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Abstract— We consider a class of spatially invariant systems
whose coefficients are perturbed by spatially periodic functions.
We analyze changes in transient behavior under the effect
of such perturbations. This is done by performing a spectral
analysis of the state transition operator at every point in time.
Computational complexity is significantly reduced by using
a procedure that captures the influence of the perturbation
on only the largest singular values of the state transition
operator. Furthermore, we show that the problem of computing
corrections of all orders to the maximum singular values
collapses to that of finding the eigenvalues of a set of finite
dimensional matrices. Finally, we demonstrate the predictive
power of this method via an example.

Index Terms— perturbation analysis; spatially periodic sys-
tems; transient response.

I. INTRODUCTION

Perturbation theory of linear operators has been well stud-
ied over the last 50 years starting from the works of Rayleigh
and Schrodinger [1]. It is a tool for efficiently approximating
the influence of small perturbations on different properties of
the unperturbed operator [1], [2]. In this paper, we study the
effect of a special class of perturbations on the eigenvalues
of a set of self-adjoint operators. This class of operators
are in close relation with systems with spatially periodic
coefficients.

Over the last decade, there has been a lot of excitement in
analysis of periodic systems [3]. Systems with periodic co-
efficients in space arise in many important control problems.
Fluid systems controlled by applying periodic body forcing
or by imposing periodic boundary conditions in space are
just an example of such systems [4]. A detailed analysis of
such systems is given in [5]–[7].

It is shown in [7] that frequency response of systems
with periodic coefficients in space takes a bi-infinite form.
The simplest approach towards analysis of such systems is
to approximate the bi-infinite operators using truncation. In
the case where the system is defined in multiple spatial
dimensions, numerical approximations would result in large
matrices whose elements are themselves large matrices.
Therefore the problem transforms into analysis of a large-
scale system with at least several thousand states. From a
computational point of view, the analysis of such systems is
very expensive. Thus the mentioned approach is not efficient
especially when one intends to perform a parametric study.
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In this paper we utilize reduction theory [1], [2] to analyze
the spectral behavior of the state transition operator of the
spatially distributed system. This method allows us to focus
on only the singular values of the state transition operator
that are responsible for the largest transient growth. Thus,
reduction theory effectively helps to collapse the original
infinite dimensional problem to one of finite dimensional
matrices. In [8] reduction theory was used to investigate the
stability properties of marginally stable spatially invariant
systems under spatially periodic perturbations. Reference [8],
differs from this work in that it investigated the effect of
perturbation in the eigenvalues of the A-operator of the
distributed system, as opposed to the singular values of the
state transition operator.

The paper is organized as follows: We highlight the
relevance of perturbation analysis of eigenvalues of certain
self-adjoint operators in § II and give a brief introduction to
reduction theory in § II-A. The main contribution of the paper
is contained in § III where we describe the class of spatially
distributed systems under consideration, their perturbation,
and their frequency domain representation. Reduction theory
is then applied to singular value analysis of these systems.
The theory is demonstrated using an illustrative example
in § IV and we conclude with some remarks in § V.

II. PRELIMINARIES

Consider the spatially distributed system

d
dt
ψ = A0 ψ + B u, φ = C ψ, (1)

where ψ,u, and φ denote the spatio-temporal system state,
input, and output, respectively and A0,B, C are partial dif-
ferential operators. We assume that A0 generates a strongly
continuous semigroup [9], and that the evolution operator is
exponentially stable.

In the analysis of linear systems we are often interested in
certain scalar quantities that capture the system response to
initial conditions and deterministic or stochastic inputs. For
example, a relevant quantity in transient response analysis
is the worst-case amplification of all possible initial condi-
tions as a function of time. Another quantity of interest is
the worst-case steady state gain of harmonic deterministic
inputs. Both these quantities can be obtained by finding the
largest eigenvalues of certain self-adjoint operators. Two such
operators are
• W0(t) = T (t) T (t)∗, where T (t) is the state transition

operator and T (t)∗ is its transpose. In a finite dimen-
sional setting we have T (t) := eA0 t. We will show later
in § IV that the maximum eigenvalue of W0(t) can be
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interpreted as the worst-case amplification of initial con-
ditions at time t. Therefore, its application in transient
response analysis of linear systems is imminent.

