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Abstract— This paper studies the problem of output feedback
control for a 2-DOF parallel robot. The dynamics of the
parallel robots are characterized a set of ordinary differen-
tial equations(ODEs). Under the condition of bounded joint
velocities, a linear output dynamic compensator is designed to
guarantee the semi-global exponential stability of the closed-
loop system. The bound of velocity can be made arbitrarily
large by appropriately tuning the observer gain, which leads to
semi-global stability. Simulation results are given to illustrate
the proposed output feedback controller.

I. INTRODUCTION

The mechanisms of parallel robots are also known as

closed kinematic chains. Different from serial robots, parallel

robots have the links connected in series as well as in parallel

combinations forming one or more closed-link loops and

typically not all the joints are actuated. The actuators are

placed closer to the base or on the base itself. This makes par-

allel robots have lighter moving parts, which leads to greater

efficiency and faster acceleration at the end-effector. Parallel

robots also offer greater payload handling capability for the

same number of actuators. Due to these advantages, parallel

robots recently have been receiving growing attention from

both academia and industries [10], [8], [9], [19], [20] and

etc. Fig. 1 shows planar examples of a parallel robot and a

serial robot.

The existing control schemes of parallel robots are all

characterized by a state feedback control, such as pro-

portional integral derivative (PID) control [1], artificial

intelligence-based algorithms [3] and nonlinear control [15].

In [6], the mass and inertia of the links were neglected in the

dynamic model in order to implement the computed-torque

control. A PD plus simple gravity compensation control law

was proposed in [10] for set point control for a planar 2-

DOF parallel robot. In [13], the design for control approach

was employed in the design stage of a parallel robot to find

an appropriate mechanical structure with a simple dynamic

model.

The implementation of the state feedback controllers re-

quire the measurements for all the state variables. The need

for velocity feedback shows the drawback lying in two main

reasons [5]. First, although robotic systems are equipped

with the sensors for velocity measurements, the circumstance

may reduce the dynamic performance of the robotic system

because the approximated velocities are often contaminated
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by the presence of noise [11]. Second, velocity sensors

are frequently omitted due to the savings in cost, volume

and weight [12]. Using the derived velocity signal by first-

order numerical differentiation of the position signal is one

way to bypass the velocity feedback problem. However,

such a simple approximation may be inadequate especially

for relatively high or low velocities [4]. Moreover, with

differentiation, even low levels of noise in position signal

may generate unacceptable large velocity noise [7]. For this

reason, a band-pass filter is necessary for the derived velocity

signal but no systematic approach to the filter design is

established yet. Therefore, there are some literature reported

on the output feedback control design for robotic systems

[14], [21], [2].

Parallel Robot

Serial Robot


Fig. 1. A planar parallel robot and a serial robot

In this paper, we consider the output feedback control of a

2-DOF parallel robot without using the velocity information.

The dynamic model of 2-DOF parallel robot are character-

ized by a set of differential algebraic equations (DAEs)

D′(q′)q̈′ + C ′(q′, q̇′)q̇′ + g′(q′) = u′ (1)

φ(q′) = 0 (2)

where q′ ∈ R4 denotes the vector of generalized coordinates,

D′(q′) ∈ R4×4 is the symmetric positive define inertia

matrix which is bounded for any q′, C ′(q′, q̇′)q̇′ represents

the centrifugal and Coriolis terms, g′(q′) ∈ R4 is the gravity

vector and φ(q′) ∈ R2 is the constraint holonomic constraint.

By eliminating the Lagrangian multipliers originating from

the algebraic constraints, the set of DAEs end up with the

following second order ODE with 2-DOF [10],

D(q′)q̈ + C(q′, q̇′)q̇ + g(q′) = u (3)

where q ∈ R2 denotes the independent generalized coordi-

nates, D(q′) ∈ R2×2, C(q′, q̇′)q̇ ∈ R2×2 and g(q′) ∈ R2.

Based on the resulting ODE model, one linear observer

is built to estimate the joint velocities. Inspired by [17], we
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prove that the following linear output compensator

ξ̇ = Mξ + Ny

v = Kξ (4)

with v = D−1(q′) [u − g(q′)] guarantees that the corre-

sponding closed-loop system is semi-globally exponentially

stable, i.e., by appropriately tuning the designed observer

gain, the attraction region of the velocity variables can be

arbitrarily large.

