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Abstract— This paper considers the design of a decentralized
adaptive approximation based control scheme for a class of
interconnected nonlinear systems. Linearly parameterized neu-
ral networks are used to adaptively approximate the unknown
dynamics of each subsystem and the unknown interconnections.
The feedback control and adaptation laws are based only on
local measurements of the state. A dead-zone modification
is used to address the issues of stability and robustness in
the presence of residual approximation errors. A simulation
example is used to illustrate the proposed control design
methodology.

I. INTRODUCTION

As engineering systems increase in size and complexity,

the design of a single, centralized, controller is becoming an

extremely difficult, if not impossible, task. This motivates

the design of decentralized controllers, using only local

information while guaranteeing stability of the entire system.

In recent years, there has been an increased interest in

the area of decentralized adaptive control and a variety of

decentralized adaptive techniques have been developed.

The problem of decentralized adaptive linear control was

introduced in [6], where weakly interconnected subsystems

with relative degree one or two were studied, and sufficient

conditions on the strength of the interconnections were

derived such that global boundedness was guaranteed. In [5]

and [12] it was demonstrated that the stability of the decen-

tralized system is ensured if there exists a positive definite

M-matrix, which is related to the bound of the interconnec-

tions. However, all these approaches were focused on linear

subsystems with possibly nonlinear interconnections. An

alternative decentralized adaptive control method using the

high gain approach was developed in [3], where a standard

strict matching condition is assumed on the disturbances. A

methodology for handling higher-order interconnections in a

decentralized adaptive control framework was developed in

[14].

A recent approach is based on the use of neural networks

to approximate the unknown interconnections. In [15], the

authors develop a decentralized control design scheme for

systems with interconnections that are bounded by first-order

polynomials. In [4], the authors employ a composite Lya-

punov function for handling both unknown nonlinear model

dynamics and interconnections. The interconnections are

assumed to be bounded by unknown smooth functions, which

are indirectly approximated by neural networks. In [11], [10]
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and [9] it is assumed that the decentralized controllers share

prior information about their reference models. Based on this

assumption, it is then shown that the subsystems are able to

asymptotically track their desired outputs.

In this paper we consider a system composed of nonlinear

subsystems coupled by unknown nonlinear interconnections.

We develop a decentralized adaptive approximation based

control law [2] and derive stability results for the closed-loop

system under certain assumptions. The presence of residual

approximation errors and other uncertainties are addressed

with the use of a dead-zone modification.

The paper is organized as follows. In Section II, we

formulate the problem, while in Section III we design a feed-

back control law by, first, assuming that the subsystems are

completely decoupled and later in the presence of unknown

interconnections. In Section IV, we examine the case where

the residual approximation errors are nonzero and make a

dead-zone modification in the adaptive laws to account for

these errors. In Section V, we illustrate by simulation of

a simple interconnected system the proposed decentralized

control design, while Section VI contains some concluding

remarks.

II. PROBLEM FORMULATION

We consider a system comprised of n interconnected

subsystems. The i-th subsystem, where i = 1, 2, . . . , n, is

described by

ẋij = xi(j+1), j = 1, 2, . . . , (ρi − 1)

ẋiρi
= fi(xi) + gi(xi)ui + ∆i(x1, x2, ..., xn)

yi = xi1,

where xi = [xi1, xi2, . . . , xiρi
]⊤ ∈ ℜρi is the state vector

of the i-th subsystem, fi : ℜρi 7→ ℜ and gi : ℜρi 7→ ℜ
are unknown smooth functions, ∆i : ℜρ 7→ ℜ (where

ρ =
∑n

i=1 ρi) represents the interconnection effect, ui ∈ ℜ
is the input and yi ∈ ℜ is the output of the i-th subsys-

tem. Our objective is to synthesize decentralized adaptive

approximation based control laws ui such that yi tracks a

smooth bounded reference trajectory ydi
in the presence of

the interconnections ∆i, using only local measurements.

It is assumed that the input gain function, gi(xi), is

bounded from below by 0 < gi0 ≤ gi(xi), where gi0 is

a known constant. This assumption is required in order to

guarantee the controllability of the feeback control scheme

[2]. In general, each gi(xi) is required to be either positive

or negative for all xi in a domain of interest Di ⊂ ℜρi .

