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Abstract— We study a motion coordination problem where
the objective is to steer group agents to move as a rigid
body. We treat it as a joint orientation and formation control
problem. We propose desired velocity and design decentralized
feedback laws for each agent such that the rigid formation is
guaranteed. Our design only employs relative information with
respect to neighboring agents, and thus, can be implemented
in a decentralized fashion.

I. I

Cooperative control has been intensively studied during

the past few years. The major focus in cooperative control

is to design decentralized feedback control laws to achieve

prescribed group motions, such as flocking, consensus, ren-

dezvous, etc. [1]–[6].

The flocking algorithms [1], [2], [4], guarantee that all

group agents reach to a common velocity as well as maintain

constant desired relative distances in some inertial frame,

which means that the group exhibits a translational motion.

However, in certain situations, for example, deep-space in-

terferometry missions, the group formation is desirable to

move as a virtual rigid body [7]. The rigid body formation

exhibits both rotational and translational motions, thereby

requiring group agents to have different linear velocities and

to maintain time-varying relative positions with respect to

neighbors in the inertial frame. Such a rigid formation prob-

lem has been addressed by a number of studies. Reference

[8] developed a centralized method to generate trajectories

for group agents such that the rigid formation is preserved.

In [9], a virtual structure approach was introduced, where

each robot is considered as a particle embedded in a rigid

body. The virtual structure approach was extended in [7],

where a unified coordination scheme for formation control

was proposed. Reference [10] considered single integrator

agent dynamics and incorporated consensus scheme into

the coordination architecture in [7] to estimate the group

information. Recent research in [11] used receding horizon

control to stabilize a rigid formation in a cooperative way.

In this paper, we address the 2D rigid formation problem

by exploiting the relationship between the group rigid forma-

tion and the rigid body structure, and propose a decentralized

leader-follower design that guarantees the rigid formation.
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When a rigid body is moving in 2D space, with a body

frame attached, the particles on the rigid body have the

same orientation and angular velocity but different linear

velocities, and their relative positions, although time-varying

in the inertial frame, remain constant in the body frame.

By virtue of this observation, we assign each agent a local

frame (heading), treat the formation of the agents as a virtual

rigid body and the agents as particles on this rigid body.

The orientation of this virtual rigid body is denoted by the

heading of the leader, which is further chosen to be along

the direction of reference velocity. When the headings of all

the agents are aligned and rotate synchronously, each agent

then possesses the information of the orientation of the group

formation, and achieving a desired rigid formation is now

equivalent to steering the relative positions between agents

to some prescribed constant values in their local frames.

Since there is growing literature addressing the heading

(orientation) agreement problem, for example, [13], [14], we

restrict our attention to the formation control part. We draw

on earlier results in [4] [12] and design desired velocity and

decentralized feedback laws for each agent from its local

measurements and information. The feedback laws, derived

from potential function method, together with the proposed

desired velocities, guarantee the convergence to the desired

rigid formation. Unlike existing schemes [7], [10], where

the inertial frame information is available to each agent, our

design only requires the leader to have the inertial frame

information and the other agents to implement the controls

in their local frames.

The subsequent sections are organized as follows: Section

II starts with an introduction of the notation and definitions

used in the paper. We formulate our problem in Section III.

The formation control laws are proposed in Section IV-A and

a special case of quadratic potential function is discussed in

Section IV-B. Design examples are presented in Section V.

II. P

If ω is a scalar, ω̂ denotes the skew-symmetric matrix

ω̂ =

[
0 −ω
ω 0

]
. (1)

Given a vector v ∈ R2, we denote by a pair (rv, θv) the

polar coordinates of v. Then the following relationships are

satisfied:

v = [rv cosθv rv sinθv]T . (2)

For the coordinate frame representation of a vector, the

leading superscript indicates the reference frame while the

subscript i denotes the agent i. The superscript d means
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the desired value. As an illustration, ivd
i

means the desired

velocity of the ith agent in the ith frame. Ip and 0p denote

the p× p identity and zero matrices, respectively. Likewise,

1N denotes the N-vector of ones.

