
  

  

Abstract—Due to regulations and mandates in the 

pharmaceutical industry [9], it is important to be able to 

achieve real time release and achieve consistent batch runs. 

From a batch reporting perspective as well as for proactive 

scheduling of downstream steps in the manufacturing, accurate 

predictions of the end point quality indices of the batch is 

important. This paper presents an approach that is based on 

functional space approximation and multiway PLS for 

prediction of the batch quality indices. A novel yet simple 

method for completing a batch record during online batch 

monitoring and prediction is proposed. The proposed 

methodology has been validated on representative simulations 

involving a fed-batch fermentation for the prediction of final 

antibiotic yield as well as the batch durations. 

I INTRODUCTION 

ROCESS monitoring is utmost importance in the 

operation of high value, low-volume batch processes 

towards meeting stringent quality constraints and 

minimize waste. The inherent nonlinear, time varying nature 

of the processes and varying initial as well as process 

conditions, result in batch-to-batch variation in general and 

unequal batch durations in particular. This nonlinearity and 

the variation in the batch durations inhibit the direct usage of 

multivariate statistical tools (PCA, PLS etc) and pose new 

challenges in monitoring and quality prediction. Both offline 

(model building steps) and online (deployment of model) 

tasks for batch process monitoring have their own unique 

challenges. During the model building steps some of the key 

challenges are related to (i) proper unfolding of the data 

matrix, (ii) synchronization of varying duration data and (iii) 

building the models for the prediction of yield and batch 

duration. In addition to these challenges, prediction models 

need to be developed for deployment during online batch 

runs so as to to predict the evolution in terms of batch 

durations and their yields.  

 

To address time varying correlations of batch processes, 

Chen and Liu [1] proposed to partition the total batch 

duration into stages and develop PCA models for each of 

these stages]. This helps in better fault classification when 

compared with the application of a single PCA for the entire 
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batch in offline monitoring. However the staged PCA 

approach requires the prediction of the end of each stage,   

which is not straightforward in an online monitoring context. 

 

To account for the unequal data records during the offline 

model building step, various methods have been proposed in 

literature. Nomikos and MacGregor [2] proposed the use of 

an indicator variable against which the time evolution of a 

batch can be represented. However, such indicator variables, 

satisfying the conditions of monotonicity,  may not be 

generically available for all batches. Kassidas [3] proposed a 

method based on dynamic time warping (DTW) algorithm to 

synchronize the variable trajectories. DTW appropriately 

translates, expands and contracts the patterns so that similar 

features within the patterns are matched. However, time 

warping of batch process data could lead to a loss of 

valuable information leading to relatively poorer 

discrimination and classification. Chen and Liu [4] have 

addressed the problem of unequal batch lengths through the 

use of polynomial based function space analysis to 

synchronize the variable trajectories. This method 

synchronizes all trajectories based on the concept of 

orthonormal function (Legendre) approximation.  

 

On the other hand, the key difficulty during online 

monitoring is related to the completion of the measurement 

record for an on-going, evolving batch. This problem has 

been addressed in the literature [2] in a variety of ways. 

Nomikos and MacGregor proposed three methods to 

complete the batch data record, viz. (1) filling the future data 

in accordance with mean average trajectory calculated from 

the historical normal batch data, (2) assuming that the future 

deviations will remains same as at that at the current instant 

so as to this deviation to average normal trajectory and (iii) 

use the MPCA model to predict the future data from (or 

MPLS) model. The above methods are known to perform 

satisfactorily for equal batch duration data; however for 

unequal duration batches, one has to predict the age of new 

batch in order to complete the batch data. Kassidas et al. [3] 

proposed a DTW based method to predict the age of 

evolving batch. The DTW algorithm helps to find how old 

the batch is relative to the reference (average) trajectory.  

 

From an online monitoring perspective, it is often times 

quite useful if a characterization of the quality indices at the 

end point of the batch is available early during the batch 

evolution [8]. Early prediction of the batch duration is useful 

in proactive scheduling of down stream processing 
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equipment. Furthermore, early prediction of the end point 

quality is also useful from the context of estimating the loads 

that would be imposed on the subsequent purification steps, 

for example in an antibiotic fermentation. 

 

In this paper, we propose to address some of the issues 

related to this task of early prediction of end-quality indices, 

using a framework that is based on functional space 

approximation and multi-way PLS.  During the model 

building step, the functional space approximation of the 

batch trajectories generates a regressor matrix that is 

compact and parsimonious owing to the orthonormal 

property of the polynomials used. The multi-way PLS 

algorithm [10,11] is proposed in this framework to enable 

the development of a predictive model that relates the 

coefficients in the regressor matrix to the final quality 

indices of the batch.   During on-line monitoring, it is 

necessary that an incomplete batch record be completed so 

that it can be subjected to functional space approximation. 

Here, we propose to use a simple Euclidean measure based 

strategy to select a batch from the repository that is closest 

to the evolving batch, and then perform the task of data 

filling. The methods proposed in this paper have been 

validated using data generated from simulations involving a 

representative fed-batch, nonlinear antibiotic fermentation 

process.  

