) + H∆ū(k) ≤ ūmax

∆ūmin ≤ ∆ū(k) ≤ ∆ūmax

ȳmin ≤ ȳ(k) + M(k)∆ū(k) ≤ ȳmax

(6)

By defining the variable vector v = ∆ū(k) ∈ �Num,
the problem (3) can be rewritten as a standard quadratic
programming problem form:

min
1
2
vT Wv + cT v

s.t. lmin ≤ Gv ≤ lmax

(7)
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where the coefficient matrices and vectors are

lmin = (−∞ ∆ūmin]T ∈ �3Num+2Np,

lmax = [b ∆ūmax]T ∈ �3Num+2Np,

W = 2(MT QM + R) ∈ �Num×Num,

c = −2MT Q(r̄(k) − Sx(k) − V u(k − 1)) ∈ �Num,

E = [−H H − M M ]T ∈ �(2Num+2Np)×Num,

G = [E I]T ∈ �(3Num+2Np)×Num

b =




−ūmin + ū(k)
ūmax − ū(k)
−ȳmin + ȳ(k)
ȳmax − ȳ(k)


 ∈ �2Num+2Np.

The solution to the quadratic programming problem (7)
gives the vector of control action ∆ū(k), which is used
to calculate the optimal input signal. Since the objective
function in is strictly convex (due to W being positive
definite), and the feasible region of linear constraints is a
closed convex set, the solution to the quadratic programming
problem is unique and satisfies the Karush-Kuhn-Tucker
(KKT) optimality conditions [8].

B. Linear Programming Formulation

Although the quadratic criterion is popular and has been
widely used in various MPC applications. Several MPC
algorithms using linear programming have been presented.
For example, Zadeh and Whalen [9] and Propoi [10] in-
troduce the approaches to solve MPC problem based on
linear programming in the early sixties. And some other
authors published their investigation concerning the linear
programming based MPC [11]-[14].

In this section, we formulate MPC as a standard linear
programming problem. With l1 criterion, MPC can be for-
mulated other than (3) as follow:

min
N∑

j=1

Q[r(k + j|k) − y(k + j|k)] +
Nu−1∑
j=0

R∆u(k + j|k)

s.t. umin ≤ u(k + j|k) ≤ umax, j = 0, ..., Nu − 1;
∆ umin ≤ ∆u(k + j|k) ≤ ∆umax, j = 0, ..., Nu − 1;

ymin ≤ y(k + j|k) ≤ ymax, j = 1, ..., N.
(8)

The optimization problem (8) can be further formulated as
a standard linear programming problem using the standard
method [15].

Define the following vectors:

φ(k) = [φ, · · · , φ]T ∈ �Np,

ϕ(k) = [ϕ, · · · , ϕ]T ∈ �Num,

s = [∆ūT (k) φT (k) ϕT (k)]T ∈ �2Num+Np,

that satisfies

−φ(k) ≤ ±Q[r̄(k) − ȳ(k)],
−ϕ(k) ≤ ±R∆ū(k),

(9)

where ± means that the constraints is duplicated for each
sign. The problem (8) can be rewritten in as a standard linear
programming problem:

min fT s

s.t. hmin ≤ Fs ≤ hmax

(10)

where the coefficient matrices and vectors are:

hmin = [lmin Q(r̄(k)−Sx(k)−V u(k−1)) O −∞]T ,

hmax = [lmax ∞ Q(r̄(k) − Sx(k) − V u(k − 1)) O]T ,

hmin, hmin ∈ �(3Nu+2N)m+2Np,

f = [0, · · · , 0, 1, · · · , 1]T ∈ �2Num+Np,

F =




G O O
QM I O
R O I

QM −I O
R O −I




,

F ∈ �[(3Nu+2N)m+2Np]×(2Num+Np),

where O denotes the zero matrix.
As the linear programming problem (10) depends on the

current state x(k) and past input u(k−1), we will introduce
a neural network to solve the problem at each time interval
in the next section.