Consider a rigid body moving in 2D space. Assume that

there is an inertial frame E fixed in the space and that a

body-fixed frame B is attached to the point O on the rigid

body, as shown in Figure 1. Suppose that O moves along a

curve with the linear velocity v(t) ∈ R2 and angular velocity

ω(t) ∈ R, both represented in the local frame B. Given an

arbitrary point P in the rigid body with the position vector

r from O in the local frame B, the linear velocity of P, vp,

propagated from O is given by

vp = v+ ω̂r (3)

Fig. 1. Rigid body moving along a curve in the 2D space

III. P F

A. Agent Dynamics and Information flows

Consider N fully actuated agents moving in the plane

with the inertial frame E, where each agent i = 1, · · · ,N is

represented by a vector xi ∈ R2. The dynamics of each agent

is modeled as

ẍi = fi (4)

where fi is the input force of the ith agent. In order for

the group to achieve some task, we choose one agent, say

agent 1, to be the group leader, who has the inertial frame

information. The desired velocity of agent 1 is predesigned

as vd(t) = [vd
x(t) vd

y (t)]T ∈ R2 in E.

The information flows among agents are modeled as

graphs. Throughout the paper, we consider the following two

graphs: position graph and leader graph.
1) Position Graph: If the ith and jth agents have access

to the relative information xi− x j, then the nodes i and j in

the position graph G are connected by a link. To simplify

our notation, we assign an orientation to the graph G by

denoting one of the nodes of each link to be the positive

end. The choice of orientation does not change the results

because the position graph is assumed to be bidirectional

and time-invariant. We further assume that G is connected.

Suppose that M is the total number of links, and recall that

the N ×M incidence matrix D is defined as

dik :=



+1 if the ith node is the positive end of the kth link

−1 if the ith node is the negative end of the kth link

0 otherwise.
(5)

Then zk, the difference variable of link k, is defined as

zk :=

N∑

l=1

dlk xl =

{
xi− x j if the ith node is the positive end

x j− xi if the jth node is the positive end.

(6)

2) Leader Graph: If the jth agent can receive information

from the ith agent, then the ith agent is considered as the

local leader of the jth agent and the nodes i and j in the

leader graph Gℓ are connected by a directional link from i

to j. Hence, the leader graph Gℓ is directed. As we show

later, the information received from the local leader of agent

j is used to design the desired velocity of agent j. Therefore,

each agent i = 2, · · · ,N is restricted to have only one local

leader. We further assume that there is a path from agent 1

to any other agent and that no cycle exists in Gℓ, as shown

in Figure 2.

(a) General leader graph: The local

leaders of the agents are not the
same.

(b) Special leader graph: The group
leader is the local leader of all the
agents.

Fig. 2. Two types of leader graphs: agent 1 is the group leader and there
exists a unique leader for each of the other agents.

B. Virtual Rigid Body Formation

To facilitate our definition of virtual rigid body formation,

we denote the direction of vd(t) by a unit vector T (t). The

direction of T (t), denoted by θT (t), can be considered as the

virtual heading (orientation) of the group formation. Recall

that in a rigid body, the relative positions between any two

points are fixed in the body frame, which implies that if

the agents achieve a rigid formation, the relative positions

between any two agents are invariant in the frame of θT .

Thus, a group of agents is said to converge to a virtual rigid

body formation as in Fig. 3(a) if and only if the following

two conditions are satisfied:

A1) If ith and jth agents are connected by link k, then

the difference variable zk in (6) converges to a prescribed

compact set Bk = {zk | |zk | = dk} ⊂ R2, k = 1, · · · ,M.
A2) The relative angle between T (t) and zk(t) achieves a

constant value γk in the limit; that is, limt→∞ θT − θzk
= γk.

Our objective is to design decentralized control laws such

that the group formation moves as a virtual rigid body, that

is, the conditions A1 and A2 are satisfied. The virtual rigid

body formation distinguishes from the flocking formation,

where the relative positions between neighbors remain time-

invariant in the inertial frame, shown in Fig. 3(b). In the

virtual rigid body formation, however, the N agents maintain

a time-varying geometric relationship in the inertial frame E.
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(a) Rigid formation: All the agents
have different velocities and the
group formation moves as a rigid
body.

(b) Flocking formation: All the
agents have the same velocity and
the group formation translates in the
plane.

