
 
 

 

  

 
Abstract-  An M-Member swarm system with energetic 
behavior is studied in this paper. A new type of swarm 
controller is developed such that a swarm can follow a desired 
trajectory with different swarm temperatures and potential 
energy values. The temperature allows the internal kinetic 
energy of the swarm to be modulated. As the temperature 
increases the motion of the swarm becomes more energetic and 
areas are covered by the swarm in less time.  The potential 
energy controls the size of the swarm and also provides new 
guarantees of energetic swarm cohesion.  Simulation is used to 
validate the results and to demonstrate the new approach 
 

I. INTRODUCTION 

A collective pattern/behavior emerges from local action of 
possibly simple agents could be potentially useful in many 
complex engineering applications such as distributed mobile 
sensing [1-2], distributed robotic surveillance/rescue [3], and 
coverage path planning problems [4].  

In the majority of works swarm model developed such 
that all agents are desired to move with a common velocity, 
while keeping  a certain desired internal group formation see 
for example [5][6]. These models can be used to handle 
different control objectives in multi-agent systems such as 
capturing a moving target [7], formation control [8-9], and 
the coordinated movement of agents in the presence of 
multiple and moving obstacles [10]. However, moving all 
agents with a common velocity is not suitable for some 
application such as multi agent coverage path planning, 
where a group of autonomous vehicle needs to visit all 
points in its environment [11]. 

One of the main characteristic of swarm is cohesion i.e. 
boundedness of swarm size. It has been shown for a swarm 
model with a general class of attraction and repulsion 
functions that the individuals form a cohesive swarm in a 
finite time. Moreover, the explicit bound on swarm size can 
be obtained [8]. 

The stability of group behavior has been studied in 
literature under different conditions [5-6][8-9][12]. 
Although second order dynamic models i.e. double 
integrators are utilized in [13], and [14], most of them are 
based on a kinematic swarm model, i.e. single integrators.  
This agents’ inertial effect can even cause unstable group 
behavior for a certain information topology [15]. Hence, the 
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agents’ inertial effect cannot be ignored for any information 
topology. Moreover, most of actuators can directly affect the 
acceleration not the velocity.  

In swarm literature, the internal energy interactions of the 
swarm have been considered only for the cases where an 
energy minimization controller used to achieve stable 
internal formation. In particular, the internal kinetic energy 
or molecular energy of the swarm is not investigated in these 
works.  This paper is an extension of earlier work [16] to 
study the internal kinetic energy of the swarm. The 
temperature variable is modified. This modified temperature 
variable is a measure of internal kinetic swarm energy. This 
newly introduced temperature is directly related to velocity 
distribution of agents. Moreover, multi-output controller is 
developed such that swarm center can follow any desired 
trajectory with different corresponding temperature and 
potential energy. In this paper an implementation of the 
energetic swarm model in [17] is investigated for the case of 
wheeled mobile robots (WMR). A feedback linearization 
method is used to obtain double integrator model for WMR.     
WMRs are commonly used in industrial applications. 
Control and coordination of multiple robotic vehicles has 
been extensively studied for example [18-21]. An 
experimental setup in a case of multiple WMRs based on 
earlier work in [5] for implementation of swarming behavior 
is studied in [20].  
  Moving the swarm of WMRs with a variable temperature 
could potentially be useful in applications where a swarm is 
required to sweep out an area or volume as the center of the 
swarm moves around, see [4] and [11]. As the temperature 
of the swarm increases the surrounding area is covered in a 
more aggressive and rapid manner potentially covering the 
area in less time. Swarm of WMRs with higher temperature 
can perform task faster and more efficient than the one with 
lower temperature.  

This paper is organized as follows. In section II an n -
dimensional second order swarm model is presented and a 
complete discussion of the swarm energy is performed. In 
section III a temperature controller is developed. Moreover, 
multi-output controller is proposed. Potential energy 
regulation and its link to cohesion is studied The simulation 
result and implementation of the proposed method for WMR 
model is presented in section IV. The paper ends with 
conclusions and future research directions in section V. 

