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Design of Delay-Range-Dependent State Estimators for
Discrete-Time Recurrent Neural Networks with Interval
Time-Varying Delay

Chien-Yu Lu , Jui-Chuan Cheng and Te-Jen Su

Abstract—This paper performs a global stability analysis of a
particular class of recurrent neural networks (RNN) with
time-varying delay. Both Lipschitz continuous activation
functions and monotone nondecreasing activation functions are
considered. Globally delay-dependent robust stability criteria
are derived in the form of linear matrix inequalities (LMI)
through the use of Leibniz-Newton formula and relaxation
matrices. Finally, two numerical examples are given to illustrate
the effectiveness of the given criterion.

Index Terms—Delay-range-dependent, state estimator,
interval time-varying delay, linear matrix inequality.

I. INTRODUCTION

ver the past few years, a great deal of interest has been

devoted to the study of recurrent neural networks (RNNs)

in various areas including signal processing, model
identification, optimization, pattern recognition and
associative memory. Many applications heavily have been
presented on the dynamical behaviors for recurrent neural
network. Additionally, time delays are frequently
encountered in many practical areas, and it is now well
known that time delays are one of the main cause of
instability and oscillations in systems. Therefore, time delay
is variant with time due to the finite switching speed of
amplifiers. The existence of time delay could make delayed
RNNs be instable or have poor performance. So, many
research interests have been attracted to the stability analysis
for delayed RNNs. A great deal of results related to this issue
have been reported in this literature; see, e.g., [1]-[12].

State estimation is a subject of great practical and theoretical
importance which has received much attention in recent years.
Since the neuron states are not often fully available in the
network outputs in many applications, the neuron state
estimation problem is also important for many applications to
utilize the estimated neuron state. The problem addressed is
to estimate the neuron states through available output
measurements such that the dynamics of the estimation error
is globally exponentially stable. Recently, the state estimation
problem for recurrent neural networks with time-varying
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delays was studied in [13], where an effective linear matrix
inequality (LMI) approach was developed to solve the
problem [14]. When the number of summands in a system
equation is increased and the differences between
neighboring argument values are decreased, systems with
distributed delays will arise. Recently, the state estimation
problem for such recurrent neural networks with mixed time
delays has been dealt with in [15], where sufficient conditions
for the existence of estimator have been obtained in terms of
LMIs. However, it should be pointed out that the
aforementioned results for both the discrete delay case and
distributed delay case are delay-independent, that is, they do
not include any information on the size of delays. It is known
that delay-dependent conditions are generally less
conservative than delay-independent ones, especially when
the size of the delay is small. Therefore, delay-dependent
results on the state estimation problem for RNNs with
time-varying delays were proposed in [16], where the
proposed method was applicable to the case that the
derivative of a time-varying delay could take any value.
However, it should be pointed out that the aforementioned
results are continuous delayed RNNs. Recently, the dynamics
analysis problem for discrete-time recurrent neural networks
with or without time delays has received considerable
research interest; see, e. g, [17]-[24]. Although
delay-range-dependent results on the globally robust stability
problem for discrete-time RNNs with interval time-varying
delay were presented in [25], no delay-range dependent state
estimation results on discrete-time recurrent neural networks
with interval time-varying delay are available in the literature,
and remain essentially open. The objective of this paper is to
address this unsolved problem.

This paper deals with the problem of state estimation for
discrete-time recurrent neural networks with interval
time-varying delay. The interval time-varying delay includes
both lower and wupper bounds of delay. A
delay-range-dependent condition for the existence of
estimators is proposed and an LMI approach is developed. A
general full order estimator is sought to guarantee that the
resulting error system is globally asymptotically stable.
Desired estimators can be obtained by the solution to certain
LMIs, which can be solved numerically and efficiently by
resorting to standard numerical algorithms [14]. Finally, an
illustrative example is provided to demonstrate the
effectiveness of the proposed method.
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II. PROBLEM FORMULATION

Consider the following discrete-time recurrent neural
network with interval time-varying delay

x(k +1) = Ax(k) + W, g(x(k)) + W g(x(k — (k) + 1(k) » (1)
where  x(k) = (x,(k), x,(k), -, x,(k))" 1S the state vector,

A =diag(ai,ar+ra) With |g/<1s i=1,2,,n , 15 the state

feedback coefficient matrix, p» and = are the
interconnection matrices representing the weighting
coefficients of the neurons,

g(x(k) =[g, e (k) g, (e, (k) € R” is the neuron activation
function with g(0)=0, (k) is the time-varying delay of the
system satisfying

n<r(k)<zy0 keN, 2
where o <, <., are known integers. /() is the input vector.