Fig. 3. Comparison of rigid body formation and flocking formation: The
formation of three agents are sampled at time constants t1 and t2, t1 < t2.

IV. F C   O A

To achieve A1 and A2, we assign each agent a local frame

Ri, represented by the heading θi ∈ S 1, i = 1, · · · ,N, where

Ri =

(
cosθi −sinθi

sinθi cosθi

)
. (7)

If the agents are considered as point robots, the heading

assignment can be arbitrary. We further let the group leader’s

heading θ1 be the same as the virtue group heading θT (t). It

then follows that

θ̇1 = ω(t) (8)

where

ω(t) =
vd

x(t)v̇d
y (t)− vd

y (t)v̇d
x(t)

‖vd‖2
. (9)

Assumption 1: ω(t), ω̇(t) are continuous and bounded. �

We note that when each agent achieves the same heading

as θ1(t), it keeps a copy of θT (t) information, thereby

simplifying the objective A2 to

lim
t→∞

θi− θzk
= γk, (10)

if the ith agent is the positive end of link k. Since the

agents can obtain the ω(t) information and its local leader’s

heading through Gℓ, the following simple scheme guarantees

the agreement and the synchronous rotation of the headings

θ j’s, j = 1, · · · ,N,

θ̇i = ω− (θi− θL(i)), i = 2, · · · ,N (11)

where L(i) is the local leader of agent i in Gℓ. Due to

significant results in the heading (orientation) agreement

problem, we refer to [5], [13], [14] and references therein

for more robust designs. In particular, when ω(t) and ω̇(t)

is available only to agent 1, [14], [15] presented adaptive

decentralized designs to reconstruct the ω(t) information.

Therefore, to focus on the formation control part, we make

the following assumption:

Assumption 2: ω(t) and ω̇(t) are available to each agent.

The headings of all the agents achieve agreement and rotate

synchronously at the angular velocity ω(t). �

Since the headings of all the agents are synchronized with

θT (t), the objective A1, together with (10), implies that in the

ith frame, the ith agent needs to maintain a desired relative

distance dk and a desired relative bearing γk with respect

to its neighbor of link k. To design fi’s that guarantee these

objectives, we rewrite the agent dynamics (4) in the ith frame

as
i ẍi =

i fi (12)

where i ẍi = RT
i

ẍi and i fi is the applied force to ith agent in

the ith frame. An internal feedback

i fi = −Ki(
i ẋi(t)− ivd

i (t))+ iv̇d
i (t)+ iui+ ω̂

i ẋi, Ki > 0 (13)

where
i ẋi = RT

i ẋi (14)

and a change of variable iξi =
i ẋi(t)− ivd

i
(t) bring the agent

dynamics to be of the form [4, Example 1]

i ẋi =
iξi+

ivd
i (t) (15)

iξ̇i = −Ki
iξi+

iui (16)

where ivd
i
(t) is the desired velocity of the ith agent and iui

is the external feedback from the neighbors of agent i, both

of which are represented in the ith frame. We note that the

design of i fi now becomes the designs of the desired velocity
ivd

i
(t) and the external feedback iui, which are proposed in

the following sections.

A. Formation Control

To specify the leader’s desired velocity 1vd
1
(t) in its own

frame, recall that the leader’s desired velocity in the inertial

frame is vd(t) and that its heading is always along T (t), the

direction of vd(t). It then follows that

1vd
1(t) =

(
‖vd‖

0

)
=



√
(vd

x)2+ (vd
y )2

0

 . (17)

For the other agents, i = 2, · · · ,N, inspired by the velocity

propagation law of rigid body in (3), we propose ivd
i
(t) to be

of the following form

ivd
i (t) = L(i)vd

L(i)(t)+ ω̂
izi,L(i) (18)

where
izi, j =

i(xi− x j) (19)

is the relative position between the ith and the jth agents

represented in the ith frame. The L(i)vd
L(i)

(t) and izi,L(i) infor-

mation in (18) are obtained through Gℓ and G, respectively.

Therefore, the design (18)-(19) requires that Gℓ be a sub-

graph of G.