II. SWARM MODEL 
Consider a swarm of M  members moving in an n -

dimensional space. Each agent is modeled as a point mass. 
The motion equation of individual i  is given by:  
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where  Mi ,,2,1 K= , ni ℜ∈x is the position of the i th 
individual, iv  is the velocity of the i th individual, im   is 

the mass of the i th individual, and i
inu  is the total force on 

the individual i  as a result of inter-individual interaction, 
i

ib v− represents the velocity damping term, and  i
extu  

denotes the external input. The external input is used for 
tracking a desired trajectory and a velocity damping term is 
used for viscous dissipation. The term i

inu  is for the 
cohesion of swarm and is of the form: 
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where ++ ℜ→ℜ:rg  and ++ ℜ→ℜ:ag  represents 
respectively the magnitude of repulsion force and the 
attraction force and the norm  is the Euclidean norm. The 
following assumptions on attraction and repulsion functions 
are made by [8]: 

Assumption 1. There exists corresponding functions 
ℜ→ℜ+:aJ  and ℜ→ℜ+:rJ  such that for any nℜ∈y  
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Definition 1. The swarm center nℜ∈x  and the velocity 
of the swarm center  nℜ∈v  is defined by 
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In this paper, the homogenous swarm is considered and the 
definition of homogenous swarm is as follows 

Definition 2. The swarm described by (1) is homogenous 
when the damping coefficients and masses satisfy   bbi =  
and mmi =  for any .i  

Definition 3. The swarm size +ℜ∈ρ is defined by 
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   The swarm size is the ultimate bound on the distance 
between the position ix  of the individual i  and the swarm 
center x . This definition is necessary for analyzing the 
cohesion of swarm.    
Let us define the position nMℜ∈x  and the velocity 

nMℜ∈v of the swarm members as  
TTMTTTMT
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There are different types of energy existed in swarms. 
Average internal energy of the swarm which is denoted as 
U   is given by: 
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where ℜ→ℜnMJ :  is the potential energy, 

+ℜ→ℜn
bE : is the bulk kinetic energy of the swarm, and 

+ℜ→ℜnM
kE : is the total kinetic energy which are given 

respectively as: 
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The complete energy discussion is provided in earlier work 
[16-17]. The swarm temperature can be viewed as an 
average of swarm internal kinetic energy.  

Definition 4. The swarm temperature ℜ∈T  is the 
average of the swarm internal kinetic energy : 

[ ] .  )()()( MEET bk vvv −=  (10) 
A modified swarm temperature variable gives a measure of 
swarm internal kinetic energy. The swarm temperature is 
directly related to velocity distribution.  
Next step is to study the rate of change in temperature. The 
time differentiation of temperature is given by: 

ψ+σ+φ=)(vT&  (11) 
where ψσφ  and , ,  are: 
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The swarm temperature derivative has three separate 
components. The first term φ  affects the temperature due to 
external inputs and the second term σ  and the third term ψ  
affects the temperature respectively due to artificial gradient 
force inputs and damping effect. The temperature can be 
computed in more distributed manner only by using relative 
velocity information between each pair of member.  

Lemma 1. In a homogenous case, the temperature can be 
defined as:  
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Proof.   See [17].  
As a final step in this section, the rate of change in artificial 
potential function is studied. The artificial potential function 

)(xJ  is linked to swarm cohesion. By study its behavior, 
more insight to cohesion problem can be achieved. First 
time derivative of potential function is expressed as:  
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where ijz  is the inter individual distance ji
ijz xx −=  . To 

analyze the effect of inputs on )(xJ , it is necessary to 
differentiate potential function for the second time. The 
second derivative has three separate components as:  

γβα ++= JJJJ &&&&&&&&  (17) 
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where αJ&&  ,  βJ&&  and γJ&&  are as follows: 
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Note that the relative degree of artificial potential function 
)(xJ  is two. The control inputs are present in the third 

component. The time derivatives of temperature and 
potential energy are used to calculate a control feedback in 
next section. 

III. CONTROL OF ENERGETIC SWARM 

A. Temperature Controller 
In this section, the objective is to track the desired 

trajectory of the swarm center with variable temperatures. 
Let )(tdx  denote the desired trajectory. Equations of motion 
for the swarm center can be shown as: 
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It is assumed that there is no velocity damping term; that 
means 0=ib , for any i . In other words, this assumption 
implies that the environment is non-viscous.  
    Design procedures include two different steps. The first 
step is to design the controller such that the swarm center 
tracks the desired trajectory. The second step is to control 
the swarm temperature by modifying the control input 
designed in the first step. In the first stage, the tracking 
controller is developed as: 
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where pk  and Dk  are positive constants. The above 
controller is a simple PD controller. Any combination of 
individual external input i

extu  that satisfies (22) guarantees 
the tracking for the swarm center. However, it does not 
guarantee the cohesion of swarm. 
Suppose that individuals are initially in a cohesive 
configuration, a simple way not to disturb the cohesion of 
swarm is to move all individuals with almost the same 
velocity. This implies a homogenous distribution of the total 
external control input among swarm members; that 
introduce a controller such as 
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where Mi ,...,2,1= . Note that the above distribution is 
designed for the homogenous swarm. 