In order to obtain our main results, the activation functions
in (1) are assumed to be bounded and satisfy the following
assumption.

Assumption 1
Froany ., . <R, the neuron activation functions satisfy

g(6)-g (&) Salg—¢| i=12,n 3)

Our goal in this paper is to provide an efficient estimation

algorithm in order to observe the neuron states from the

available network outputs. For this reason, the network
measurements are assumed to satisfy

y(k) = Cx(k) + q(k, x(k)) » 4)

where (k) e g is the measurement output and ¢ is a known

constant matrix with appropriate dimension. 4k, x(k)) is the

neuron-dependent nonlinear disturbances on the network
outputs and satisfies the following Lipschitz condition

gk, )~ gk, )| <[0(c, ~ ) ®)
where 0 is a known real constant matrix.

For system (1) and (4), we now consider the following
full-order estimator

Rk +1) = AR(K)+ W7o F(R(k)) + 7, F(R(k - 7(k)) + 1(k) + L(y(k) = CR(k) — q(k, £(k))
+1(k)> (6)
where #(k) is the estimation of the neuron state and 7 ¢ g
is the estimator gain matrix to be determined.
Our target is to choose a suitable £ so that () approaches
x(k) asymptotically. Let
e(k) = (k) — x(k) (7N
be the state estimation error. Then, the error-state dynamics
from the system (1) and (6) can be obtained as

e(k +1) = (A — LeYe(k) + o F (e(k)) + W, F(e(k — t(k))) - Lg( e(k))» (8)
where

F(e(k)) = F(3(k)) - F (x(k)) )
F(e(k —7(k))) = F(&(k - t(k))) - F (x(k — 7(k))) »

g(e(k)) = q(k, 5(k)) — q(k, x(k)) -

It is easy to see from Assumption 1 and the condition (5) that
the solution of (1) exists for all x>0 and is unique [26].
Moreover, there exists a unique zero equilibrium point to the
error-state system (8).

The purpose of this paper is to develop
delay-range-dependent conditions for the existence of
estimators for the discrete-time recurrent neural network with
interval time-varying delay. Specifically, for given scalars
lower and upper bounds of delay, we are concerned with
finding an asymptotically stable estimator in the form of (8)
such that for any lower and upper bounds of delay satisfying
r<z(k)<;, the error-state system (8) is globally

asymptotically stable.

III. MAIN RESULTS

This section explores the globally delay-range-dependent
state estimation conditions given in (8). Specially, an LMI
approach is employed to solve the estimator if the system (8)
is globally asymptotically stable. The analysis commences by
using the LMI approach to develop some results which are
essential to introduce the following Lemma 1 for the proof of
our main theorem in this section.

Lemma 1: Let p, § and P be real matrices of appropriate
dimensions with p > 0. Then, for vectors x, , e g"

25" DSy<x'DPD'x+y ST PS y- Q)

For any matrices g,, g, and 7, (i=1,2,..,7) of appropriate
dimensions, it can be shown that

O =2[" K Ei+e" (k—t(k) Ex+ e (k—12) Es+e' (k— 1) B+ F' (e(k)) Es
+ ' (e(k —7(k)) Eo+ " (k +1) E7]

. (10)

x[e(k) —e(k —7(k)) - Ai”(]c](/) —e(j=1)]=0

©,=2[e" (k) Si+e' (k—1(k)) Sa+e (k—12) S5 +¢' (k_Tl)S4+ﬁr(e(k))S5
+ ' (elk —7(k) Ss+ ¢ (k+1) 7]

, (11)

xletk— (k) —e(k =)~ 3 (e(j)—e(j—1)]=0
jok—g 1

O;=2[e" )T+ (k—t(k)T>+e (k—7)Ts+e" (k—1)To+ £ (e(k)Ts
+ Bl etk =7(k) To+e" (k+1)T5]

kr, . A ) (12)
Lok =) etk k)~ 3 (e(/)=e(/- )] =0
Bu= 20" () Hy+ ¢ (k= 2(k)- 04 ¢ (k= )0+ ¢ (k- 1)-0+ £ (e(k))-0
+ ﬁ’ (e(k 7’[(k)))<0+er(k +1)-0]
x[e(k +1)—(A—-LC)e(k)— Woﬁ(e(k))
W Feth -tk + LiCeh)] > (13)