The rest of the paper is organized as follows. The dynamic

model of the planar 2-DOF parallel robot is presented in next

section. In Section III, a linear output feedback controller

is designed making the closed-loop system semi-globally

exponentially stable. Simulation results are given in Section

IV. Finally the conclusions are drawn in Section V.

II. ROBOT MODEL

A schematic of a planar 2-DOF parallel robot is shown

in Fig. 2, where mi, ai, and li are the mass, length and

distance to the center of mass from the lower joint of link i,
respectively, for i = 1, 2, 3, 4. Ii denotes the mass moment

of inertia of link i. Joints q1 and q2 are actuated while joints

q3 and q4 are passive.
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Fig. 2. A schematic of a planar 2-DOF parallel robot

Recall the dynamic model of DAEs (1)-(2). With the

imposed constraint (2), it follows from the equation (1) that

the resulting dynamic system has 2-DOF and there exist two

independent generalized coordinates q =
[

q1 q2

]T
, such

that the parallel robotic system can be written by a second-

order ODE

D(q′)q̈ + C(q′, q̇′)q̇ + g(q′) = u (5)

q′ = σ(q) (6)

q̇′ = ρ(q)q̇ (7)

where q′ and q̇′ can be expressed analytically by the func-

tions of q and q̇ in (6) and (7) respectively, which can be

found in [10].

Without the constraint (2), consider the dynamic equation

of the serial robot in (1) , which is independent of constraints

and has 4-DOF. It is well-known that (1) is characterized by

the following properties.

Property 1: The inertia matrix, D′(q′), defined in (1)

satisfies the following inequality [18]

d1 ≤ ‖D′(q′)‖ ≤ d2 (8)

where d1 and d2 are known positive scalar constants, ‖·‖
represents the Euclidean norm.

Property 2: The Euclidean norm of C ′(q′, q̇′) satisfies the

inequality [16]

‖C ′(q′, q̇′)‖ ≤ kc ‖q̇
′‖ (9)

where kc is a known positive scalar constant.

In the following content of this section, we will present

the parallel robotic system (5)-(7) has similar properties.

Let z1 = q − qd and z2 = q̇ where qd denotes the desired

set point and (5) is expressed as

ż1 = z2 (10)

ż2 = D−1(q′) [u − C(q′, q̇′)q̇ − g(q′)] (11)

Define the new control input

v = D−1(q′) [u − g(q′)] (12)

and note that the equation (12) is independent of q̇. Then

(10)-(11) can be rewritten as

ż1 = z2 (13)

ż2 = v + φ(z1, z2) (14)

y = z1 (15)

where φ(z1, z2) = −D−1(q′)C(q′, q̇′)q̇ and the output y
represents the position difference to the set point.

From the relationship represented in [10], we have

D(q′) = ρT (q′)D′(q′)ρ(q′) (16)

C(q′, q̇′) = ρT (q′)C ′(q′, q̇′)ρ(q′) (17)

+ρT (q′)D′(q′)ρ̇(q′)

g(q′) = ρT (q′)g′(q′) (18)

where

ρ(q
′

) = ψ−1

q′ (q′)

[
0 0 1 0
0 0 0 1

]T

(19)

ρ̇(q′) = −ψ−1

q′ (q′)ψ̇q′(q′, q̇′)ρ(q′) (20)

ψq′(q
′

) =





ψ(1, 1) ψ(1, 2) ψ(1, 3) ψ(1, 4)
ψ(2, 1) ψ(2, 2) ψ(2, 3) ψ(2, 4)
1 0 0 0
0 1 0 0



 (21)

where ψ(1, 1) = −a1 sin(q1) − a3 sin(q1 + q3), ψ(1, 2) =
a2 sin(q2) + a4 sin(q2 + q4), ψ(1, 3) = −a3 sin(q1 + q3),
ψ(1, 4) = a4 sin(q2+q4), ψ(2, 1) = a1 cos(q1)+a3 cos(q1+
q3), ψ(2, 2) = −a2 cos(q2) − a4 cos(q2 + q4), ψ(2, 3) =
a4 cos(q1+q3), ψ(2, 4) = −a4 cos(q2+q4). For i = 1, 2, 3, 4,

ai are constant parameters.

It is not difficult to observe that the norm of ψq′(q′)
is bounded by known constants and its time derivative of

ψ̇q′(q′, q̇′) is bounded by the linear term of ‖q̇′‖. Hence, by

(19) and (20), ρ(q′) and ρ̇(q′) have the relationship as

cρ1 ≤ ‖ρ(q′)‖ ≤ cρ2

‖ρ̇(q′)‖ ≤ kρ ‖q̇
′‖
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where cρ1, cρ2 and kρ are known positive constants.

The dependent coordinates q3 and q4 are derived from the

geometric relationships (6) and expressed as a function of

q1 and q2. The function σ(q) can be bounded by q’s linear

term, i.e.‖σ(q)‖ ≤ cσ ‖q‖.

With this in mind, recalling Property 1 and Property 2,

(16)-(17) lead to

cD1 ≤ ‖D(q′)‖ ≤ cD2 (22)

‖C(q′, q̇′)‖ ≤ kC ‖q̇‖ (23)

with known constants cD1, cD2 and kC . Therefore,

φ(z1, z2) = −D−1(q′)C(q′, q̇′)q̇ is bounded by z2’s

quadratic term, i.e.