• W0(ω) = H(ω)H(ω)∗, where H(ω) is the frequency
response of (1), i.e. H(ω) := C (jω I − A0)−1 B. It is
a standard fact that the maximum eigenvalue of W0(ω)
determines the largest steady-state system gain of a
deterministic input with frequency ω. In fact, the H∞
norm of (1) can be obtained by taking ”sup” over the
maximum eigenvalue of W0(ω).

In both the above cases, we are interested in computing
maximal eigenvalues of W0. Our objective is to develop
a method suitable for computing the effect of a particular
class of perturbations on the eigenvalues of W0. This class
of perturbations is motivated by the structures that arise
in systems with periodic coefficients in space. Following
a brief review of perturbation theory in § II-A, we utilize
these structures to develop more specific results for spatially-
periodic systems in § III.

A. Perturbation theory and reduction process

We consider a self-adjoint operator W0 with eigenvalue λ0

of multiplicity m. Since W0 is self-adjoint, λ0 is semi-simple
meaning that it has a full set of corresponding independent
eigenvectors gi0 where i = 1, 2, . . . ,m. Also consider the
perturbed operator W(ε)

W(ε) = W0 +
∞∑
r= 1

εrWr, 0 < ε < ε0,

where each Wr is a self-adjoint operator itself.
Theorem 2.1: [1], [2] For sufficiently small values of

ε0 and in the case of the above self-adjoint perturbations,
eigenvalues and eigenvectors of W(ε) can be written in the
form of a perturbation series

W(ε) gi(ε) = λi(ε) gi(ε), i = 1, 2, . . . ,m,

λi(ε) = λ0 +
∞∑
r= 1

εr λir, gi(ε) = gi0 +
∞∑
r= 1

εr gir.

(2)
Note that we have accounted for the fact that λ0 may split
into m distinct eigenvalues λi as a result of the perturbation.
By gir and λir we denote the r th order correction to gi and
λi, respectively.

We follow the development of Kato [1] and Baumgartel [2]
to solve for the unknown coefficients in problem (2). The
reduction process gives an iterative procedure for comput-
ing higher order correction coefficients in the perturbation
series (2) for λi.

Let e1, e2, ..., em be the set of orthonormal eigenfunctions
corresponding to λ0 and let L0 be the space spanned by these
eigenfunctions, i.e. L0 := span {e1, e2, ..., em}. Also let P0,
called the eigenprojection of λ0, be the operator that projects
the entire space onto the space L0, i.e., P0 =

∑m
i= 1 ei e

∗
i .

Let S0 be the reduced resolvent operator determined from [2]

(λ I − W0)−1 =
P0

λ − λ0
+

m∑
i= 0

Si+1
0 (λ − λ0)i.

The step by step procedure is given below. Finding each
correction term involves three steps [2].

Notation: By M �N we denote restriction of M to the
space projected by N . In other words, M � N acts on an
element from N X and maps the result back to N X , where
X is the appropriate Hilbert space.
• First order correction:

1) Let P0 be eigenprojection of λ0

2) Define B0 = P0W1 P0.
3) λi1’s are eigenvalues of B0 �P0.

• Second order correction: Repeat the steps from first
order correction with the following modifications

1) If λi1 6= 0, let Qi0 be eigenprojection of λi1.
If λi1 = 0, let Qi0 = P0 from Iteration 1.

2) Define Ci0 = Qi0 (W2 +W1 S0W1)Qi0.
3) λi2’s are eigenvalues of Ci0 �Qi0.

The n-th order correction can be obtained in a similar
way [2].

III. SPECTRUM PERTURBATION OF PERIODIC SYSTEMS

The frequency representation of linear systems with spa-
tially periodic coefficients is completely addressed in [7], [8].
As an example, consider the following system with periodic
coefficients in spatial variable x

∂t ψ(x, t) = A(ε)ψ(x, t),

where A(ε) := A0 + ε (A1 ej Ω x + A−1 e−j Ω x) and
A0,A1, and A−1 denote invariant operators in the x direc-
tion. The spatial frequency representation of this system is
parameterized by θ ∈ [0,Ω) and is given by [7], [8]

∂t ψθ(t) = Aθ(ε)ψθ(t),

where Aθ(ε) := A0θ + εA1θ , and A0θ, and A1θ are bi-
infinite operator-valued matrices.