For notational simplicity and without any loss of generality,
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here we assume that all gi(xi) are positive. Furthermore, the

desired trajectory vector Ydi
= [ydi

, ẏdi
, . . . , y

(ρi)
di

]⊤ of the

i-th subsystem is assumed to be available and bounded.

III. DECENTRALIZED ADAPTIVE CONTROL

For the sake of clarity, we first consider the special case

of completely decoupled subsystems (i.e., ∆i = 0, i =
1, 2, . . . , n), and then proceed to make design modifications

in the feedback control and adaptive laws to account for the

presence of the interconnections. Towards this direction, we

define ui = u∗

i +uli , where u∗

i is the nominal local controller

for the decoupled case and uli is an augmented control

law designed, later on, to account for the interconnections

∆i. In both cases, we use linearly parametrized neural

network models (such as Radial Basis Function networks)

to approximate the unknown functions.

Following the universal approximation results of neural

networks (see, e.g. [13]), given any continuous function f(x)
where f : ℜq 7→ ℜ is defined on a compact set D ⊂ ℜq, and

an arbitrary ε∗ > 0, there exists a set of bounded constant

weights θf ∈ ℜp and a set of basis functions φf (x), where

φf : ℜq 7→ ℜp is such that the following representation holds

∀x ∈ D,

f(x) = φf (x)⊤θf + ε(x), ‖ε(x)‖D < ε∗. (1)

In the above representation, ε(x) denotes the Minimum

Functional Approximation Error (MFAE) which is the mini-

mum possible deviation between the unknown function f(x)
and the appromixation of it, φf (x)⊤θf , in the ∞-norm sense

over the compact set D.

In this section, we consider the ideal case where the

unknown functions fi, gi and ∆i are assumed to be ap-

proximated exactly. Later, in Section IV, we consider the

robustness issues and modify the adaptive laws so as to

handle nonzero approximation errors.

A. Decoupled Subsystems

To design the local controller we consider the tracking

error dynamics of a decoupled subsystem

˙̃xij = x̃i(j+1), j = 1, 2, . . . , (ρi − 1)

˙̃xiρi
= fi(xi) + gi(xi)u

∗

i − y
(n)
di ,

where x̃ij = xij − y
(j−1)
di

. The tracking error dynamics can

be written in matrix state-space form as

˙̃x = Ax̃i + B(fi(xi) + gi(xi)u
∗

i − y
(n)
di ), (2)

where

A =















0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0















, B =















0
0
...

0
1















.

We consider the ideal case where the unknown functions fi

and gi can be approximated exactly as follows:

fi(xi) = φfi
(xi)

⊤θfi
(3)

gi(xi) = φgi
(xi)

⊤θgi
. (4)

Let θ̂fi
and θ̂gi

be the estimated weights of the approximators

of fi and gi respectively, and define θ̃fi
= θ̂fi

− θfi
, θ̃gi

=
θ̂gi

− θgi
as the corresponding parameter estimation errors.

The feedback linearizing approximation based control law of

the i-th decoupled subsystem is defined as

u∗

i =
−K⊤

i x̃i + y
(n)
di − φfi

(xi)
⊤θ̂fi

φgi
(xi)⊤θ̂gi

, (5)

where Ki = [ki1, ki2, · · · , kiρi
]⊤ ∈ ℜρi is chosen such that

A − BK⊤

i is a Hurwitz matrix.

Since A − BK⊤

i is Hurwitz, for any Qi > 0 there exists

positive definite matrix Pi satisfying the Lyapunov equation

Pi(A − BK⊤

i ) + (A − BK⊤

i )⊤Pi = −Qi.

Define the scalar training error ei = B⊤Pix̃i. The parameters

θ̂fi
and θ̂gi

are updated according to the following adaptive

laws:

˙̂
θfi

= Γfi
φfi

(xi)ei (6)

˙̂
θgi

= Ps{Γgi
φgi

(xi)eiu
∗

i }, (7)

where Γfi
> 0, Γgi

> 0 are positive definite matrices

characterizing the adaptive gain of the parameter estimates

and Ps is a projection operator that is used to ensure that

the term φgi
(xi)

⊤θ̂gi
stays away from zero [2].

Lemma 1: Given the tracking error dynamics of the i-

th subsystem (2), the control law (5) with the adaptation

laws (6) and (7) ensure that the tracking errors x̃ij(t)
converge asymptotically to zero; i.e., limt→∞ x̃ij(t) = 0,

i = 1, 2, . . . , n, j = 1, 2, . . . , ρi.