 

This paper is organized as follows:  Issues related to data 

matrix unfolding and functional space approximation using 

Legendre polynomials are presented in the section 2. The 

multi-way PLS algorithm for regression of the end quality 

indices is briefly presented next in section 3. Issues related 

to completing a batch record of an evolving batch are 

discussed, and a simple Euclidean distance based method to 

assess similarities and fill the batch record, is presented in 

section 4. Finally, results for the prediction of the final 

quality indices using simulation data is presented in section 

5, followed by a summary of the work. 

II STATISTICAL MODEL BUILDING 

As mentioned earlier, the key steps in statistical model 

building are related to the data unfolding, handling time 

varying correlations and varying batch durations. In the 

sequel, we discuss briefly the salient aspects of each step.  

 

Batch processes exhibit three way variations in the space 

of variable, time and batch runs as shown in the Fig. 1. To 

apply multivariate statistical techniques for batch process 

monitoring, the three way array is generally unfolded into a 

two way data matrix. As is well known there are three 

possible ways to unfold the three way array data matrix slice 

by slice and two possible ways to rearrange the slices [5]. 

Each of these six possible arrangements of 3- way array data 

results in a large two dimensional matrix. The direction of 

unfolding influences the correlation structure that can be 

 

Figure 1 Unfolding of the 3 way batch data to 2 way batch 

data by slicing in (a) x – axis (b) y – axis and (c) z - axis 

 

captured in subsequent steps of variance analysis. Unfolding 

the three way data matrix in the batch direction has a number 

of merits viz. the resulting mean centering along columns 

results in deviations around a mean trajectory and 

monitoring using these deviations is less likely affected by 

the nonlinearities present in the data [6]. 

    (1) 

 

Assuming the three way data matrix to be represented by 

X (I x J x K) with I,J,K being the indices for the batch, 

variable and time, respectively, the unfolding step along the 

batch direction yields a two way data matrix Z consisting of 

batches as samples as shown in Equation 1. 

 

It must be noted that due to unequal batch durations, the 

rows in the above matrix Z has different lengths; also for a 

typical batch set, the column space is of higher dimension 

than the row space. Towards a more compact representation 

of the time series variable profiles, Chen & Liu [4] proposed 

the functional space approximations using orthonormal 

polynomials, which we briefly discuss next. 
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For each variable V in a batch, the time series behavior can 

be approximated as below.  

∑
=

=
P

p

ppK cV
1

},3,2,1{ 1
φ…                                              (2) 

 

where K1 is the time duration of the variable in a batch 

cp  is the coefficient associated with the basis function 

Φp  is the orthonormal basis function. 

 

Each of the variables that are measured in the batch can 

likewise be expressed in a similar expansion of the 

orthonormal polynomials. Accordingly the time series of 

each variable in the matrix Z can be rewritten in a more 

compact form using the coefficients c associated with the 

functional expansion as in Equation (3). 
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                                                                                (3)  
 

To arrive at an optimal order for the approximation of 

different variables, we propose to use the relative 

reconstruction error (RRE) as a criterion. The RRE is an 

akaike-information like criteria that weighs the 

reconstruction error of a variable and the number of 

coefficients used for representation of its time domain 

variable profiles appropriately as,  
 

rderww o)1(MSAERRE ×−+×=                               (4) 
 

where MSAE is the mean Square of approximation error and 

w is the  weighting factor. The model order that minimizes 

the RRE is chosen for the functional approximation of the 

batch profiles. Having generated a compact representation 

for the batch measurements, the regression model relating 

these measurements to the quality indices needs to be 

developed. This development is briefly discussed next. 
 

III   MULTIWAY PARTIAL LEAST SQUARE (MPLS) 

 

Multi-way Partial Least Squares (MPLS) [10, 11] is 

equivalent to the application of the regular PLS algorithm on 

the unfolded matrices. In this procedure, the end quality 

indices (yield and batch duration in our case) for the normal 

batches are aggregated into a matrix Y and are regressed 

onto the matrix of features Z shown in Equation 3. 

 

 

 

 

 

Figure 2: Overall approach for the prediction of batch yield 

and duration 

 

The overall architecture for the batch process monitoring 

and quality prediction as depicted in Fig. 2 is described 

below: 

 

Step A:  Data Preprocessing  

 Scaling 

The new batch data is scaled by the average mean and 

average range estimated from the normal historian batch 

data. Let NEWB be the resultant scaled new batch data. 

Function Space Analysis – Legendre Polynomial 

Approximation 

The new batch NEWB  is projected on legendre 

orthonormal functional space. The coefficients of projection 

on functional space are arranged in a row by placing the 

coefficients for all variables. Let LNEWB  be the feature 

vector for new batch. 

Step B:  Prediction of batch yield and batch duration  

The new scaled batch data is projected on PLS directions 

and the predictions of the batch yield and batch durations are 

obtained. 

