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Abstract— In this article, we propose a model-less inversion-
based iterative control (MIIC) approach for high-speed output
tracking in repetitive applications such as the lateral scanning
during atomic force microscope (AFM) imaging. The MIIC
algorithm extends the inversion-based iterative control (IIC)
technique and the enhanced inversion-based iterative control
(EIIC) technique. The main contribution of this article is
the development of the MIIC algorithm to eliminate the
modeling process while further enhancing the output tracking
performance. We explicitly consider the disturbance and/or
measurement noise effect in the convergence analysis of the
MIIC algorithm. It is shown that convergence can be reached
in one iteration step if the noise/disturbance effect is negligible;
Or, the input error can be quantified by the disturbance/noise to
signal ratio (NSR, relative to the desired trajectory). The MIIC
is applied to a piezo scanner on an atomic force microscope, and
experimental results are presented to demonstrate the efficacy
of the MIIC technique.

I. INTRODUCTION

In this paper, we propose a new model-less inversion-based

iterative control (MIIC) technique for high-speed precision

output tracking. It is noted that precision tracking of periodic

trajectory at high-speed is needed in applications such as

the nano-scale imaging/measurement using atomic force

microscope (AFM) [1], the scanning mechanism on MEMS-

based micro-mirrors [2], the quick-return mechanisms and

cams in manufacturing, and the manufacturing process

in rapid prototyping [3]. For example, in atomic force

microscope (AFM) imaging, repetitive precision scanning at

high-speed is needed to achieve high-speed imaging, which

not only improves the throughput, but more importantly,

enables the interrogation of nanoscale dynamic processes

[1], [4]. It has been shown that iterative learning control

(ILC) is quite efficient in tracking repetitive trajectories

[5]. Limits, however, exist in conventional ILC designs

[6] because causal controllers were used in these designs.

As a result, the noncausality (i.e., the “preview” of the

future desired trajectory as well as the output tracking of

the system) was not exploited to improve the tracking,

particularly for nonminimum-phase systems [6]. Such a limit

is alleviated through the development of the IIC and the

EIIC techniques. Although the IIC and the EIIC techniques

utilize the noncausality to improve the tracking precision as

illustrated in [7], their performance depends on the quality

of the system dynamics model, whereas modeling process is

time-consuming and prone to errors. The main contribution
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of this paper is the development of the MIIC technique

which eliminates the need for the dynamics model while

further enhances the output tracking performance.

Iterative learning control approach [5] has been effective

in the output tracking of repetitive operations. Compared

to feedback control methods, the ILC approach avoids

the potential stability issues caused by the high feedback

gain (needed to achieve precision tracking). Instead, a

learning mechanism is introduced in the ILC approach to

utilize the repetitive nature of the applications to improve

the tracking performance [8]. Moreover, ILC approach

also has the advantages such as being ease to design and

implement—as precision-model usually is not required in

ILC algorithms. ILC techniques have been successfully

implemented in various applications [9]. The majority of the

ILC algorithms aims at obtaining a stable controller based

on, for example, H∞ robust control theory [10]. Such a stable

controller, however, limits the ILC method in exploring the

noncausality provided by the knowledge of the entire output

tracking (not just at current time instant as in feedback

control) through iterations. Particularly, we note that it has

been shown recently [6] that a causal IIC controller is

essentially equivalent to a feedback controller. Therefore,

constraints exist in the conventional ILC approaches.

Such causality-related constraints in the ILC approaches

are removed with the development of the inversion-based

iterative control approach [11], [7], [12]. Particularly, the

IIC approach utilizes the inverse of the system dynamics

utilized a frequency-domain implementation scheme [7].