Proof: By incorporating the control law (5) in the

tracking error dynamics (2), we obtain

˙̃xi = (A − BK⊤

i )x̃i − Bφfi
(xi)

⊤θ̂fi
− Bφgi

(xi)
⊤θ̂gi

ui.

Consider the Lyapunov function candicate of the i-th sub-

system

Vi = x̃T
i Pix̃i + θ̃T

fi
Γ−1

fi
θ̃fi

+ θ̃T
gi

Γ−1
gi

θ̃gi
.

After some algebraic manipulation it can be shown that the

time derivative of the Lyapunov function satisfies

V̇i = −x̃⊤

i Qix̃i + 2θ̃⊤fi
Γ−1

fi
(
˙̃
θfi

− Γfi
φfi

ei)

+ 2θ̃⊤gi
Γ−1

gi
(
˙̃
θgi

− Γgi
φgi

eiui).

With the adaptive laws (6) and (7), the Lyapunov time deriva-

tive satisfies V̇i ≤ −x̃⊤

i Qix̃i, which is negative semidefinite.

Therefore, using Barbalat’s Lemma [7], [8], and by the use of

the projection modification in (7) to ensure the controllability

of the system during the adaptation, we obtain that x̃i(t) → 0
as t → ∞.
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It is important to note that the above result for decoupled

subsystems is obtained under two key assumptions: (i) the

unknown functions fi and gi can be represented exactly by

the approximating neural network model, as given in (3),

(4); i.e., the MFAE is zero. (ii) The exact approximation

property holds in a compact set D, therefore the trajectories

xi(t) should remain in D for all t ≥ 0. If the trajectory

leaves the set D, then the zero approximation property does

not hold, hence the convergence of the tracking error to zero

is not guaranteed. In Section IV, we will address the case of

non-zero MFAE .

B. Interconnected Subsystems

In the case of interconnected subsystems the tracking error

dynamics of the i-th subsystem are given by

˙̃xi = Ax̃i + B (fi(xi) + gi(xi)ui + ∆i(x1, x2, . . . , xn))

− By
(n)
di

. (8)

We impose the following assumption on the interconnection

terms ∆i.

Assumption 1: The interconnections ∆i are bounded by

|∆i(x1, x2, ..., xn)| ≤

n
∑

j=1

γij(|ej |),

where γij : ℜ 7→ ℜ+ are unknown analytic functions.

According to Assumption 1, the magnitude of the inter-

connections is allowed to be significantly large and also

unknown. As we will see later on, a surrogate of the unknown

bounding functions γij will be adaptively approximated for

use in the feedback control law. The above assumption is

similar to the corresponding assumption used in [4].

To address the presence of unknown (or uncertain) inter-

connection terms ∆i satisfying Assumption 1, an augmented

control term uli is added to the nominal control law u∗

i ,

defined in (5), such that ui = u∗

i + uli . Due to the unknown

interconnection terms ∆i, the augmented control law uli is

a dynamic controller designed in an adaptive approximation

framework as follows:

uli = −
φ∆i

(ei)
⊤θ̂∆i

φgi
(xi)⊤θ̂gi

(9)

˙̂
θ∆i

= Γ∆i
φ∆i

(ei)ei, (10)

where Γ∆i
> 0 is a positive definite adaptive gain ma-

trix and φ∆i
(|ei|) is a vector of basis functions with the

corresponding adaptable weights θ̂∆i
. Therefore the overall

decentralized control law for the i-th subsystem is given by

ui =
−K⊤

i x̃i + y
(n)
di − φfi

(xi)
⊤θ̂fi

− φ∆i
(ei)

⊤θ̂∆i

φgi
(xi)⊤θ̂gi

. (11)

It is important to note that the feedback control law described

by (11) is decentralized, since each local control law ui does

not use the states xj , j = 1, 2, . . . , n, j 6= i, of the other

subsystems.

Lemma 2: Given the tracking error dynamics (8), the

decentralized control law (11) with adaptation laws (6), (7)

and (10) ensures that the tracking errors x̃ij converge asymp-

totically to zero; i.e., limt→∞ x̃ij(t) = 0, i = 1, 2, . . . , n,

j = 1, 2, . . . , ρi.