Note that the spatial wave-number in the x direction, kx,
is determined by kx := θ + nΩ for any pair of (n, θ) where
θ ∈ [0,Ω) and n ∈ Z. We note that as θ and n vary in their
domains, kx assumes all the values in R.

The operators A0θ, and A1θ are determined from

A0θ :=

266666666664

. . .

A0(n− 1)

A0(n)

A0(n + 1)

. . .

377777777775
,

A1θ :=

26666666666664

. . .
. . .

. . . 0 A−1(n) 0

A1(n− 1) 0 A−1(n + 1)

0 A1(n) 0
. . .

. . .
. . .

37777777777775
,

(3)
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with A0(n) := A0(kx = θ + nΩ), A1(n) := A1(kx = θ + nΩ),
and A−1(n) := A−1(kx = θ + nΩ).

Although the frequency representation of these systems
takes a bi-infinite form, the underlying operator-valued ma-
trices have nice structures. For instance, for the case of
the spatially periodic system above, A0θ is block-diagonal
and A1θ has nonzero blocks only on the first upper and
lower sub-diagonals. The C0-semigroup Tθ generated by
Aθ := A0θ + εA1θ satisfies

∂t Tθ = Aθ Tθ, Tθ(0) = I. (4)

Furthermore, for sufficiently small values of ε, Tθ can be
written as the following perturbation series

Tθ = T0θ +
∞∑
r= 1

εr Trθ, 0 < ε� 1,

where the coefficients Trθ can be solved for from the
following set of equations obtained by factoring out terms
with equal powers of ε in (4)

ε0 : ∂t T0θ = A0θ T0θ, T0θ(0) = I,
εr : ∂t Trθ = A0θ Trθ + A1θ Tr−1,θ, Trθ(0) = 0.

Also, one can write Wθ := T ∗θ Tθ := W0θ +
∑∞
r= 1 ε

rWrθ.
By inspection, one sees that matrices Trθ and therefore
Wrθ inherit structures similar to those of A0θ and A1θ. For
instance, W0θ has nonzero blocks only on the main diagonal,
W1θ has nonzero blocks only on the first upper and lower
sub-diagonals, W2θ has nonzero blocks only on the main
diagonal and second upper and lower sub-diagonals and so
on. For notational convenience, we define

W0θ :=

266666666664

. . .

W0,0(n− 1)

W0,0(n)

W0,0(n + 1)

. . .

377777777775
,

W1θ :=

2666666666664

. . .
. . .

. . . 0 W1,−1(n) 0

W1,1(n− 1) 0 W1,−1(n + 1)

0 W1,1(n) 0
. . .

. . .
. . .

3777777777775
,

W2θ :=

2666666666664

. . .
. . .

. . . W2,0(n− 1) 0 W2,−2(n + 1)

0 W2,0(n) 0

W2,2(n− 1) 0 W2,0(n + 1)
. . .

. . .
. . .

3777777777775
,

where Wr,l denotes elements on the l-th subdiagonal of Wrθ.
The structures discussed above can be exploited to a great

extent. It will be shown that general results about correction
coefficients to the eigenvalues of Wθ can be derived. Also,
we show that the problem size can be reduced significantly.
To this end, we first look at the structure of P0θ. Recall
that P0θ is the eigenprojection corresponding to eigenvalue
λ0 of W0θ. In other words, P0θ is the space spanned
by corresponding eigenvectors of λ0. Since W0θ is block-
diagonal, P0θ is also block-diagonal

P0θ :=

2666666664

. . .

P0(n− 1)

P0(n)

P0(n + 1)

. . .

3777777775
.

By looking at the structure of P0θ and W1θ, it is easy to
show the following lemma.

Lemma 3.1: A necessary condition for λi1, the first order
correction to eigenvalue λ0 of W0θ after perturbation, to be
nonzero is that λ0 be an eigenvalue of at least two subsequent
blocks in W0θ.