‖φ(z1, z2)‖ ≤ kφ ‖z2‖
2

(24)

with kφ being known constant.

III. OUTPUT FEEDBACK DESIGN

In this section, we are going to show that if the joint

velocities can be bounded by a known constant number, then

a linear output feedback controller can be designed for set

point control of the parallel robot.

Assumption 1: We assume the velocity of the generalized

coordinates q̇ is bounded by a known positive constant

number, i.e.

‖q̇‖ ≤ kv (25)

Note that, under Assumption 1, the bounded condition in

(24) leads to

‖φ(z1, z2)‖ ≤ k ‖z2‖ (26)

with k = kvkφ being a known constant.

Theorem 1: Under Assumption 1, there exists a linear

output feedback controller making the system (13)-(15) semi-

globally exponentially stable.

Proof. The proof consists of two parts. First of all, we

design a linear high-gain observer motivated by [17] by the

boundary condition but not using the information of the

system nonlinearity, i.e φ(z1, z2). This results in an error

dynamics producing a extra term. We then construct an

output controller to take care of the extra term arising from

the observer design. The design procedure is accomplished

by choosing the gain parameters. At last, a linear output

dynamic compensator is obtained, making the closed-loop

system semi-globally exponentially stable.

A. Design of Linear High-Gain Observer

We begin with designing the following linear observer

˙̂z1 = ẑ2 + La(z1 − ẑ1)
˙̂z2 = v + L2b(z1 − ẑ1) (27)

where a > 0, b > 0 and L > 1 is the gain parameter to be

determined later.

Define e1 = z1− ẑ1 and e2 = (z2− ẑ2)/L. Then the error

dynamics is given as

ė1 = −Lae1 + Le2

ė2 = −Lbe1 +
1

L
φ(z1, z2) (28)

or, in a compact form

ė = LAe +

[
0
1

L
φ(z1, z2)

]
(29)

where

e =

[
e1

e2

]
and A =





−a 0 1 0
0 −a 0 1
−b 0 0 0
0 −b 0 0



 .

It is easy to see that A is a Hurwitz matrix. Hence, there

is a positive definite matrix P = PT > 0 such that

AT P + PA = −I

Consider the Lyapunov function V0(e) = 3eT Pe. By

Assumption 1, there is a positive constant number c1, which

is independent of L, such that

V̇0(e) = 3LeT (AT P + PA)e + 6eT P

[
0
1

L
φ(·)

]

≤ −3L ‖e‖
2

+
c1

L
‖e‖ ‖z2‖

Recall that z2 = ẑ2 + Le2. Hence, ‖z2‖ ≤ ‖ẑ2‖+ L ‖e2‖.

With this in mind, it is not difficult to show that

V̇0(e) ≤ −(3L − c1) ‖e‖
2

+
c1

L
‖e‖ ‖ẑ2‖

≤ − (3L − c1) ‖e‖
2

+
c1

2

(
‖e‖

2
+

1

L2
‖ẑ2‖

2

)

≤ −

(
3L −

3

2
c1

)
‖e‖

2
+

c1

2L2
‖ẑ2‖

2

B. Construction of an Output Feedback Controller

Step 1: Construct the Lyapunov function V1(e, z1) =
V0(e) + 1

2
ẑT
1

ẑ1. A straightforward calculation gives

V̇1 ≤ −

(
3L −

3

2
c1

)
‖e‖

2
+

c1

2L2
‖ẑ2‖

2
+ ẑT

1
(ẑ2

+Lae1)

≤ −

(
2L −

3

2
c1

)
‖e‖

2
+

c1

2L2
‖ẑ2‖

2
+ ẑT

1
ẑ2

+
1

4
La2 ‖ẑ1‖

2

Define ξ2 = ẑ2 − ẑ∗
2

with ẑ∗
2

being a virtual controller and

observe that

c1

2L2
‖ẑ2‖

2
≤

c1

L2
‖ξ2‖

2
+

c1

L2
‖ẑ∗

2
‖
2

With this in mind, it follows that

V̇1 ≤ −

(
2L −

3

2
c1

)
‖e‖

2
+ ẑT

1
ẑ2 +

1

4
La2 ‖ẑ1‖

2

+
c1

L2
‖ξ2‖

2
+

c1

L2
‖ẑ∗

2
‖
2
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By choosing the virtual controller