Proof: The proof of this Lemma follows the same

procedure as in [4]. Let the Lyapunov equation of the i-th

subsystem be given by Vi = Vi1 + Vi2, where

Vi1 = x̃⊤

i P x̃i,

Vi2 = θ̃⊤fi
Γ−1

fi
θ̃fi

+ θ̃⊤gi
Γ−1

gi
θ̃gi

+ θ̃⊤∆i
Γ−1

∆i
θ̃∆i

.

By substituting the control law (11) into the tracking error

dynamics (8), we obtain the following expression for the

closed-loop tracking error dynamics

˙̃xi =
(

A − BK⊤

i

)

x̃i − Bφfi
(xi)

⊤θ̃fi

− Bφgi
(xi)

⊤θ̃gi
ui + B

(

−φ∆i
(ei)

⊤θ̂∆i
+ ∆i

)

.

The time derivative of Vi1 satisfies

V̇i1 = −x̃⊤

i Qix̃i − 2eiφfi
(xi)

⊤θ̃fi
− 2eiφgi

(xi)
⊤θ̃gi

ui

+ 2ei

(

−φ∆i
(ei)

⊤θ̂∆i
+ ∆i

)

≤ − x̃⊤

i Qix̃i − 2eiφ
⊤

fi
(xi)θ̃fi

− 2eiφgi
(xi)

⊤θ̃gi
ui

−2eiφ∆i
(ei)

⊤θ̂∆i
+ 2|ei| · |∆i|.

Based on Assumption 1,

2|ei| · |∆i| ≤ 2|ei|

n
∑

j=1

γij(|ej |).

Since γij are analytic functions, using Taylor’s Theorem (see,

for example, [1]), there exist smooth functions ξij such that

γij(|ej |) = γi0 + |ej |ξij(|ej |),

where γi0 = γij(0) is a constant. Therefore, using the

inequality 2αβ ≤ α2 + β2 for α, β ∈ ℜ, we obtain

V̇i1 ≤ −x̃⊤

i Qix̃i − 2eiφfi
(xi)

⊤θ̃fi
− 2eiφgi

(xi)
⊤θ̃gi

ui

− 2eiφ∆i
(ei)

⊤θ̂∆i
+ 2γi0|ei|

+ 2|ei|

n
∑

j=1

|ej |ξij(|ej |)

≤ −x̃⊤

i Qix̃i − 2eiφfi
(xi)

⊤θ̃fi
− 2eiφgi

(xi)
⊤θ̃gi

ui

− 2eiφ∆i
(ei)

⊤θ̂∆i
+ 2γi0|ei|

+ ne2
i +

n
∑

j=1

e2
jξ

2
ij(|ej |).

Hence, after some re-ordering of terms,

n
∑

i=1

V̇i1 ≤
n
∑

i=1

[

−x̃⊤

i Qix̃i − 2eiφfi
(xi)

⊤θ̃fi

− 2eiφgi
(xi)

⊤θ̃gi
ui − 2φ∆i

(ei)
⊤θ̂∆i

ei

+ ne2
i + 2γi0|ei| + e2

i

n
∑

j=1

ξ2
ji(|ei|)



 .
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Let

di(ei) =
1

2



2γi0sgn(ei) + nei + ei

n
∑

j=1

ξ2
ji(|ei|)



 . (12)

Since di is a smooth function and ei is in a compact set, the

following representation holds:

di(ei) = φ∆i
(ei)

⊤θ∆i
+ µ∆i

.

In this section we consider the ideal case where all the

approximation errors µ∆i
are zero. Thus, we have

n
∑

i=1

V̇i1 ≤

n
∑

i=1

[

−x̃⊤

i Qix̃i − 2eiφfi
(xi)

⊤θ̃fi

− 2eiφgi
(xi)

⊤θ̃gi
ui − 2eiφ∆i

(ei)
⊤θ̂∆i

+ 2eiφ∆i
(ei)

⊤θ∆i

]

.

The Lyapunov equation of the overall system is given by

V =

n
∑

i=1

Vi1 + Vi2.