The second step is to introduce a separate extra control 
input as i

Tu  for temperature control. Unlike the tracking 
controller, a nonlinear controller is required for temperature 
control.  

Proposition 1. Consider the following controller for 
homogenous swarm  mmi =  in non viscous environment   
e.g., 0=ib  for any .i  
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where the extra control is given by: 
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The ijα  is the control parameter and developed as: 
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where λ  is a positive constant and ijβ  is given as: 
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It can be shown that a swarm is tracking a desired trajectory 
)(tdesx  with a temperature ( )mMMTdes 4/)1( γ−= for any 

)( 0tx , )0tv( and )( 0tT . 
Proof.  First, a proof for trajectory tracking is given. For 

tracking, it is required to investigate the total external input. 
From (24) the total external input is calculated as: 
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To keep the tracking characteristic of the above control, the 
extra input i

Tu  should satisfy the following 

condition ∑ = 0i
Tu . This condition holds since control 

parameters ijα  satisfies the symmetry, e.g., jiij α=α  for 

any ji, .  Hence, the summation of i
Tu  is given by: 
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This means that the extra control input i
Tu  can be viewed as 

an internal input. The first part of proof is complete. It is 
required to calculate the temperature derivative. Three 
different terms of the temperature derivative is calculated as: 

[ ] 0   ,  )(1   ,0
1

=ψ
⎭
⎬
⎫

⎩
⎨
⎧

+=σ=φ ∑
=

M

i

iTi
T

i
inM

vuu  (30) 

Since i
Tu  can be viewed as a part of internal controller, it 

can be concluded that the external input is distributed 
homogenously. From homogenous distribution of external 
control and (12) it can be concluded that the first term φ  is 
zero for homogenous swarm. The third term ψ  is zero due 
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to non-viscous environment; i.e. 0== bbi .  Combining 
(2),(25), and (30): 
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Substituting (26) in (31): 
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Form lemma 1 and above equation, it can be concluded that: 
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The above first order differential equation is stable 
since 0>λ . This implies that desTtT →)( . This completes 
the proof.  

B. Multi-output Controller 
In this section, the multi-output controller is desired. It is 

assumed that the swarm is homogenous and the environment 
is non-viscous. The control objectives are as follows:  
trajectory tracking for swarm center; temperature and 
potential energy regulation. 
Let )(tdx  denote the desired trajectory, desT  is desired 
temperature and dJ  is a desired artificial potential energy. 
The design procedure is like before so the tracking 
controller is developed as (23) and will be modified by extra 
control input T

iu as (24).Then inputs are modified for 
temperature and potential energy control. The design is 
based on feedback linearization method. Therefore, the 
control input should be designed in such a way that it 
satisfies the following condition: 
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where λ  and τ  are positive constant. Like before, to keep 
the tracking characteristic of the above control, the extra 
input should satisfy the following condition ∑ = 0i

Tu . In 
consequence, temperature derivative can be calculated 
similarly by (30). Combining (30) and (34): 
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On the other hand, combining (35) and (16)-(20): 
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Any choice of T
iu which satisfies conditions (36), (37) and 

∑ = 0i
Tu ensure output regulation and trajectory tracking of 

swarm center. The extra control input is developed as: 
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where ijc  and ijκ  are the control parameter.  The symmetry 

of control parameters ensures the condition ∑ = 0i
Tu . 

Symmetry of control parameter means that  jiij cc =  and 

jiij κ=κ  for any ji, .  One symmetric choice can be the 

case that ccij =  and κ=κij  for any ji, .   
To calculate the control parameters in this case, control 
input (38) is substituted into right hand side of (36) and (37). 
Then, Solving (36) and (37) for κ  and c as 
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where A matrix and B vector are expressed as 
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The proposed method controls swarm temperature and 
artificial potential energy simultaneously. Control of the 
potential energy guarantees the cohesion of the swarm.  
Bounding potential energy will result in swarm cohesion. 
Suppose the combine attraction repulsion function )(⋅h  
given by: 

( ) ( ) ( )yyy ra JJh −=  (42) 
It is assumed that )(⋅h  is radially unbounded function and it 
can be rewritten as: 
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where )(1 ⋅h  is absolutely increasing and )(2 ⋅h  is absolutely 
decreasing and  )(⋅h  has global minimum at δ=y . If the 
potential energy is bounded: 

max)( JJ ≤x  (44) 
Then the size of swarm is bounded  
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where maxρ can be estimated as 