®s =2 " (e(k)) R F(e(k)) =2 £ (e(k)) Ry F(e(k))
+2 77 (el (k) Ree(k ~7(0) ~2 7 (elk ~ () Ree(k ~ (k) =0 - (14)
The following theorem is essential for solving the state
estimation problem formulated in the previous section.
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Theorem 1: Under Assumption 1, given scalarsg < ;, < ;, , the
error-state dynamics in (8) with interval time-varying delay
(k) satisfying (2) is globally asymptotically stable, if there
exist matrices P>0 , 0,>05 0,0, 7,>0, 7z,>0, @
nonsingular g, diagonal matrices p >0, g,>0 and matrices

Y.» Ei» s, and 7, (i=1,2,...,7) of appropriate dimensions
such that the following LMI holds
Q Y nE S Tl
y' -1 0 0 0 , (15)
nE 0 -0z 0 0 |<0
ST 0 0 —75(Z4+22) O
I’ 0 0 0 102>

Qr Qe Qs Qu Qs Qs Qp
QL Qn Qn Qu Qs Qx Qn
QL Qs Qi Q. Qs Qs QO
Q=al, 0k O Qu Qs Qs Qu
Qs Qi Qs Qs Qs Qs Qn
Qs Qs Qi Qi Q% Qs Qo
oh % oL onF o OF Q|
Qi =P+ t)O, + 1221+ 0 Zo+ E1+ EL+ 0T 0+ 0,
Qu=FE:—Ei+8+Ti» Qus=E;—S8i» Qu=Ei~Ti» Qis=Es+T Rl >
Qu=Es» Qu=FEl—12Z1—tuZ:—C' Y+ A"H{ >
Qn=-0-E2—Ei+S:+ S+ T2+ Th> Qun=—E; =S+ 81 +T5 >
Qu=—E —To+S1+Tu> Qus=—ES+ST+TT> Qu=—E5+St+T4>
QO =-E1+87+T7 Qu=-0,-8;-837 Qu=-8:—T5>
Qas=—85> Qy6=—86> Q37 =—87> Quu=—Ts—Ts> Qus=—T5>
Qus==Té> Qu=—T7> Qss=—Ri—Rl> Qss=0> Qs =Wi H »
Qu=-R:T"' = (RT™ > Q=W HI >

Qn=—Hi—H{ +P+10:Z\+107Z2>

H=[gl 0 0 0 0 0 0],

Y=HL=[y] 0 0 0 0 0 0],

E=[gl EY E Ei EY El EiT>

S=[s{ st si si st st osiTs

T=irl %7 ThorhoTh T ; in which
T =diag(ai, ass - a1)> tn=12—17- 1N this case, a desired the
estimator gain matrix [ is given as [ = gy,

Proof: Choose the Lyapunov-Krasovskii functional candidate
for the error-state system in (8) as

Vk) =7 (k) + V2 (k) + V5 (k) + V4 (k)
= WP+ L S () el =Y Ziel)=eli =)+ S ()0l

+ Z Ze (J)Q.E(J)+ Ze () 0,e())

—ra j=k+i+

£ 5 S (e()-e(i-DY Za(e() - e(j-1) (16)

i=—ry j=k+i+]

Then, the difference of y (%) along the solution of (8) is given
by

Ay, (k)= e’(k +1)Pe(k +1)= " (k)Pe(k)>
A= 3 Sl —e(j =) Zi(e()) - e(j =)

i=—7y j=k+i+2
- Z E(f(” e(j=1)" zi(e(j)—e(j 1)

 ea(eh D)= ek Zy(elh 41— )
~ e el = 1) Zi(e() e~ D)

J=k=z,

- Z,ge(J) e(j =) Zi(e()—e(j 1)’

AV;(k) £ " (D)[(z21 + D) Q) + Q,Je(k) = " (k — (k) O, e(k — 7 (k)
- eT(k - Tz)Qze(k ~172)

Ay (k) = Z Z(f(]) e(j =)' Za(e(j)—e(j = 1)

,,,k,

- Z Z(e(/) e(j~1)" Zx(e(j) ~e(j~1)

< (r— ek +1) — (k)Y Za (el +1) — e(k))
- () =elj=1) Zx(e()=e(j=D)