The time derivative of the Lyapunov function of the overall

system is given by

V̇ =

n
∑

i=1

V̇i1 + V̇i2

≤
n
∑

i=1

[

−x̃⊤

i Qix̃i − 2eiφfi
(xi)

⊤θ̃fi

− 2eiφgi
(xi)

⊤θ̃gi
ui − 2eiφ∆i

(ei)
⊤θ̃∆i

]

+

n
∑

i=1

[

2θ̃⊤fi
Γ−1

fi

˙̃
θfi

+ 2θ̃⊤gi
Γ−1

gi

˙̃
θgi

+ 2θ̃⊤∆i
Γ−1

∆i

˙̃
θ∆i

]

.

By grouping terms we obtain

V̇ ≤
n
∑

i=1

[

−x̃⊤

i Qix̃i + 2θ̃⊤fi
Γ−1

fi

(

˙̃
θfi

− Γfi
φfi

(xi)ei

)

+ 2θ̃⊤gi
Γ−1

gi

(

˙̃
θgi

− Γfi
φgi

(xi)eiui

)

+ 2θ̃⊤∆i
Γ−1

∆i

(

˙̃
θ∆i

− Γ∆i
φ∆i

(ei)ei

)]

.

By substituting the adaptive laws (6), (7) and (10), the

Lyapunov function derivative satisfies

V̇ ≤ −

n
∑

i=1

x̃⊤

i Qix̃i,

which is negative semidefinite. Therefore, using Barbalat’s

Lemma, it can be shown that all the tracking errors x̃i(t) go

to zero as t → ∞.

IV. DEAD-ZONE COMPENSATION

In the previous section, it was assumed that the Minimum

Functional Approximation Error (MFAE) of each adaptive

approximator was zero; in other words, it was possible to

match exactly the unknown functions fi, gi and di by the use

of the corresponding adaptive approximators φfi
(xi)

⊤θ̂fi
,

φgi
(xi)

⊤θ̂gi
and φ∆i

(ei)
⊤θ̂∆i

, within a certain approxima-

tion region Di. In most practical situations there will be

nonzero approximation error, which is an issue that needs

to be addressed in the control design. Let µfi
, µgi

and µ∆i

be the corresponding MFAE of each approximator. In this

case, based on (8) with the decentralized control law (11),

the equation of the tracking errors dynamics becomes

˙̃xi = (A − BK⊤

i )x̃i − Bφfi
(xi)

⊤θ̃fi
+ Bµfi

+ Buiµgi

− Bφgi
(xi)

⊤θ̃gi
ui + B

(

∆i − φ∆i
(ei)

⊤θ̂∆i

)

.

Thus, following a similar procedure as in the proof of

Lemma 2, we obtain

n
∑

i=1

V̇i1 ≤

n
∑

i=1

[

−x̃⊤

i Qix̃i − 2eiφfi
(xi)

⊤θ̃fi
+ 2eiµfi

− 2eiφgi
(xi)

⊤θ̃gi
ui + 2eiµgi

ui

−2eiφ∆i
(ei)

⊤θ̂∆i
+ ne2

i + 2γi0|ei|

+ e2
i

n
∑

j=1

ξ2
ji(|ei|)



 .

Using the adaptive approximation of di(ei), where di is

defined in (12), and this time including the corresponding

MFAE, µ∆i
, the time derivative of the Lyapunov function

can be expressed as

n
∑

i=1

V̇i1 ≤

n
∑

i=1

[

−x̃⊤

i Qix̃i − 2eiφfi
(xi)

⊤θ̃fi
+ 2eiµfi

− 2eiφgi
(xi)

⊤θ̃gi
ui + 2eiµgi

ui

− 2eiφ∆i
(ei)

⊤θ̃∆i
+ 2eiµ∆i

]

.

Substituting the adaptive laws into the time derivative of the

Lyapunov function, V , yields

V̇ ≤

n
∑

i=1

−x̃⊤

i Qix̃i + 2eiµfi
+ 2eiµgi

ui + 2eiµ∆i
.

We define δi as

δi = µfi
+ µgi

ui + µ∆i

and rewrite the inequality of V̇ as follows:

V̇ ≤

n
∑

i=1

−x̃⊤

i Qix̃i + 2eiδi. (13)

To avoid instabilities that may occur due to parameter

drift and to enhance the robustness properties of the adaptive

scheme, we introduce a dead-zone modification in the update

laws. For notational simplicity, we assume that Qi = I and

Ki = K for all i = 1, 2, . . . , n, and let P be the solution of

the Lyapunov equation with Qi = I and Ki = K.