Proof: Recall from § II-A that λi1 is given by eigen-
values of B0θ �P0θ, where B0θ := P0θW1θ P0θ. But, B0θ

is equal to zero unless P0θ has adjacent nonzero blocks.
Remark 1: The above condition is not sufficient, because

B0θ can be equal to zero even when P0θ satisfies the
mentioned condition.

Example 1: Assume that λ0 has multiplicity m = 2 and
is an eigenvalue of the blocks W0,0(n− 1) and W0,0(n) in
W0θ. Then only the adjacent blocks P0(n−1) and P0(n) in
P0θ are nonzero and we have

B0θ �P0θ =
[

0 B12

B21 0

]
,

B12 := P0(n− 1)W1,−1(n)P0(n),
B21 := P0(n)W1,1(n− 1)P0(n− 1).

Note that tr(B0θ �P0θ) = 0 and therefore, λ1
1 = −λ2

1. Thus,
up to first order of correction, we have

• Case 1: W1,1(n− 1) = (W1,−1(n))∗ = 0;
B0θ �P0θ = 0 ⇒ λ1

1 = λ2
1 = 0.

In other words, λ0 does not split.
• Case 2: W1,1(n− 1) = (W1,−1(n))∗ 6= 0;
λ1

1 = −λ2
1 6= 0.

In other words, λ0 splits into two eigenvalues that move
in opposite directions along the real axis.

Similar results can be obtained for higher order corrections
to the eigenvalues of Wθ. Although the number of terms
present in equations for higher order corrections increase,
the structures remain simple.

Note that the size of B0θ �P0θ is only m times (twice in
the case of Example 1) the size of each of the blocks in the
bi-infinite matrix Wθ.
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Remark 2: In fact, at each iteration level {ε, ε2, · · · } of
the reduction process, the maximum size of the problem is
equal to the size of the constructive blocks of Wθ times
the multiplicity of {λ0, λ

i
1, · · · } in {W0θ,B0θ � P0θ, · · · },

respectively. The problem size can be much smaller when
{B0θ �P0θ, Ci0θ �Qi0θ, · · · } is block-diagonal.

Therefore, by using perturbation analysis, the correction
coefficients to the eigenvalues of Wθ can be obtained by
computing eigenvalues of a set of significantly smaller ma-
trices compared to the the case where eigenvalues of Wθ are
computed after large-scale truncation of Wθ.

IV. EXAMPLE: TRANSIENT RESPONSE ANALYSIS OF A
SPATIALLY PERIODIC SYSTEM

We use the results of § III in the transient response
analysis of an exponentially stable spatially periodic system.
Systems that motivate transient response analysis are non-
normal systems. These systems can have large transient
growth before eventual decay. Consider the following non-
normal system

ψ̇ = Aψ, AA∗ 6= A∗A. (5)

The response of this system to initial condition ψ0 is obtained
by acting the C0-semigroup generated by A on ψ0

ψ(t) = T (t)ψ0.

A relevant quantity to consider in transient response analysis
of (5) is the ratio between the norm of ψ(t) and ψ0 at a fixed
time t

‖ψ(t)‖2

‖ψ0‖2
=

〈ψ(t), ψ(t)〉
〈ψ0, ψ0〉

=
〈ψ0, T ∗(t) T (t)ψ0〉

〈ψ0, ψ0〉
,

sup
ψ0

‖ψ(t)‖2

‖ψ0‖2
= λ1{T ∗(t) T (t)} = σ2

1{T (t)},

where λ1 and σ1 denote the largest eigenvalues and singular
values, respectively.

Therefore, the maximum eigenvalue of W := T ∗(t) T (t)
is equal to the supremum of the ratio between the norm of
the solution at a fixed time t to that of the initial condition
over all initial conditions. In other words, the maximum
eigenvalue of W captures the worst-case amplification of
initial conditions by the linear system at a fixed time t.

Now consider the following spatially periodic system
motivated by channel flow systems. The system has two
distributed states with the following state equations

∂t ψ(x, t) = (A0 + εA1)ψ(x, t), A1 = 2L cos(Ωx),

where

A0 =
[

1
R (∂2

x − c) 0
∂x

1
R (∂2

x − c)

]
, L =

[
0 −1
1 0

]
.