( ) ( )  )()3(5.0  /1 2
max

1
1max δ−−−−=ρ − hMMJhMM  

The formal derivation of the bound is given in [17]. The 
multi output control with potential regulation guarantee the 
cohesion of swarm.   
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IV. SIMULATION RESULTS AND APPLICATION 

A. Simulation Result 
In this section, simulation results are based on two 

different experiments. In the simulations, the swarm has 10 
members and is moving in 2-D space for easy visualization. 
The attraction and repulsion functions are expressed by: 

2/2.0)(    ,/2.0)( yyyy == ra gg  (46) 
The purpose of the first experiment is to validate the 
proposed multi-output controller in section III. Fig. 1 shows 
how the swarm temperature and swarm potential energy 
approaches to the corresponding desired values. Fig. 2 
shows the bound on the swarm size at two different level of 
potential energy. Note that the swarm internal energy is 
equal for both cases. Therefore, the one with smaller 
potential energy has more temperature. The size of the 
swarm expands due to increase of potential energy. The 
potential control guarantees the cohesion of the swarm since 
the upper bound on potential function implies the bound on 
swarm size.  
In the second experiment the swarm center moves such that 
its center moves around a circle of radius 15.00 with 
different desired temperature. Fig. 3 shows the covered area 
by swarm of WMRs while the desired temperature is set at 
two different temperatures. The swarm covered more area 
when it has higher temperature. This shows that a more 
thorough foraging behavior can be obtained using a higher 
temperature.  
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Fig.1 swarm temperature and potential energy versus time  
 

B. Swarm of Wheeled Mobile Robots  
In this section, the feedback linearization method is used 

to implement the proposed temperature controller. The 
kinematic and dynamic equations of WMR agent as shown 
in Fig. 4 are given by: 
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Fig.2 swarm size at two different potential energy levels 
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Fig.3 swept area at T=0.5 (J) vs. swept area at T=4.5 (J) while J=20.00 
 
where cv  is the surge speed of WMR. ),( cc yx  denotes the 
position of the center of robot. The orientation of the robot 
is given by θ  and ω  is angular speed, m  is the mass of 
WMR and J  is its moment of  inertia, Rτ  and lτ  are the 
torques generated by the right and left wheel respectively, 

2/d  is  the moment arm and ρ  denotes the radius of  the 
wheel. 
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Fig.4 wheeled mobile robot 
 
The following system can be transformed via feedback to 
simple integrators. The input-output linearization 
transformation matrix is not unique. One simple choice for 
output can be expressed as: 

θ+=
θ+=

sin
cos

2
1

byy
bxy

c
c  (48) 

),( 21 yy  denotes the Cartesian coordinate of the tip of the 
robot. As shown in Fig. 4, b  is the drift distance along the 
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main axis of the unicycle.  Second times differentiation of 
1y  and 2y are given as: 
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Note that wA  is invertible so the system is transformed into 
input-output linear form by using the following input 
transformation: 
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),( 21 uu  is a linear feedback controller.  Consequently, the 
input-output equation is as follows: 
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=
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The defined controller will make the tip of the unicycle 
follow any desired trajectory. Moreover, it can be showed 
that the internal state is stable. For more details, see [21] and 
the reference in there.  
After feedback linearization, the model is turned to simple 
double integrator model. Therefore, the swarm energy 
controller can be implemented for a case of swarm of 
unicycle. A control input for the thi  WMR can be shown as: 
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where i
inu  , i

extu  and i
Tu  are respectively proposed  by (2), 

(23) and (38) .  Also note that the choice of ix  and iv  are 

as follows: ( )Tiii yy 21=x  and ( )Tiii yy 21 &&=v  for a case of 
groups of unicycle. 

V. CONCLUSION AND FUTURE WORKS 
In this paper, an M-member continuous-time energetic 

swarm problem is studied. A new swarm temperature 
variable is introduced to investigate the internal kinetic 
energy properties of the swarm. A controller is developed 
such that the swarm center can follow any desired trajectory 
with different corresponding swarm temperatures. 
Moreover, multi-output controller is established to control 
swarm temperature and its potential energy simultaneously. 
The swarm size can be varied by changing the potential 
energy.  Finally, it is shown that feedback linearization 
method can be used to implement the proposed method for a 
group of wheeled mobile robot.  Simulation is used to 
validate the results and to demonstrate the proposed method 
can be used effectively for multi-agent coverage path 
planning problem. Future work includes a control method to 
move a swarm with a predefined velocity distribution. 
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