The convergence of the IIC algorithm, however, can be

sensitive to the dynamic uncertainties of the system, i.e., the

phase uncertainty of the system dynamics must be less π/2

to guarantee the convergence [7]. To improve the robustness

of the IIC technique against the phase uncertainty, the

enhanced inversion-based iterative control technique (EIIC)

[12] was proposed. In the EIIC method, the updating of the

input magnitude is decoupled from the updating of the input

phase (in frequency-domain). As a result, the EIIC approach

can achieve convergence in a larger frequency range at a

faster convergence rate. The efficacy of the IIC and the

EIIC algorithms have been demonstrated in experiments to

achieve high-speed precision scanning, and to compensate-

for the cross-axis coupling-caused vibrations of piezotube

actuators [7]. However, both the IIC and the EIIC algorithms

require a reasonably-good model of the system dynamics,

and the model accuracy determines the convergence rate

(i.e., the choice of the iterative coefficient). We note that
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modeling of the system dynamics is time consuming and

prone to errors, and the measured dynamics response heavily

depends on the operation condition, which can also vary

significantly from time to time (for example, for the probe

positioning dynamics on AFM system). Therefore, there

exist needs to overcome the modeling-related constraints in

the IIC approach.

The main contribution of the article is the development of the

MIIC technique. The MIIC algorithm does not require the

modeling of the system dynamics, therefore, the constraints

related to the modeling process, and the requirement

for a good dynamics model are removed. Instead, the

proposed MIIC algorithm updates the input-output relation

of the system dynamics in each iteration by using the

input-output signals measured in the previous iteration. We

note that similar idea was utilized before in the adaptive

ILC approaches in [13]. There exist, however, fundamental

differences between the proposed MIIC technique and the

adaptive ILC approaches as regard to how such online

updating is utilized: In the adaptive ILC approaches [13], a

dynamics model was used and the measured input-output

signals were used to update the model; Whereas in the

proposed method, no dynamics model is needed/used and

the measured input-output signals were used to update

the iterative control input directly. Moreover, we explicitly

address the disturbance/noise effects—which was not

considered in [13]—in the convergence analysis of the

proposed MIIC algorithm. We show that the convergence of

the MIIC algorithm can be achieved in one iteration when

the noise/disturbance effect is negligible; Or, the input error

can be quantified by the disturbance/noise to signal ratio

(NSR, relative to the desired trajectory) when the disturbance

and/or noise effects are not too large. The size of NSR for

the MIIC algorithm to be effective (i.e., the tracking error

is smaller when using the MIIC algorithm than that when

not using it) is further quantified. We illustrate the proposed

MIIC control technique by implementing it in experiments

to the output tracking of a piezotube actuator on an AFM

system. Two types of trajectories are used to evaluate the

tracking performance with comparison to the IIC algorithm:

triangular trajectories and band-limited white-noise type of

trajectories. The experimental results show that precision

output tracking is achieved in both cases, whereas the

IIC algorithm failed to track the complicated band-limited

white-noise trajectory. Moreover, the MIIC algorithm is

also implemented to compensate-for the hysteresis effect

when tracking large-range triangle trajectory at high-speed.

Experimental results indicate that precision output tracking

can also be achieved.

II. MODEL-LESS INVERSION-BASED ITERATIVE

CONTROL

We start with briefly reviewing the inversion-based iter-

ative control [7] and the enhanced inversion-based iterative

control [12] algorithm. These two control algorithms form

the base for the proposed MIIC algorithm.

A. Inversion-based Iterative Control (IIC) and Enhanced

Inversion-based Iterative control (EIIC)

IIC Algorithm [7] Recently, an inversion-based iterative

control technique [7] was developed to achieve high-speed

output tracking of periodic trajectories. For a stable, single

input single output (SISO) system, the IIC control law can

be described in the frequency-domain as

u0 ( jω) = Gm( jω)−1yd( jω), k = 0 (1)

uk( jω) = uk−1( jω)

+ρ(ω)Gm( jω)−1 [yd( jω)− yk−1( jω)] k ≥ 1 (2)

where ‘ f ( jω)’ denotes the Fourier transform of the signal

‘ f (t)’, ‘yd(·)’ denotes the desired output trajectory, ‘yk(·)’
denotes the output obtained by applying the input ‘uk(·)’ to

the system during the kth iteration, ρ(ω) > 0 is the iterative

coefficient, and Gm( jω) denotes the frequency response

model of the system. The convergence of the IIC algorithm

is given in the following lemma 1.