 

 

4525



  

IV. ONLINE MONITORING – COMPLETION OF BATCH RECORD 

The online monitoring and prediction step for an evolving 

batch requires the completion of a batch record at each 

instant of time, via a future prediction of how the batch is 

expected to evolve. While a number of methods have been 

proposed earlier here we propose to exploit information 

related to the similarity of the evolving batch to a set of 

batches in the archived repository of past batches [5]. 

Towards this end, we use a Euclidean distance based 

measure to assess this similarity and also reconstruct the 

batches as a weighted sum of the profiles of similar batches. 

For brevity, we illustrate this reconstruction method for only 

the univariate case as follows: 

 

Consider a variable y in an online batch K that has 

evolved up to the current instant k. The Euclidean distance 

of this variable profile in the evolving batch from the 

variable profiles in the batch repository can be calculated as, 

1,2...NB  jfor  )(
1

2

,, =−=∑
=

k

t

jtKtj yyD                                (5) 

 

where NB is the number of batches in the repository. We 

next sort the batches in the repository based on these 

distances and consider the first L batches using the 

minimum distance criteria.  The reconstructed trajectory of 

the variable y in the evolving batch K is then defined as a 

weighted average of the L batches in the repository as, 
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where the weights wi are calculated in terms of the distances 

Dj as, 
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The duration of the reconstructed batch trajectory can be 

likewise written as a weighted average of the L individual 

batch profiles. The variable L would obviously influence the 

accuracy of reconstruction and needs to be carefully chosen. 

Also, the profiles of all the variables in the batch need to be 

considered while calculating the weights for the 

reconstruction. In our work, we propose to choose L by a 

visual examination of the reconstructed profiles for all the 

variables in the known batches, and the weights w are 

calculated by considering a multivariate extension of the 

distances discussed above.  

 

Once the future data points are filled, the batch record is 

complete and the steps mentioned in the section III are 

performed. The above method is repeated as soon as a new 

measurement in the evolving batch is available. 

V RESULTS 

In this section, we present validation results of the 

proposed framework using data from simulations involving 

an antibiotic fermentation process. The mathematical model 

of the fed-batch fermentation process presented in [7] was 

modified to incorporate varying batch durations and 

yields/antibiotic titer. The data consisted of time profiles of 

10 variables (such as temperature, dissolved oxygen, pH 

etc.) varying over batch durations of approximately 150 to 

350 hours and batch yields of 0.45 g/l to 1.1 g/l, across the 

batches. A total of 210 normal batches were generated. The 

time domain information of all the variables in all the 

batches were projected on to the functional space and the 

representative feature vectors for these 210 batches were 

obtained. Among the 210 normal batches, 170 batches were 

used for training the PLS algorithm and rest 40 batches were 

used for cross validation. 

Batch verification tests: 

From the perspective of batch reporting and consistency- 

checks necessary for validating the batch (in terms of issues 

related to real time release outlined in PAT guidelines for 

the pharma manufacturing[9]), it is important that the 

performance of the batch be checked after completion. 

Towards this end we present the validation result for the 

completed test batches.  

 

Figure 3. . Performance of PLS algorithm in predicting the 

batch duration for completed batches (test cases) 

 

Figures 3 & 4 depict the performance of the PLS 

framework towards predicting the final batch quality indices, 

viz. the batch duration and yields respectively. It can be seen 

that the batch durations are predicted very accurately 

compared to the batch yields. The predictions of the batch 

yield are particularly poor in the low yield region, which 

could be attributed to lack of sufficient training data in this 

region. 
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Figure 4. Performance of PLS algorithm in predicting the 

batch yield for completed batches (test cases) 

On-line quality prediction 

 
Figure 5. Performance of PLS in the prediction of batch 

length and yield in online monitoring  
 

Figure 5 presents the results of on-line prediction of the 

end quality indices of the batch. For this prediction, the 

value of L (see Equation 6) was chosen to be 5.  A higher 

value of L caused the evolving batch to be compared quite 

favorably with batches in the repository that were quite 

dissimilar and resulted in a bias in the prediction of the batch 

durations during the step related to the completion of batch 

records. On the other hand, a smaller value of L was found 

to adversely affect the reconstruction error and the quality of 

the yield predictions. The initial transients seen in Figure 5 

can be explained in terms of overlapping signatures of the 

batch trajectories during the initial phase of the batch. 

However, as the batch progressed in time, more 

measurements for the current batch were available and the 

signatures were more clearly resolved. As can be seen from 

Figure 5 , after approximately 25 hours of batch operation, 

both end-point batch yields as well as batch durations were 

accurately predicted. 

VI CONCLUSION 

A framework based on functional space approximation 

and multi-way PLS has been proposed in this paper, for 

early on-line, prediction of the end quality indices of the 

batch. The functional space approximation was used to 

address the problems of varying batch duration and generate 

a compact representation of the batch trajectories. The 

multiway PLS algorithm was used to generate a regression 

model relating the functional space feature vectors to the end 

quality indices of the batch. A simple Euclidean distance 

based method of data filling for an incomplete batch (during 

online operation) was proposed and found to satisfactorily 

predict the future batch evolution. The proposed 

methodology was validated using representative simulations 

involving a fed-batch fermentation, and demonstrated the 

practicality of the proposed methodology.  
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