J=k=,*

- Zk(@(J) e(j=1) Zy(e(j)—e(j-1)’

j=k

Defining the following new variables

n(k) =[e" (k) " (k— (k) & (k — 1) " (k=) £ (e(k)) 7 (elk — (k) & (k + DT >
E=[gl EY E Ei EY El EiT>

S=[s st s7 si st osiosiTs

T=[rf 1% 75 15t o1t iy

H=[gr 0 0 0 0 0 o

It follows from (16), (10)-(14) that

AV (k)

= AV (k) + AV (k) + AV (k) + AV 4 (k) + @)+ Dy + D3 + Dy + Ds

< gT(k+1)Pe(k+1) & (k) Pe(k) + 1, (e(k +1) — e(k))" Z,(elk +1) —e(k))

- Z (6(]) e(j=1)" zi(e(j) —e(j 1)

J=k=r2+1

— S(el)—eli~ D) Zi(e() ~e(j - 1)

j=k—t(k)+1
+e! () ((ro-r)+DQ, e(k) — & (k = 7(k)) O, e(k — 7(k))
+ (Tz n)(e(k +1)—e(k))" Z,(e(k +1) - e(k))

- Z (e(/) e(j 1)) Za(e(j)—e(j 1)

/Az'

= S ey — e =) Zalel() —e(i—1)

Jj=k—r(k)+1

+e' (k) Q,e(k)— e (k—1,)0,e(k —15)
+2n" (k)E [e(k) - e(k — 7(k)) - ~ i(e(j)—e(j—l))]

120" (S etk - (k) —e(k— )~ > (e(/) e(j—1)]

J=k=,t
~27" ()T [e(k — 1)~ e(k - )= z (e(/)=e(/=D)]
=25" (k)H [e(k +1) = (A~ LC)e(k) — W F (e(k))
— W F(e(k = t(k))) + Lg(e(k))]
+2 " (e(k)) R F(e(k)) =2 B (e(k)) R F (e(k))

+2 £ (e(k — (k) Roe(k — (k) ~ 2 £ (e(k — 7(k))) Rye(k — (k) -(17)
Moreover,
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-2 O z( (e =e(j=1)

T -1 T & ; : T ; ; > (18)
< (DEZVE nk)+ AZ(k()el(l) —e(j-1) Zi(e())—e(j-1)
27 0SS () - e~ 1)

j:k—z-z-ﬂ

(2= ()S(Z,+ 72) ' ST (k)

+ "8 eli=DY Za(e)) el -1)" (19)
~27' (7 MZZ (e()=e(/=1)
(20)

<G (DT 23T 00)+ 5 ()= e =) Z:(e) - el =)
Using Assumption 1 and noting that p »0 and g,>0 are
diagonal matrices, one has

2 £ (k) R F(e(k)) < 2 i (e(k)) RiTe(k) » @1
<2 ek~ (k) Raelk — (k) < -2 " (elk — (k) RoT™ Fleth — (ks (22)
where T = diag (a1, g,y a) -

Substituting (18)-(22) into (17), it is not difficult to deduce
that

M0 < R+ EZ B+ o0 S 258"+ oa T 23 T+ Y Y (k) > (23)
From condition (15) and Schur complement, it can be

concluded that

Q+ 0 EZ0 E + 00 SZ3' ST +en T 25 T + Y Y7 <0 24

It follows from (23) that the estimation error-state system (8)

is asymptotically stable for interval time-varying delay (%)

satisfying (2). This completes the proof of Theorem 1. [ ]

Remark 1: Theorem 1 provides a sufficient condition for the
globally stability of the discrete-time recurrent neural
network with interval time-varying delay given in (1) and
proposes a delay-range-dependent criterion. Even for , -o¢,

the result in Theorem 1 may lead to the delay-dependent
stability criteria. In fact, if ,, -, 7, with ; >0, being

sufficient small scalars, 7.=0, i=1,2,--,7, E,=0> S,=0>
Theorem 1 yields the following delay-dependent criterion.