Lemma 1: [7] At any given frequency ω , let both the

actual dynamics of a SISO LTI system G( jω) and its model

Gm( jω) be stable and hyperbolic (i.e., both have no zeros

on the jω axis), and the dynamics uncertainty ∆G( jω) be

described as

∆G( jω) =
G( jω)

Gm( jω)
=

|G( jω)|e j∠G( jω)

|Gm( jω)|e j∠Gm( jω)

, |∆G(ω)|e j∆∠G( jω), (3)

then the IIC control law converges at frequency ω to the de-

sired input ud( jω) , G( jω)−1yd( jω), i.e., limk→∞ uk( jω) =
ud( jω), if and only if,

1) the iterative coefficient ρ(ω) ∈ R is chosen as

0 < ρ(ω) < ρsup(ω) ,
2cos(∠∆G( jω))

|∆G( jω)| (4)

2) the magnitude of the phase variation is less than π/2, i.e.,

|∠∆G( jω)| < π

2
(5)

EIIC Algorithm [12] The EIIC control law is also given

in the frequency-domain as follows,

u0 ( jω)) = Gm( jω)−1yd( jω) k = 0 (6)






|uk( jω)| = |uk−1( jω)| k ≥ 1

+ρ(ω)
∣

∣G−1
m ( jω)

∣

∣ [|yd( jω)|− |yk−1( jω)|]
∠uk( jω) = ∠uk−1( jω)+ (∠(yd( jω))−∠yk−1( jω))

As shown in the above Eq. (6), the updating of the input

magnitude is decoupled from the updating of the phase angle

in the EIIC algorithm. As a result, the EIIC algorithm can

converge in a larger frequency range and at a faster conver-

gence rate than IIC algorithm , as given by the following

Lemma 2.

Lemma 2: [12] For any given frequency value ω , let

G( jω), Gm( jω) and ∆G( jω) be defined as in Lemma 1,

respectively. Then the input of the EIIC law converges to

the desired input ud( jω), i.e.,

lim
k→∞

|uk( jω)| = |ud( jω)|, and lim
k→∞

∠uk( jω) = ∠ud( jω),

2711



if and only if the iterative coefficient ρ(ω) is chosen as

0 < ρ(ω) < ρsup(ω) ,
2

|∆G( jω)| (7)

The efficacy of the EIIC algorithm has been illustrated

through experiments including the measurement of adhesion

force measurement at high-speed using AFM [12], and the

measurement of the time-dependent elastic modulus of a

polymer material (Polydimethylsiloxane, PDMS) [14].

The implementation of the IIC and the EIIC algorithms,

however, requires a reasonably good model of the system

dynamics, while the modeling process can be time consum-

ing and prone to errors. Thus, the success of the IIC and

EIIC algorithms and the challenges involved in the dynamics

modeling motivate the development of the following model-

less inversion-based iterative control method.

B. Model-less Inversion-based Iterative Control (MIIC)

The proposed MIIC algorithm is given below:,

u0( jω) = αyd( jω), (k = 0),

uk( jω) =











uk−1( jω)
yk−1( jω) yd( jω), (k ≥ 1),

when yk( jω) 6= 0 and yd( jω) 6= 0

0 otherwise

where α 6= 0 is a pre-chosen constant (e.g., α can be chosen

as the estimated DC-Gain of the system). Next, we discuss

the convergence of the MIIC algorithm upon the additional

disturbance and/or measurement noise effect.