III. NEURAL NETWORK APPROACHES

In this section, based on the linear and quadratic program-
ming formulations (7) and (10) in the previous section, we
propose two neural network approaches to MPC.

A. Neural Network Model 1

Over years, various neural network models have been
developed for solving quadratic programming problems. In-
cluding the penalty-based neural network [16], the Lagrange
neural network [17],the deterministic annealing network
[18], the primal-dual neural network [19], the dual neural
networks [20]-[22], and the recurrent neural network with a
discontinuous hard-limiting activation function [23].

In particular, Liu and Wang [6] developed a one-layer
recurrent neural network called the simplified dual neural
network for solving quadratic programming problems, which
has showed good performance and lower computational
complexity. In this part of the section, we apply the neural
network for MPC.

Consider (7) as a primal problem, then its dual problem
is:

min −1
2
vT Wv + lTminα − lTmaxβ

s.t. Wv + c − GT α + GT β = 0
(11)

where α ∈ �2Num+2Np, β ∈ �2Num+2Np are dual decision
variables.
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By defining z = α − β, the Karush-Kauhn-Tucker condi-
tion of (7) are:

Wv + c − GT z = 0,

Gv = λ(Gv − z),
(12)

where λ(·) is a piecewise linear function, defined as:

λ(εi) =




lmin, εi < lmin;
εi, lmin ≤ εi ≤ lmax;
lmax, εi > lmax.

(13)

Based on (12) (13), the dynamic equation of neural
network for solving quadratic programming problem (7) can
be described as:
• state equation

ε
dz

dt
= −Gv + λ(Gv − z), (14)

• output equation

v = W−1(GT z − c), (15)

where z ∈ �2Num+2Np is the state vector, ε is a scaling
parameter that control the convergence rate of the neural
network.

According to the convergence analysis in [6], we can
ensure that the proposed neural network is Lyapunov stable
and globally convergent to the optimal solution.

B. Neural Network Model 2

It has been shown that linear programming problems can
also be solved using neural networks [24]-[26]. Recently,
a one-layer recurrent neural network with a discontinuous
hard-limiting activation function for linear programming was
developed [7]. In this paper, we present this neural network
for solving (10).

To apply the neural network model, let us further formulate
(10) as:

min fT s

s.t. bmin ≤ s ≤ bmax

(16)

where
bmin = FT hmin ∈ �Nu(m+1)+N ,

bmax = FT hmax ∈ �Nu(m+1)+N .

According to the KKT conditions, s∗ is an optimal solu-
tion of (16), if and only if there exist a w∗ ∈ �2Num+Np

such that (s∗, w∗) satisfies the following optimality condi-
tions:

f + w = 0,


wi ≥ 0, si = bmax(i);
wi = 0, bmin(i) ≤ si ≤ bmax(i);
wi ≤ 0, si = bmax(i).

(17)

Based on the above conditions, the dynamic equation of
the proposed recurrent neural network model is described as
follows:

ε
ds

dt
= −σg(s) − f, (18)

where ε is a positive scaling constant, σ is a nonnegative
gain parameter. g(·) is a discontinuous activation function,
defined as:

gi(si) =




1, si > bmax(i);
[0,1], si = bmax(i);
0, bmin(i) < si < bmax(i);
[-1,0], si = bmin(i);
−1, si < bmin(i),

(19)

where i = 1, 2, ..., 2Num + Np.
It is proven in [7] that the neural network is globally

convergent to the optimal solution.

C. Control Scheme

The control scheme based on neural networks can be
summarized as follows:

1. Let k = 1. Set terminal time T , sample time t,
predictive horizon N , control horizon Nu, weighting
matrices Q and R.

2. Calculate process model matrices S, V , M , neural
network parameters W , G, f , lmax, lmin, bmax, bmin.

3. Solve the quadratic and linear programming problems
(7) and (10) using the proposed two neural networks,
obtaining the optimal control action ∆ū(k).