The parameter estimates are adjusted according to

˙̂
θfi

= Γfi
φfi

(xi)qi(ei, x̃i, ǫi) (14)

˙̂
θgi

= Γgi
φgi

(xi)qi(ei, x̃i, ǫi)ui (15)

˙̂
θ∆i

= Γ∆i
φ∆i

(ei)qi(ei, x̃i, ǫi), (16)
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where qi(ei, x̃i, ǫi) is defined as

qi(ei, x̃i, ǫi) =

{

0 x̃⊤

i P x̃i ≤ λ̄P ǫ2i

ǫ x̃T
i P x̃i > λ̄P ǫ2i

ǫi = 2‖PB‖δ0i
+ µi

and δ0i
is an upper bound of δi (i.e., |δi| < δ0i

), µi is

a positive constant and λ̄P and λP are the maximum and

minimum eigenvalues of P , respectively.

Lemma 3: Given the tracking error dynamics (8) with

non-zero MFAEs, the decentralized control law (11) with

adaptation laws (14), (15) and (16) guarantees that the

following hold:

1) x̃i is small-in-the-mean-square sense, satisfying
∫ t+T

t

‖x̃2
i (τ)‖2dτ ≤ 2Vi(t) +

λ̄P

λP

ǫ2i T ;

2) ‖x̃(t)‖ is uniformly ultimately bounded by ǫ; i.e., the

total time such that x̃⊤

i P x̃i > λ̄P ǫ2i is finite.

Proof: Following a similar framework as in [2] let the

condition x̃⊤

i P x̃i > λ̄P ǫ2i be satisfied for t ∈ (tsk
, tfk

), k =
1, 2, 3, . . . , where tsk

< tfk
≤ tsk+1

and x̃⊤

i P x̃i ≤ λ̄P ǫ2i
for t ∈ (tfk

, tsk+1
). The start of the sequence ts0

is

assumed to be zero without loss of generality and tsk+1

may be infinity for some k. Since x̃i(tfk
)⊤P x̃i(tfk

) =
x̃i(tsk+1

)⊤P x̃i(tsk+1
) = λ̄P ǫ2i and parameter adaptation is

off for t ∈
[

tfk
, tsk+1

]

, we have that V (tfk
) = V (tsk+1

).
Note that when t ∈ (tsk

, tfk
) for any k, the fact that

x̃⊤

i P x̃i > λ̄P (2‖PB‖δ0i
+ µi)

2
ensures that ‖x̃i‖2 >

2‖PB‖δ0i
+ µi. Therefore (13) becomes,

V̇ ≤

n
∑

i=1

−x̃⊤

i x̃i + 2eiδi

≤

n
∑

i=1

−‖x̃i‖
2
2 + 2‖x̃i‖2‖PB‖2|δi|

≤

n
∑

i=1

−‖x̃i‖2 (‖x̃i‖2 − 2‖PB‖δ0i
)

≤
n
∑

i=1

−ǫiµi.

We integrate both sides over (tsk
, tfk

),

V (tfk
) ≤ V (tsk

) − (tfk
− tsk

)
n
∑

i=1

ǫiµi

≤ V (tfk−1
) − (tfk

− tsk
)

n
∑

i=1

ǫiµi

...

≤ V (0) −

(

k
∑

m=1

(tfm
− tsm

)

)(

n
∑

i=1

ǫiµi

)

.

Hence, since V (tfk
) ≥ 0,

(

k
∑

m=1

(tfm
− tsm

)

)

≤
V (0)

(
∑n

i=1 ǫiµi)
,

which shows that the total time spent with x̃⊤

i P x̃i > λ̄P ǫ2i
(i.e., outside the dead zone) is finite. In addition, V (tfk

),
k = 1, 2, 3, . . . is a positive decreasing sequence, and either

this is finite sequence or limt→∞ V (tfk
) = V∞ exists and is

finite. In addition, if t > tfk
, then V (t) < V (tfk

).
Within the dead zone, it is obvious that λP ‖x̃i‖

2 ≤
x̃⊤

i P x̃i ≤ λ̄P ǫ2 implies

∫ t+T

t

‖x̃2
i (τ)‖2dτ ≤

λ̄P

λP

ǫ2i T.