Theorem 1: Let G( jω) be a stable SISO LTI system, then

at frequency ω ,

1) if the disturbance (and/or noise) effects are negligible,

then convergence is reached after one iteration, i.e.,

u1( jω) = ud( jω), (8)

2) if the system output y( jω) is effected by the distur-

bance and/or the measurement noise as

y( jω) = yl( jω)+ yn( jω), (9)

where yl( jω) denotes the linear part of the system re-
sponse to the input u( jω), i.e. yl( jω) = G( jω)u( jω),
and yn( jω) denotes the output component caused by
disturbances and/or measurement noise. Then at the kth

iteration, the ratio of the iterative control input to the
desired input is given by:

uk( jω)

ud( jω)
=

G( jω)

G( jω)(1+Sk( jω))+Pk( jω)/α
, ∀ k ≥ 1 (10)

where Pk( jω) denotes the product of the

noise/disturbance-to-signal (NSR) ratios (relative

to the desired output yd( jω)) at frequency ω from all

the past iterations, and Sk( jω) denotes the summation

of the product Pk( jω),

Pk( jω) =
k−1

∏
i=0

yi,n( jω)

yd( jω)
,

Sk( jω) =

{

0, for k = 1

∑k−1
j=1 ∏

j
i=1

yk−i,n( jω)

yd ( jω) , for k ≥ 2

Theorem 2: Let assumptions in Theorem 1 be satisfied,

1) assume that during each iteration, the NSR is bounded

above by a positive, less-than-half constant ε(ω), i.e.,
∣

∣

∣

∣

yk,n( jω)

yd( jω)

∣

∣

∣

∣

≤ ε(ω) < 1/2, ∀ k (11)

then the ratio of the iterative input to the desired input

is bounded in magnitude and phase, respectively, as

Rmin(ω) , 1− ε(ω)≤ limk→∞

∣

∣

∣

uk( jω)
ud( jω)

∣

∣

∣

limk→∞

∣

∣

∣

uk( jω)
ud( jω)

∣

∣

∣
≤ 1−ε(ω)

1−2ε(ω)
, Rmax(ω)

limk→∞

∣

∣

∣
∠

(

uk( jω)
ud( jω)

)
∣

∣

∣
≤ sin−1

(

ε(ω)
1−ε(ω)

)

, θmax(ω),

and the relative tracking error is bounded as

lim
k→∞

∣

∣

∣

∣

yk( jω)− yd( jω)

yd( jω)

∣

∣

∣

∣

≤ 2ε(ω)(1− ε(ω))

1−2ε(ω)
(12)

2) The use of the MIIC algorithm will improve the
tracking at frequency ω , i.e.,

lim
k→∞

∣

∣

∣

∣

yk( jω)− yd( jω)

yd( jω)

∣

∣

∣

∣

< 1, (13)

if the NSR is bounded above by 1−
√

2
2

, i.e.,
∣

∣

∣

∣

yk,n( jω)

yd ( jω)

∣

∣

∣

∣

≤ ε(ω) < 1−
√

2

2
, ∀ k (14)

Remark 1: Theorem 2 implies that precision tracking at

frequency ω can be achieved provided that the NSR at

that frequency is small, which agrees with our intuition.

Additionally, Theorem 2 gives a guideline to determine the

frequency range over which the MIIC law can be applied in

practices (Eq. (14)).

III. EXPERIMENTAL EXAMPLE: PIEZO ACTUATOR

OUTPUT TRACKING

In this section, we illustrate the MIIC technique by imple-

menting it to the output tracking of a piezotube actuator on

an AFM system. We start with describing the experimental

system next.

A. Experimental setup

The schematic diagram of the experimental AFM system

(Dimension 3100, Veeco Inc.) is shown in Fig. 1 for the

control of the x-axis piezotube actuator. All the control

inputs to the piezo actuator were generated by using

MATLAB-xPC-target package, and sent out through a data

acquisition card (DAQ) to drive the piezo actuator via an

amplifier—The AFM-controller had been customized so

that the PID control circuit was bypassed when the external

control input was applied.
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Fig. 1. Schematic diagram of the experiment setup to implement the
proposed MIIC algorithm.
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B. Implementation and Tracking Results