4. Calculate the optimal input vector u(k) = ∆u(k|k) +
u(k − 1).

5. If k < T , set k = k + 1, return to step 2; otherwise,
end.

IV. NUMERICAL EXAMPLE

Consider a quadruple-tank process described in [27], the
objective is to control the level of the two lower tanks y1

and y2, using the two pumps u1 and u2. The process model
of the quadruple-tank system is

ẋ1 = − a1

A1

√
2gx1 +

a3

A1

√
2gx3 +

γ1ρ1

A1
u1,

ẋ2 = − a2

A2

√
2gx2 +

a4

A2

√
2gx4 +

γ2ρ2

A2
u2,

ẋ3 = − a3

A3

√
2gx3 +

(1 − γ2)ρ2

A3
u2,

ẋ4 = − a4

A4

√
2gx4 +

(1 − γ1)ρ1

A1
u1,

y1 =ρcx1, y2 = ρcx2,

(20)

where xi is the water level in tank i. Choose the controller
parameters as follows: cross-section of tank A1 = A3 =
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28, A2 = A4 = 32; cross-section of the outlet hole a1 =
a3 = 0.071, a2 = a4 = 0.057; acceleration due to gravity
g = 981; gains ρc = 0.5; the fraction of water flowing to tank
from pump γ1 = 0.7, γ2 = 0.6; prediction horizon N = 10;
control horizon Nu = 2; sampling time t = 1[s]; weighting
matrices Q = I, R = 10I; scaling constant ε = 0.1.

The process model is linearized around the operational
points x1o = 12.4, x2o = 12.7, x3o = 1.8, x4o = 1.4.
Consider input constraints umin = 0, umax = 6; output
constraints ymin = 0, ymax = 7.5.
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NN2

Fig. 2. Output responses in tank 1 of NN1 and NN2
approaches.
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Fig. 3. Output responses in tank 2 of NN1 and NN2
approaches
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Fig. 4. Control signals in tank 1 of NN1 and NN2
approaches.
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Fig. 5. Control signals in tank 2 of NN1 and NN2
approaches.

The simulation results are showed in Figs. 2 - 5. At time
k = 20, a step reference change is commanded in y1. At
the same time a step load disturbance enters in y2. We can
see that both the proposed neural network approaches are ef-
fective, based on the advantages in parallel computation and
hardware implementation of neural networks, the proposed
approaches can solve the problem in real time efficiently.

The neural network controller based on linear program-
ming (NN2) responds faster than the one based on quadratic
programming (NN1). That is because NN2 approach have
less computational cost than NN1 approach. We can conclude
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that the NN2 approach is more suitable for solving control
problems with large size and stringent real-time requirement.
However, using approaches based on linear programming
may result in a poor control performance, which depends
on the the selection of the weighting matrices Q and R [13].

To further demonstrate the advantages of the proposed
approaches, we can compare our approaches with other
neural network approaches to MPC. In [28], a continuous-
time neural network was applied to MPC, but the the con-
trol performance is sacrificed as the approximation strategy
yields a sub-optimal solution; In [29], a discrete-time struc-
tured neural network was proposed to solve the quadratic
programming problem involved in MPC exactly, however,
the architecture of the neural network is more complex
for hardware implementation than both two neural network
approaches proposed in this paper. As a result, the proposed
approaches have good performance and are more suitable for
hardware implementation.

V. CONCLUSION

In this paper, we present two recurrent neural network
approaches to design model predictive controllers based
on both linear and quadratic programming formulations.
Simulation results show that the proposed neural network
approaches are effective and efficient in solving MPC prob-
lems. Furthermore, a comparison between the two neural
network approaches has been made, which shows their
different control behaviors. Finally, we compare the proposed
approaches with some existing neural network approaches to
MPC.
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