One can think of εA1 ψ as a state feedback control with a
spatially periodic gain. The frequency representation of this

Fig. 1. The maximum eigenvalues of the unperturbed (uncontrolled) matrix
W0(kx) for R = 15, c = 1

system is given in the beginning of § III by

∂t ψθ(t) := Aθ(ε)ψθ(t) = (A0θ + εA1θ)ψθ(t),

A0(n) :=
[
− 1
R ((θ + nΩ)2 + c) 0

j (θ + nΩ) − 1
R ((θ + nΩ)2 + c)

]
,

A1(n) := A−1(n) :=
[

0 −1
1 0

]
, ∀n

We use perturbation analysis of the maximum eigenvalue of
Wθ generated by A0θ + εA1θ in order to analyze the effect
of the control parameter Ω on the transient response of the
system. We verify the perturbation results by computing the
maximum eigenvalues of the truncated Wθ.

Fig. 1 shows the maximum eigenvalues of the unperturbed
matrix W0(kx) for R = 15, c = 1. The horizontal and
vertical axes denote spatial frequency and time, respectively.
We note that the solution, at a fixed frequency, shows
transients as large as 8 times the norm of initial conditions
before eventually decaying to zero. Also, at any given fixed
time, the maximum eigenvalue has multiplicity m = 2.

By choosing Ω for the perturbed system, we sample the
continuous spectrum in kx by samples separated by integer
multiples of Ω (recall that kx := θ + nΩ). Thus, the smaller
the frequency, the finer the sampling grid. In order for us to
be able to analyze the effect of perturbation on the maximum
eigenvalue of W0, we need to make sure that we sample the
frequencies at which these maximum eigenvalues occur when
sampling over kx. This is done by choosing the appropriate
value for θ for any choice of Ω.

We will compare the effect of two choices of Ω on tran-
sient response of the controlled system. Figs. 2(a) and 2(b)
show the maximum eigenvalues of the uncontrolled matrix
given in Fig. 1 with the horizontal axis changed to n instead
of kx to emphasize the sampling. We note that n and samples
of kx (separated by integer multiples of Ω) are equivalent
once the pair (Ω, θ) is specified.

Fig. 2(a) shows the spectrum for (Ω, θ) = (2, 1). We note
that in this case, the maximum eigenvalues (corresponding
to the red regions) occur at n = −1, 0. Therefore, the
eigenprojection matrix of this eigenvalue with multiplicity
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2, has two adjacent nonzero blocks on the main diagonal

Ω = 2

θ = 1
P0θ =

2666666664

. . .
0

P0(n− 1)

P0(n)

0
. . .

3777777775
.

Fig. 2(b) shows the spectrum for (Ω, θ) = (2/3, 1/3).
Note that with a smaller Ω, the maximum eigenvalues (corre-
sponding to the red regions) occur at n = −2, 1. As a result,
in this case, the eigenprojection matrix of this eigenvalue
with multiplicity 2, has two nonzero blocks separated by
two zero blocks on the main diagonal

Ω = 2
3

θ = 1
3

P0θ =

2666666666664

. . .
0

P0(n− 2)

0

0

P0(n + 1)
0

. . .

3777777777775
.

Figs. 3(a) and 3(b) show the results of perturbation anal-
ysis of the maximum eigenvalue for the choices of the
pair (Ω, θ) discussed above. The cumulative sum of the
perturbation series for the maximum eigenvalue up to first,
second, and third order of correction are plotted versus time.
The perturbation parameter, ε, is 0.01. Eigenvalues of the
unperturbed system (zeroth order correction) are also plotted
to show the effect of control on transient response of the
system. Finally, the maximum eigenvalues obtained from
large scale truncation of Wθ are given to compare with the
results obtained by perturbation analysis.

Fig. 3(a) shows the transient response when (Ω, θ) =
(2, 1). We showed earlier that this choice of (Ω, θ) amounts
to eigenprojection of the maximum eigenvalues of the unper-
turbed matrix that has adjacent nonzero blocks. Thus, from
Lemma 3.1, we expect that the control affects the maximum
eigenvalues of the unperturbed operator at the order of ε. The
results shown in Fig. 3(a) agree with the expected response.
First order correction is nonzero and higher order corrections
converge to the results obtained by truncation. We note that
the essential trends in this case are captured by the first order
correction.