Corollary 1: Under assumption 1, given scalars ., > 0, ;, =0,

the discrete-time recurrent neural network with time-varying
delay satisfying (2) is globally asymptotically stable, if there
exist matrices P>0, 0,505 0,505 7,>0 and diagonal
matrices p >0, g,>0 and matrices g, and g, (i=1,2,..-,7) of
appropriate dimensions among g, = g, =0 such that the

following LMI holds
Q Y nE S
Y -1 0 0 ; 25
, <0
. E 0 -7 0

where

(Qn QO Qs Qs Qe Qo
Oh Qn On Qs Qi Qp
Qi O Qn Qs Qi Qu
Qs QO Qs Qs Qs
Qe Q% Qe Q% Qe Qa

o QL O QhF Q|

Qi =—P+(r2+)0,+ 1, Z\+ E\+ E[ + 070+ 0, >

Qu=FE:—E+81> Qi3=Ei =8> Qus=ES+T7 R > Q6= Eg»

Qu=El—n:Zi—ta(Z:+Z) - C' Y] + A" HI >

Qn=-0,—E:—E}+8,+ 85> Qu=—E; — S+ 53>

Qus=—E5+85 >  u=—E¢+S; >  Qn=—Ei+S7 >

Qu=-0,-8-8 > Q=-S5 » Q=-8¢ > Qu=-57 >

Qss=—Ri—Rl>» Q=05 Qs =WiH{ » Qe =—RT ' = (R.T")">

Qa=WIH{> Qn=—H —H{ +P+1,7>

H=[gT 0 0 0 0 0]>Y=HL=[y/ 0 0 0 0 0],

E=[El E} E} EY Ei EIT .

S=[s" st st s' st ST Therefore, the estimation

error-state system (8) (i.e. the lower bounds ; =0 and the

given upper bounds ,,) approaches globally asymptotically

delay-dependent stability. In this case, a desired the estimator
gain matrix [ is givenas f = y'y,.

IV. NUMERICAL EXAMPLES

Example 1: Consider the discrete-time recurrent neural
network with the following parameters

0.1 0 0 0.1 -0.5 04
4=|0 02 0| w,=|-08 —0.7 09

0 0 02 02 03 -0.6

0.5 03 01 The activation functions in this
w,=101 05 02

02 03 05

example are assumed to satisfy Assumption 1 with ,, =0.034,
2= 0429, 4, =0.508 - The non-linearity 4(k, x(k)) is assumed
to satisfy (5) with

0.1 00 , for the network output, the parameter ¢ is
0=l0 02 0
0 0 03
given as Lo g . By the Matlab LMI Control Toolbox, it
0 01

can be verified that Theorem 1 in this paper is feasible
solution for all delays 2 < 7(k) <14 (i.e. the lower bound ,, =2

and the upper bound ,, =14) as follows
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3.1336 —0.1112 0.1746 1.2066 —0.0397  0.0629
P=|-0.1112 1.8526 0.0769] 0,=|-0.0397 0.8434  0.0660
0.1746  0.0769 3.5254 0.0629  0.0660 1.4637
[ 0.7478 —0.0289  0.0330 [ 0.0270 -0.0028  0.0030]
0,=|-0.0289 0.2403 —0.0524]’ Z,=|-0.0028 00121 0.0009 |
| 0.0330 —0.0524  0.5401 | 0.0030 0.0009 0.0198
[ 0.0316 —0.0033  0.0034 [ 0.0348 —0.0043 0.0042]
Z,=[—-0.0033 0.0142 00012] ={-0.0043 0.0124 0.0013
| 0.0034 0.0012 0.0230 | 0.0042 0.0013 0.0243 |
[ 1.9166 i 17912 0 0
Ri= 0 16715 0 |"Ry=| 0 14864 0
| o 0 1.8935] 0 0 1.4369
(34569 —0.1965  0.3201] 03713 -0.0400  0.0373
H,=|0.1234 2.0734  0.1097 y,=| 0.0828 —0.2346 —0.1317
[0.0025  0.0543  3.6305 | -0.1313 -0.3393  0.3519

Therefore, according to Theorem 1, a desired estimator can
be computed as

0.1128 —-0.0092 -0.0022
L=Hi'y,=| 0.0352 -0.1077 -0.0686
—-0.0368 —0.3393  0.0979

Thus, by Theorem 1, the desired estimator guarantees
asymptotic stability of the error-state system in (8) (i.e. the
lower bound ., - > and the upper bound ., -14)

V. CONCLUSIONS

In this paper, the problem of state estimation for a
discrete-time recurrent neural network with interval
time-varying delay has been studied. A sufficient condition
for the solvability of this problem, which takes into account
the range for the time delay, has been established. The desired
estimator guarantees asymptotic stability of the estimation
error-state  system. An illustrative example has been
presented to demonstrate the effectiveness of the proposed
approach.
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