ẑ∗
2

= −Ld1ẑ1 with d1 := 2 +
1

4
a2 (30)

the time derivative V̇1 leads to

V̇1 ≤ −

(
2L −

3

2
c1

)
‖e‖

2
−

(
2L − c1d

2

1

)
‖ẑ1‖

2

+ẑT
1

ξ2 +
c1

L2
‖ξ2‖

2

Step 2: Construct the Lyapunov function V2(e, z1, z2) =
V1(e, z1) + 1

2L2 ξT
2

ξ2. Calculating its time derivative gives

V̇2 ≤ −

(
2L −

3

2
c1

)
‖e‖

2
−

(
2L − c1d

2

1

)
‖ẑ1‖

2
+ ẑT

1
ξ2

+
1

L2
ξT
2

[
v + L2be1 −

∂ẑ∗
2

∂ẑ1

(ẑ2 + Lae1)

]

+
c1

L2
‖ξ2‖

2

Note that

1

L2
ξT
2

(
L2be1 −

∂ẑ∗
2

∂ẑ1

Lae1

)

≤
1

L
(b + ad1)

2 ‖ξ2‖
2

+ L ‖e‖
2

and

ẑT
1

ξ2 ≤ L ‖ẑ1‖
2

+
1

4L
‖ξ2‖

2

Then, we have

V̇2 ≤ −

(
L −

3

2
c1

)
‖e‖

2
−

(
L − c1d

2

1

)
‖ẑ1‖

2

+

[
1

L

(
(b + ad1)

2 +
1

4

)
+

c1

L2

]
‖ξ2‖

2

+
1

L2
ξT
2

[
v + Ld1ξ2 − L2d2

1
ẑ1)

]

It is easy to see that one can design the linear controller

v = L2d2

1
ẑ1 − (L2 + Ld2 + c1)ξ2

= Ld1(Ld1 − 1)ẑ1 − (L2 + Ld2 + c1)ẑ2 (31)

with d2 := (b + ad1)
2 + d1 + 1

4
, such that

V̇2 ≤ −

(
L −

3

2
c1

)
‖e‖

2
−

(
L − c1d

2

1

)
‖ẑ1‖

2
−‖ξ2‖

2
(32)

If we choose the gain constant L > L∗ := max{c1d
2

1
,

3

2
c1}, then the right side of the inequality (32) becomes

negative definite. Note that V2(e, z1, z2) is a positive definite

and proper function which is defined by

V2(e, z1, z2) = 3eT Pe +
1

2
ẑT
1

ẑ1 +
1

2L2
ξT
2

ξ2

Therefore, the closed-loop system is semi-globally exponen-

tially stable. Recall the definition of v in (12), the designed

control input u is

u = D(q′)v + g(q′) (33)

TABLE I

LINK PARAMETERS

Link i mi (kg) ai (m) li (m) Ii (kg·m2)

1 0.1950 0.4600 0.3367 4.567 × 10
−3

2 0.1950 0.4600 0.3367 4.567 × 10
−3

3 0.2538 0.4600 0.2400 8.626 × 10
−3

4 0.2538 0.4600 0.2400 8.626 × 10
−3

Remark 1: With the bound condition (26), c1 is expressed

as c1 = 6 ‖P‖ kvkφ. Hence, the upper bound kv is

kv =
c1

6 ‖P‖ kφ

It is obvious that no matter how large is the upper bound of

q̇, we can always choose the gain

L > L∗ := max{6 ‖P‖ kφkvd2

1
, 9 ‖P‖ kφkv}

such that (32) is negative definite, in other words, the attrac-

tion region can be arbitrarily large. Therefore, the designed

linear output feedback controller guarantees a semi-global

exponential stability.

IV. SIMULATION RESULTS

We now discuss the simulation results for the output

feedback controller in this section. The link parameters

values of the parallel robot are given in Table 1. The distance

between the shafts of the two motors is c = 0.4240 m.

We conduct two sets of simulations to move the parallel

robot between the initial configuration qi to the final config-

uration qf with

qi =

[
900

1000

]
and qf =

[
1500

1600

]
.

The first set and the second set simulations are the set

point control from qi to qf and from qf to qi respectively.

The simulation results are shown in Fig. 3 for the first set

simulation and Fig. 4 for the second set respectively.

In the simulations, the observer gain is chosen as L = 800.

Because there is no prior knowledge about the velocities,

the gain might be firstly chosen as a relatively large number

to guarantee L > L∗. The simulation results show that the

robot completes the motion in one second and achieves the

desired configuration within reasonable tolerances. The per-

formances of the output feedback controller are satisfactory.
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Fig. 3. Simulation results from qi to qf
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Fig. 4. Simulation results from qf to qi

V. CONCLUSIONS AND FUTURE WORKS

We have presented a new output feedback control scheme

for set point control of a planar 2-DOF parallel robot. The

proposed output dynamic compensator is linear and guar-

antees the semi-global exponential stability of the closed-

loop system. The conducted simulations show the proposed

control scheme work well and the results are satisfactory. It

is believed that the similar output feedback control scheme

can also be applied to the tracking control of the parallel

robot.
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