Output Tracking of Triangle Trajectory We note

that triangle trajectories are commonly used in many

scanning operations such as the AFM imaging. The

displacement range was chosen small (5µm,∼ 5% of

the total displacement range of the piezotube actuator),

thereby the effect of the nonlinear hysteresis became small

and negligible (as hysteresis effect is range-dependent)

[7]. Three different rates (2Hz, 100Hz and 300Hz) of the

triangle trajectory were chosen—which correspond to the

tracking in the slow, medium and fast speed ranges (relative

to the bandwidth of the piezo actuator), respectively. The

tracking results are shown in Fig. 2, with comparison to

those obtained by using the IIC technique. The readers are

referred to Ref. [15] for the details of the IIC algorithm

implementation. Moreover, the experimental tracking results

are also compared quantitatively in Table. I in terms of the

relative maximum error Emax(%) and the relative root mean

square (RMS) error Erms(%), defined as below

Emax(%) ,
‖yd(·)− y(·)‖∞

‖yd (·)‖∞
×100, Erms(%) ,

‖yd (·)− y(·)‖2

‖yd(·)‖2
×100.

(15)

In the experiments, we stopped the iterations of the MIIC

law (or the IIC law) when neither one of the above two

errors, Emax(%) or Erms(%), can be further reduced. The

iterative input for tracking multiple (over 10) periods of

triangles was sent to the system, and the averaged results are

shown in Table. I and Fig. 2 (The un-averaged results are

compared with the averaged ones later). Also, the iteration

numbers used in the experiments are listed in Table I.

Output Tracking of a Band-limited White-Noise Type

of Trajectory We note that the triangle trajectory only

consists of a few significant frequency components (i.e.,

multiple integer times of the fundamental frequency of the

triangle signal), whereas a band-limited white-noise type

of trajectory has much richer frequency components—up

to the cut-off frequency. Therefore, it is more challenging

to track band-limited white noise type of trajectories than

to track triangle trajectories. Specifically, the band-limited

white-noise of one second duration and three different cut-off

frequencies, 400 Hz, 800 Hz, and 1050 Hz, were generated

by using MATLAB, and then duplicated for multiple copies

to form the desired trajectory. The maximum displacement

of the desired trajectory was limited within 1.5 µm. The

tracking errors are shown in Table II. For comparison, the

IIC algorithm was also implemented to track the three chosen

white-noise type of trajectories. The obtained output tracking

results are compared in Fig. 3.

Output Tracking of Large-range Triangle Trajectory

The proposed MIIC technique was also applied to track

large-range triangle trajectories to evaluate its efficacy in

compensating for the nonlinear hysteresis effect. To demon-

strate the amount of the tracking error caused by the hys-

teresis and vibration dynamics effects, the output tracking

with the DC gain method was obtained, where neither the

hysteresis nor the vibrational dynamics effect was compen-

sated for, i.e., the input was obtained by simply scaling the

desired output with the DC gain of the system. It is noted that

the hysteresis effect of piezo actuators is significant as the

displacement range becomes large. The triangle trajectories

with the displacement range of 50µm was chosen. Such a

displacement range is over 60% of the full displacement

range of the piezotube actuator, and the hysteresis effect

became pronounced in the output tracking. The tracking

results are shown in Fig. 4 and Table. III.

C. Discussion of the Experiment Results

Triangle trajectory tracking The tracking results in

Table. I show that by using the proposed MIIC algorithm,

precision output tracking can be achieved. For the triangle

trajectories at 2 Hz and 100 Hz, the tracking errors obtained

by using the MIIC algorithm are similar to the error when

the IIC method was used (see Fig. 2). However, only two

iterations were needed for MIIC law to reach convergence,

compared to 3 to 4 iterations needed for the IIC law. As

the triangle rate increased to 300 Hz, the tracking error

obtained by using the MIIC algorithm was 7 times smaller

than the error by using the IIC algorithm (see Table I).