Fig. 3(b) shows the transient response for (Ω, θ) =
(2/3, 1/3). It can be seen from Fig. 2(b) that this choice of
(Ω, θ) results in an eigenprojection matrix of the maximum
eigenvalues of the unperturbed matrix that does not have
adjacent nonzero blocks for t < 270. For this range of t,
from Lemma 3.1, we expect to see the effect of control
on the maximum eigenvalues of the unperturbed operator
only at the order of ε2. The results shown in Fig. 3(b) agree
with the expected response. It can be seen that for t < 270,
the first order correction is zero. Higher order corrections
are relatively small and converge to the results obtained by
truncation. Thus, for the selected control amplitude (ε =
0.01), the control does not have significant effect on the

(a)

(b)

Fig. 2. The maximum eigenvalues of the unperturbed (uncontrolled) matrix
W0θ for R = 15, c = 1. (a) (Ω, θ) = (2, 1), (b) (Ω, θ) = (2/3, 1/3).

response of the uncontrolled system. This result is important
since it reveals which perturbation frequencies influence the
uncontrolled system the most.

However, in Fig. 3(b), the type of response seen for
t > 270 is completely different from that of t < 270.
This is due to the fact that for the former range of t,
the maximum eigenvalue of the unperturbed operator has
a different location and occurs at n = −1, 0, see Fig. 2(b).
Therefore, the structure of the problem for this range of t
is similar to that of the case where (Ω, θ) = (2, 1). Thus,
it is not surprising that the type of solution is generically
different. We note that this result is totally non-intuitive
and we were able to explain it due to the predictive power
of perturbation theory even at the level of the first order
correction.

The perturbation results are in perfect agreement with trun-
cation results except for a small range 234 < t < 270. This is
simply the consequence of the fact that we have performed
perturbation analysis only on the maximum eigenvalue of
the unperturbed matrix. In other words, we are tracking the
effect of perturbation only on the maximum eigenvalue of
the unperturbed matrix. I general, there may exist eigenvalues
close to the maximum eigenvalues of the unperturbed matrix
that are influenced more by the perturbation than the larger
(maximum) eigenvalues. This can be specially the case when
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the larger and smaller eigenvalues lead to different structures
in the viewpoint of perturbation analysis. As can be seen in
this example, the maximum eigenvalues of the unperturbed
matrix for 234 < t < 270 still occur at n = −2, 1
and therefore are not affected by the control at the order
of ε. However, for this time interval, the second largest
eigenvalues occur at n = −1, 0 and are thus influenced by the
control at the level of ε. Since the effect of control is increas-
ing these eigenvalues for the perturbed system they result
in the largest eigenvalue, although the largest unperturbed
eigenvalue remains almost unchanged. Therefore perturba-
tion analysis of only the largest eigenvalues cannot capture
transition trends between two sets of largest eigenvalues. Had
we studied the effect of perturbation on the second largest
eigenvalues as well as the maximum eigenvalues, we could
have captured the truncation results by taking the maximum
of the responses obtained by perturbation analysis of the two
sets of largest eigenvalues. In other words, one should make
sure that the non-maximum eigenvalues that are not tracked
are not influenced by the perturbation in a way that become
the maximum eigenvalues of the perturbed matrix.

V. CONCLUDING REMARKS

We used perturbation theory to compute the correction
coefficients for the eigenvalues of certain operators of interest
in the transient response analysis of a class of spatially
periodic systems. We utilized the structure of the frequency
representation of systems with periodic coefficients to de-
velop specific results for the spectral perturbation of these
systems. We showed that the frequency of the perturbation
is of integral importance in the behavior of the perturbed
system.

We showed that the maximum singular value of the state
transition operator at a fixed time can be interpreted as the
worst-case amplification of all possible initial conditions.
In an example, we utilized perturbation theory in order to
find the maximum singular values of the state transition
operator in time. We were able to capture the effect of control
frequency on the system’s transient response.

We showed that this type of analysis significantly reduces
the computational effort. More importantly, by exploiting
structures of the matrices involved in this analysis, one can
get general results and intuitions as to how to select control
parameters (here Ω) that influence the uncontrolled system
the most and predict their effect in a systematic way.
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