Outside the dead zone, using the inequality,

xy ≤ β2x2 +
1

4β2
y2, ∀β 6= 0,

we have that

V̇i ≤ −‖x̃i‖
2
2 + 2‖x̃i‖2‖PB‖2 |δ0i

|

≤ −‖x̃i‖
2
2 + β2‖x̃i‖

2
2 +

‖PB‖2

β2
δ2
0i

= −‖x̃i‖
2
2

(

1 − β2
)

+
‖PB‖2

2

β2
δ2
0i

= −0.5‖x̃i‖
2
2 + 2‖PB‖2

2δ
2
0i

,

for β2 = 0.5. Integrating over [t, t + T ] we obtain

∫ t+T

t

V̇i(τ)dτ ≤ −0.5

∫ t+T

t

‖x̃i(τ)‖2
2dτ

+ 2‖PB‖2
2δ

2
0i

∫ t+T

t

dτ

∫ t+T

t

‖x̃i(τ)‖2
2dτ ≤ 2Vi(t) + 4‖PB‖2

2δ
2
0i

T.

Therefore,
∫ t+T

t

‖x̃i(τ)‖2
2dτ ≤ 2Vi(t) + ǫ2i T

which completes the proof.

V. SIMULATION EXAMPLE

A simple simulation example is presented to illustrate the

design methodology for decentralized adaptive approxima-

tion based control. We consider the following interconnected

uncertain system:

Σ1 : ẋ11 = x12

ẋ12 = cos
( π

1.2
R1

)

+ ∆1(x1, x2) + g1(x1)u1

Σ2 : ẋ21 = x22

ẋ22 = 0.5 cos
( π

1.2
R2

)

+ ∆2(x1, x2) + g2(x2)u2

where Ri = x2
i1 + x2

i2, ∆1(x1, x2) = (0.5x21 + x22)
2
,

∆2(x1, x2) = (x11 + x12)
2

and gi(xi) = 2+ (xi1 +xi2)
2 +

2e−Ri . The output of the i-th subsystem is yi = xi1 and

the desired trajectories are given by yd1
(t) = 0.7 sin(4.93t)

and yd2
(t) = 0.8 sin(4.31t). The matrix P satisfying the

Lyapunov equation is given by

P =

[

1.5 0.5
0.5 1

]

,

4195



where K1 = K2 =
[

1 1
]⊤

. For the approximators of fi

and gi, a lattice network of basis functions was designed with

centers evenly spaced between [−4, 4] for the xi1 input and

[−8, 8] for the xi2 input. The approximators of the bounding

functions di are designed with basis functions evenly spaced

in [−10, 10]. The dead-zone parameters ǫi are set to ǫ1 =
ǫ2 = 0.2. The initial conditions are assumed to be: x11(0) =
x12(0) = 1 and x21(0) = x22(0) = −1.

In Figure 1 we plot the tracking performance of each

subsystem with and without adaptive approximation of the

function di. In the case that no adaptive approximation is

used, the radial basis function neural networks are turned off.

As illustrated by the plot, the use of adaptive approximation

results in a significantly better tracking performance. In

fact, in the case of adaptive approximation, the tracking

performance continues to improve after the time period

shown in the plot. However, the rate of improvement is

reduced as the subsystems spend more time in the dead-

zone, until approximately the time t = 80 sec, when the

scalar errors ei stay within the dead-zone thereafter.
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Fig. 1. Tracking performance of simulation example.

Figure 2 shows the control effort of the proposed decen-

tralized adaptive approximation based control scheme along

with the control effort of a nominal centralized control, which

assumes that all the functions are known exactly and all the

states are available to each subsystem. As we can see, while

the control effort of the proposed scheme is quite large at the

initial stages of simulation (due to large approximation er-

rors), as time passes and the approximators keep learning the

unknown functions, the decentralized control effort becomes

closer to the nominal centralized control effort.

VI. CONCLUDING REMARKS

In this paper, we have presented some preliminary results

regarding the design of a stable and robust decentralized

adaptive approximation based control scheme. To address the

presence of non-zero residual approximation errors, we used

a dead-zone modification in the adaptive laws, and derived

some analytical properties of the closed loop-system. One
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Fig. 2. Control effort of simulation example.

of the key assumptions made is that the trajectories remain

within a certain approximation region. Efforts are underway

for relaxing this assumption.
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