Note the frequency range to implement the MIIC (or

IIC) algorithm is a design parameter, and the frequency

range was chosen as 2.5 KHz and 1 KHz for the MIIC

algorithm and the IIC algorithm, respectively, to optimize

the tracking results. Particularly, we notice that divergence

occurred if the frequency range was chosen larger than

1.4 KHz for the IIC algorithm. This can be explained by

using the frequency response of the system: large phase

variation exists for frequencies lager than 1 KHz, which

becomes larger than π/2 around the second resonant peak

at 1.3KHz. Therefore, by Lemma 1, the output tracking will

diverge at those frequencies. On the contrary, the proposed

MIIC algorithm is not limited by such phase uncertainties,

thereby the tracking performance can be further improved

(see Fig. 2 (a3), (b3)). Moreover, we compared the power

spectrum (estimated by using MATLAB) of the tracking

error with that of the desired trajectory. It was found that

the maximum power spectrum value of the tracking error

was only less than 0.4% of that of the desired trajectory.

This implies that the change of the iterative control input to

further decrease the tracking error became close to the noise

level of the system. Thus, the experimental results show the

superior tracking performance of the MIIC algorithm over

the IIC algorithm.

Band-limited white-noise tracking The band-limited

white noise type of tracking trajectory has much richer

frequency components than the triangle trajectory, which

is evident as revealed by the power spectrum of the three

band-limited white noise trajectories shown in Fig. 3(c1).

The experimental results ( Table. II and Fig. 3 show that by

using the MIIC technique, precision output tracking can still

be achieved for such complex trajectories. For band-limited

white-noise trajectory with the cut-off frequency of 400 Hz,

the tracking errors obtained by using the MIIC technique
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TABLE I

PERFORMANCE COMPARISON OF THE MIIC ALGORITHM AND THE IIC ALGORITHM FOR TRACKING THE TRIANGLE TRAJECTORY AT THREE

DIFFERENT TRIANGLE RATES, WHERE Erms(%) AND Emax(%) ARE DEFINED IN EQ. (15), AND THE ITERATION NUMBERS USED ARE ALSO LISTED. THE

DISPLACEMENT RANGE IS 5 µm.

Iter. Erms (%) Emax (%)
No. 2 Hz 100 Hz 300 Hz 2 Hz 100 Hz 300 Hz

MIIC IIC MIIC IIC MIIC IIC MIIC IIC MIIC IIC MIIC IIC

1 0.6026 1.3529 0.7160 4.5145 2.0689 12.7279 1.1106 1.5927 1.7450 4.7731 5.8387 17.7013

2 0.2291 0.3033 0.3477 3.0220 1.7508 12.1486 0.7296 0.9274 1.5784 4.9721 5.4809 19.7839

3 0.2279 0.2338 0.3243 2.5296 1.7529 12.1497 0.7890 0.9197 1.6046 5.3670 5.4594 19.3573

4 0.2292 0.23256 0.3267 2.0518 1.7517 12.1394 0.7677 0.6804 1.6598 2.6577 5.5369 19.4687

2 4 6
−3

−2

−1

0

1

2

3

2 4 6
−0.4

−0.2

0

0.2

0.4

0.6

5 10 15 20
−3

−2

−1

0

1

2

3

5 10 15 20
−100

−50

0

50

100

0.2 0.4 0.6 0.8 1
−3

−2

−1

0

1

2

3

0.2 0.4 0.6 0.8 1
−20

−10

0

10

20

Time (sec) Time (msec)

D
i
s
p
l
a
c
e
m
e
n
t
  
(

µ
m
)

D
i
s
p
.
 
E
r
r
o
r
 (
n
m
)

Time (msec)

(a1) (a2) (a3)

(b1) (b2) (b3)

Triangle rate: 2 Hz Triangle rate: 100 Hz Triangle rate: 300 Hz

Desired MIIC IIC

D
i
s
p
l
a
c
e
m
e
n
t
  
(

µ
m
)

D
i
s
p
l
a
c
e
m
e
n
t
  
(

µ
m
)

D
i
s
p
.
 