We now design the external feedback iui. To simplify our

analysis, since all the frames Ri’s are aligned, for each link

k, we let agent k+, k− be the positive and negative end, and

denote by k+zk the relative distance zk measured in the k+th

frame. We note that the objectives A1 and A2 in (10) are

equivalent to regulating the relative distance k+zk such that

lim
t→∞

k+zk =
k+zd

k (20)
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where k+zd
k

is the desired value of k+zk in the k+th frame.

Indeed, the vector k+zd
k

is available from dk in A1 and γk in

(10), and satisfies

k+zd
k =

(
dk cosγk

dk sinγk

)
. (21)

Denoting the desired target set of k+zk by

Ak = {k
+

zk |k
+

zk =
k+zd

k }, k = 1, · · · ,M, (22)

we then propose iui to be of the following form:

iui = −
M∑

k=1

dikψk(k+zk,
k+zd

k ), (23)

where the nonlinearities ψk(k+zk,
k+zd

k
) are of the form

ψk(k+zk,
k+zd

k ) = ∇Pk(k+zk,
k+zd

k ) (24)

in which Pk(k+zk,
k+zd

k
) is a nonnegative C2 potential function

such that

Pk(k+zk,
k+zd

k )→∞ as zk→∞ (25)

Pk(k+zk,
k+zd

k ) = 0 ⇔ zk ∈ Ak (26)

∇Pk(k+zk,
k+zd

k ) = 0 ⇔ zk ∈ Ak. (27)

To state our main result, we introduce the concatenated

vectors

Ψ = [ψ1(1+z1,
1+zd

1)T , · · · ,ψM(M+zM ,
M+zd

M)T ]T

xR = [1xT
1 , · · · ,

N xT
N]T vd

R = [(1vd
1)T , · · · , (Nvd

N)T ]T

zR = [(1+z1)T , · · · , (M+zM)T ]T zd
R = [(1+zd

1)T , · · · , (M+zd
M)T ]T

ξR = [(1ξ1)T , · · · , (NξN)T ]T uR = [(1u1)T , · · · , (NuN)T ]T ,

and note from (6) and (23) that

zR = (DT ⊗ I2)xR (28)

and

uR = −(D⊗ I2)Ψ (29)

where ⊗ represents the Kronecker product. For the objective

(20) to be feasible, the target sets Ak in (22) must be such

that

{A1× · · ·×AM}∩R(DT ⊗ I2) , ∅ (30)

since, from (28), zR is restricted to be in the range space

R(DT ⊗ I2).

Theorem 1 below, proves that the set in (30) is globally

asymptotically stable if the following property holds:

Property 1: (D⊗ I2)Ψ = 0 and zR ∈ R(DT ⊗ I2) imply zR ∈
A1× · · ·×AM ∩R(DT ⊗ I2). �

Theorem 1: Suppose that Gℓ is a subgraph of G and

consider the agent dynamics (15)-(16), where the desired

velocity ivd
i
(t) and the feedback law iui are defined in (17)-

(18) and (23)-(27). Then the trajectories (zR(t), ξR(t)) are

bounded and converge to the equilibria set

E=
{
(zR, ξR)| ξR = 0, (D⊗ I2)Ψ(zR) = 0 and zR ∈ R(DT ⊗ I2)

}
.

(31)

Furthermore, if Property 1 holds, the set

A =
{
(zR, ξR)|ξR = 0,zR ∈ A1× · · ·×AM ∩R(DT ⊗ I2)

}
(32)

is globally asymptotically stable.

Proof: We take the Lyapunov function V as

V =
1

2
ξR

T ξR+

M∑

k=1

Pk. (33)

and its derivative is

V̇ = ξT
R ξ̇R+Ψ

T żR. (34)

Since in Assumption 2 we assume that all the frames Ri are

aligned and rotate at the angular velocity ω(t), we obtain

d(k+zk)

dt
=

dRT
k+

zk

dt
(35)

= −ω̂(k+zk)+RT
k+

żk. (36)

or in a compact form

żR = −(IM ⊗ ω̂)zR+ (DT ⊗ I2)ẋR, (37)

which is rewritten from (15) as

żR = −(IM ⊗ ω̂)zR+ (DT ⊗ I2)(ξR+ vd
R). (38)

Because there exists a path from agent 1 to all the other

agents in Gℓ and because all the agents have the same

heading, vd
R

can be further written from (18) as

vd
R = 1N ⊗ 1vd

1 + (IN ⊗ ω̂)zR1 (39)

where

zR1 = [(1z1,1)T , · · · , (NzN,1)T ]T (40)

and izi,1 is defined in (19). Noting that

zR = (DT ⊗ I2)zR1 (41)

and substituting (39), (41) into (38), we obtain

żR = (DT ⊗ I2)ξR (42)

because 1N spans the null space of DT and because

(DT ⊗ I2)(IN ⊗ ω̂) = (IM ⊗ ω̂)(DT ⊗ I2) = DT ⊗ ω̂. (43)

Thus, it follows from (29) and (42) that

Ψ
T żR = −uT

RξR, (44)

which, together with (16) and (34), leads to

V̇ = −
∑

i

Ki
iξi

2 ≤ 0. (45)

Since the dynamics of ξR and zR in (16) and (42) are time-

invariant, we apply LaSalle Invariance Principle to analyze

the largest invariant set where V̇ = 0. We then conclude form

(16) that ξi = 0 implies iui = 0, which proves the convergence

to the set of equilibria E in (31). Moreover, when Property

1 is satisfied, the set A in (32) is globally asymptotically

stable.

Convergence to A in (32) means that (20) is achieved. It

also guarantees that ξR→ 0 and thus from (42) that żR→ 0,

which implies that the desired rigid formation is maintained.
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B. A Special Case: Quadratic Potential Function

When the potential function Pk is restricted to be of the

quadratic form [11], [13], that is Pk = |k
+

zk−k+zd
k
|2, the design

of ivd
i
(t) in (18) can be simplified to

ivd
i (t) = L(i)vd

L(i)(t)+ ω̂
izd

i,L(i). i = 2, · · · ,N (46)

where izd
i,L(i)

is the desired constant value of zi,L(i) in ith

frame. Note that the ith agent now does not have to know

the relative position of its local leader L(i) since only the

constant izd
i,L(i)

is required in (46). Therefore, the iv̇d
i
(t) term

in the control law (13) is simplified and the restriction in

Theorem 1 that Gℓ be a subgraph of G is eliminated.

Theorem 2 below proves that with the choice of quadratic

potential function and the design (46), all trajectories

(zR(t), ξR(t)) converge to the equilibria set A in (32). Before

proceeding, we point out the following lemma that guaran-

tees that no equilibria arise outside A:

Lemma 1: When Pk = |k
+

zk− k+zd
k
|2, k = 1, · · · ,M, Property

1 is satisfied.

Proof: We obtain from (24) that ψk =
k+zk − k+zd

k
, or in

the stacked form

Ψ = zR− zd
R. (47)

Because zR and zd
R

both belong to the range space of DT ⊗ I2,

(D⊗ I2)(zR − zd
R

) = 0 is satisfied only when zR = zd
R

, which

implies zR ∈ A1× · · ·×AM ∩R(DT ⊗ I2).

Theorem 2: Consider the agent dynamics (15)-(16), where

the desired velocity ivd
i
(t) and the feedback law iui are

defined in (17), (46) and (23)-(27), with Pk = |k
+

zk − k+zd
k
|2,

k = 1, · · · ,M, in (24). Then the trajectories (zR(t), ξR(t)) are

bounded and converge to the set A in (32).

Proof: We take the same Lyapunov function as in (33),

whose derivative is the same as in (34). Because there exists

a path from the group leader x1 to all the other agents and

because all the agents have the same heading, vd
R

can be

written as

vd
R = 1N ⊗ 1vd

1 + (IN ⊗ ω̂)zd
R1 (48)

where

zd
R1 = [(1zd

1,1)T , · · · , (Nzd
N,1)T ]T (49)

and izd
i,1

is the desired relative positions from the ith agent

to agent 1. Since the desired formation is considered to be

rigid, izd
i,1

’s are uniquely defined. Substituting (48) into (38)

yields

żR = −(IM ⊗ ω̂)zR+ (DT ⊗ I2)ξR+ (DT ⊗ I2)(IN ⊗ ω̂)zd
R1 (50)

since 1N belongs to the null space of DT . Due to (43), we

further obtain that

żR = −(IM ⊗ ω̂)zR+ (DT ⊗ I2)ξR+ (IM ⊗ ω̂)(DT ⊗ I2)zd
R1. (51)