E
r
r
o
r
 (
n
m
)

D
i
s
p
.
 
E
r
r
o
r
 
 
(

µ
m
)

0 0 0

000

Fig. 2. Experimental results: (top row) comparison of the output tracking
obtained by using the MIIC algorithm with the tracking by the IIC algorithm
for three different triangle rates; and (bottom row) comparison of the
corresponding tracking errors.

were very small (the relative RMS error is less than 2%).

Such tracking precision was maintained even when the cut-

off frequency became much higher (800 Hz and 1.05 KHz).

We note that to achieve the same tracking precision (RMS

error Erms ≤ 2 %) by using feedback control approaches,

the closed-loop sensitivity S( jω) must be below -34 dB

(i.e., 0.02) for frequency ω ≤ 1.05 KHz, which, in turn,

requires the closed-loop bandwidth to be much higher than

the cut-off frequency of 1.05 KHz. Such high bandwidth is

extremely difficult to achieve with feedback control—if not

entirely impossible, as the cut-off frequency of 1.05 KHz

is well beyond the bandwidth of the piezo actuator to

encompass two resonant peaks as well as one ”dip” (i.e.,

highly under-damped zero) of the piezo actuator dynamics.

Note that such a comparison is to highlight the efficacy of

the proposed MIIC algorithm in achieving output tracking

of broad-band trajectories in repetitive operations, in the

light of the Result of Ref. [6] that an equivalent feedback

controller exists for causal iterative learning algorithms.

The experimental results also show that the proposed MIIC

technique is robust against system dynamics uncertainty,

particularly the phase uncertainty. As we can see from Fig. 3,

divergences occurred when the IIC method was used to track

such complex broad-band trajectories. For the band-limited

white-noise trajectory with cut-off frequency of 400 Hz,

large tracking error occurred, which became much larger

than the desired trajectory itself as the cut-off frequency

increased to 800 Hz and 1.05 KHz. This is because the

IIC method is more sensitive to the model uncertainty,

particularly the phase uncertainty. Such sensitivity of the

iteration to the phase uncertainty is removed in the MIIC
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Fig. 3. Comparison of the tracking results the band-limited white-noise
trajectory at cut-off frequency of 800 Hz by using the MIIC algorithm with
those obtained by using the IIC algorithm (a1), the corresponding tracking
errors by using the MIIC algorithm (a2), zoom in plots (b1, b2) and the
power spectrum of the band-limited white noise desired trajectory (blue
circle) with the power spectrum of the output tracking obtained by using
the MIIC algorithm (red cross) (c1).

technique. Therefore, the experimental results show that

the proposed MIIC algorithm is superior to other iterative

control algorithms like the IIC method in high-speed

tracking of complex desired trajectories.

Large-range triangle trajectory The tracking results in

Table. III and Fig. 4 show that precision tracking at large

displacement range can also be achieved by using the MIIC

algorithm. As revealed by the output tracking obtained by

using the DC-gain method, the hysteresis effect became

pronounced at such large displacement range (50 µm, Fig. 4

(a)), which was augmented with the vibrational dynamics

effects at high-speed (100 Hz and 300 Hz), resulting in

larger tracking errors, see Fig. 4 (b), (c). The experimental

results show that at slow-speed (2 Hz) tracking, the tracking

error obtained by the MIIC algorithm was small (the relative

RMS error and the relative maximum error are at 0.22

% and 0.37 %, respectively). Such a tracking precision is

very close to that of tracking small range triangle trajectory

(Compare Table I with Table II). Even at much higher

speeds (100 Hz and 300 Hz), precision-tracking was still

maintained. For example, the relative RMS error was still

only about 4.7 % for tracking the triangle trajectory of

300 Hz. We note that such an error is slightly larger than

the error for small range tracking. This is mainly due to

the reduction of the frequency range over which the MIIC

algorithm was used (from 2.5 KHz to 2 KHz—to prevent

the input voltage from saturation). Also Table III shows

that more iterations were needed for large-range tracking

than those for the small-range tracking. This is because

at large-range tracking, the dynamics variations caused

by the hysteresis effect became pronounce. Therefore, the
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TABLE II

TRACKING PERFORMANCE COMPARISON OF THE MIIC WITH THE IIC ALGORITHMS TO TRACK A BAND-LIMITED WHITE NOISE TRAJECTORY WITH

DIFFERENT CUT-OFF FREQUENCIES ARE WHERE “ITER. NO.” DENOTES THE NUMBER OF ITERATIONS USED IN EXPERIMENTS.