Because (DT ⊗ I2)zd
R1
= zd

R
, it follows from (51) that

żR = (IM ⊗ ω̂)(zd
R− zR)+ (D⊗ I2)T ξR. (52)

From (52), (47) and (29), the second term in (34) now

becomes

Ψ
T żR = Ψ

T (DT ⊗ I2)(ξR) = −uT
RξR (53)

since (zR− zd
R

) is perpendicular to (IM ⊗ ω̂)(zd
R
− zR).

Thus, we obtain from (34), (16) and (53) that

V̇ = −
∑

i

Ki
iξi

2
, (54)

which implies that the signals (ξR(t),zR(t)) are bounded. We

further conclude from Barbalat’s Lemma that iξi → 0. We

next show that iui→ 0. To see this, we note

¨iξi = −Ki
iξ̇i+

iu̇i (55)

is continuous and uniformly bounded because iu̇i and
iξ̇i are continuous functions of the bounded signals

(zR(t), ξR(t),ω(t), ω̇(t)). We then obtain from [16, Lemma 1]

that ξ̇R → 0, which means that uR → 0 from (16). Using

Lemma 1, we conclude the global convergence to the set A
in (32).

V. D E

Consider three agents xi, i = 1,2,3, where x1 is the group

leader and x j is the local leader of x j+1, j = 1,2. In G, each

agent has the other two as its neighbors. We choose

ω = 1 and 1vd
1 = [2 0]T , (56)

which means that the leader’s trajectory is a circle with radius

2. To stabilize the desired formation in Figure 4, recall that

Fig. 4. The desired formation of three agents: The desired relative distances
for every two agents are 1. z32 is always aligned with the direction of vd

1
(t).
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snapshots of the formation
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Fig. 5. The desired formation in Figure 4 is achieved: The arrow denotes
the heading of each agent and initially the headings of all the agents are
aligned. Magenta △, blue ⋄ and red � represent x1, x2 and x3, respectively.

the leader’s heading θ1 is always along the direction vd
1
(t) and
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that all the agents have the same heading. We then compute

the desired relative position of each link as

1zd
12 = [

1

2

√
3

2
]T 1zd

13 = [−1

2

√
3

2
]T 1zd

23 = [−1 0]T (57)

and choose the potential function Pk in (24) as

Pk(k+zk,
k+zk

d
) = ‖k+zk − k+zd

k‖
2, (58)

where k+zk
d

is available from (57).

Figure 5 illustrates that the design in (18) and (23), which

employs the information in (56)-(58), achieves the desired

rigid formation.

We next consider four agents and make use of the simpli-

fied design in Section IV-B to achieve the square formation

in Figure 6, where the desired relative positions in the local

frames are given by

1zd
12 =

1zd
43 = [

√
2

2
−
√

2

2
]T 1zd

23 =
1zd

14 = [

√
2

2

√
2

2
]T . (59)

In Gℓ, agent 1 serves as the local leader of agent 2 while both

Fig. 6. The desired formation of four agents is a square with side length
1, where z13 is always aligned with the leader’s heading θ1.

agents 3 and 4 take agent 2 as its leader. G is a ring graph,

where agent i, i = 2,3, is the neighbor of both agents i− 1

and i+1, and agent 1 is the neighbor of agent 4. Note that Gℓ

is not a subgraph of G. Instead of assuming that the heading

agreement has been achieved, we apply the methodology in

[14] to achieve the agreement. Since the headings of the

agents are synchronized eventually, the desired formation is

guaranteed as shown in Figure 7.

VI. C  FW

We study a motion coordination problem where the ob-

jective is to achieve a rigid group formation. We treat this

problem as a joint orientation and formation control problem.

We develop decentralized leader-follower control laws such

that the rigid formation is guaranteed. The proposed design

is further simplified when the potential function is quadratic.

We then show by numerical examples that our designs

achieve the desired rigid formations. Future directions in-

clude extensions to time-varying information topology and

to more complex agent dynamics.
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