Iter. Erms (%) Emax (%)
No. 400 Hz 800 Hz 1050 Hz 400 Hz 800 Hz 1050 Hz

MIIC IIC MIIC IIC MIIC IIC MIIC IIC MIIC IIC MIIC IIC

1 2.6123 17.1439 4.5240 94.1437 4.93406 962.8028 3.3647 17.3808 5.7165 98.9275 6.7249 1003.9

2 1.5548 63.2610 1.3014 350.1737 1.2710 Diverge 1.9774 61.4206 4.5881 563.5381 3.1347 Diverge

3 1.5060 Diverge 1.3223 Diverge 1.1992 Diverge 2.0713 Diverge 4.9661 Diverge 3.3160 Diverge

4 1.7034 Diverge 1.3355 Diverge 1.1934 Diverge 2.3516 Diverge 4.9499 Diverge 3.1175 Diverge
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Fig. 4. (top row) Comparison of the output tracking obtained by using the
DC-Gain method with the tracking by the MIIC algorithm at the rates of
(a1) 2 Hz, (a2) 100 Hz and (a3) 300 Hz, and (bottom row) the corresponding
tracking errors obtained by using the MIIC algorithm.

TABLE III

TRACKING PERFORMANCE ACHIEVED BY USING THE MIIC ALGORITHM

TO TRACK A LARGE RANGE TRIANGULAR TRAJECTORY AT DIFFERENT

SPEEDS. THE NUMBER OF ITERATIONS (ITER. NO.) USED IS ALSO

LISTED.

Iter. Erms (%) Emax (%)
No. 2 Hz 100 Hz 300 Hz 2 Hz 100 Hz 300 Hz

1 16.28 14.92 16.78 17.87 14.48 17.50

2 5.83 4.45 6.43 6.05 4.84 8.51

3 2.02 1.58 4.87 2.04 4.01 11.16

4 0.61 0.84 4.76 0.74 1.57 10.43

5 0.22 0.61 4.75 0.38 2.46 10.48

experimental results demonstrate that the MIIC algorithm

can be used to compensate for both the hysteresis and

dynamics effects simultaneously.

IV. CONCLUSIONS

This article introduced a model-less inversion-based iter-

ative control for tracking of repetitive trajectories at high-

speed. The convergence of the MIIC algorithm was analyzed

for both the case when the noise/disturbance is negligible and

the case when the effect of the disturbance/noise is consid-

ered. It was shown that the convergence can be achieved

in one-step iteration when the noise effect is negligible.

When the disturbance/noise effect is considered, the input

error at a given frequency, as measured by the ratio of the

iterative input to the desired input, was quantified in terms of

the disturbance/noise to signal ratio (relative to the desired

trajectory). It was shown that the convergence of the MIIC

algorithm can be guaranteed when the NSR is smaller than

one-half, and the MIIC algorithm will improve the tracking

if the NSR is less than 1 − 1/
√

2. The proposed method

was applied to the output tracking of a piezo actuator on an

Atomic Force Microscope (AFM). The experimental results

demonstrated that the MIIC can achieve precision output

tracking for both high-speed triangle trajectories and band-

limited white-noise type of trajectories with cut-off frequency

beyond the bandwidth of the piezo actuator. Moreover,

precision output tracking of a large-size triangle trajectory

at high-speed can also be achieved, indicating the ability of

the proposed approach to compensate for the hysteresis effect

simultaneously. REFERENCES
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