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Abstract—This paper presents a novel motion planning ap-
proach inspired by the Dynamic Programming (DP) for mobile
robots and other autonomous vehicles. The proposed discrete–
time algorithm enables a multi–degree of freedom vehicle to
reach its destination through an arbitrary obstacle field in a
minimum number of time steps. Furthermore, the resulting
optimal path is guaranteed to posses the required degree of
smoothness and incorporates the motion state constraints such
as velocity, acceleration, and jerk limits. The algorithm is
proven to terminate in a finite number of steps without its
computational complexity increasing with the type or number
of obstacles. The effectiveness of the algorithm is demonstrated
on a mobile robot modeled as a point–mass in a 2–dimensional
space subject to velocity and acceleration limits.

I. INTRODUCTION
Path planning through an obstacle field is a critical task

in controlling autonomous vehicles such as mobile robots,
Unmanned Air Vehicles (UAV’s), underwater vehicles, and
exploratory rovers. No autonomous vehicle or robot can
successfully operate in a constrained environment without
a systematic mechanism for planning its motion path. The
basic objective of most path planning algorithms is to gener-
ate a feasible path starting from an arbitrary initial location
to the final target while avoiding the obstacles. Moreover, the
path is often preferred to be optimal with respect to a certain
criterion such as time and subject to state constraints such
as velocity and acceleration limits as well as the actuation
inputs.
The optimization problem associated with most path plan-

ning tasks is inherently non–convex [1] and difficult to
solve [2]. The non–convexity of the problem is a direct
consequence of the obstacle avoidance requirement and is
further complicated by the inclusion of the state and actuation
constraints. Furthermore, changing and/or uncertain obstacle
fields, which arise in most real–world applications, pose
additional challenges in achieving the required solution to
this problem.
The basic path planning problem has been approached

from several different angles. The Potential Field Theory
(PFT) is one of the most widely used approaches for the
aforementioned path planning problem [3],[4],[5]. Rimon
and Koditschek developed a special artificial potential func-
tion, called a navigation function, that guarantees collision-
free motion and convergence to the destination from almost
all initial free configurations. Eichhorn applied the PFT [4]
for trajectory planning of an underwater vehicle. Bruijnen et
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al. [5] proposed an extension of the PFT that can handle a
changing obstacle field and generates a sub-optimal smooth
path with bounds on the allowed velocity, acceleration and
jerk. While the PFT is well suited for a varying obstacle
fields, it does not necessarily generate a globally optimal
path and in many instances it may render only a local
optimum away from the destination. A recent work [6]
partially addresses this deficiency by adding an extra control
force to that of the PFT but falls short of guaranteeing
convergence to the global optimal solution.
The second approach aimed at generating a global solution

is based on Linear Programming (LP) and its variations
[7],[8]. The main idea behind this approach is to formulate
the path planning problem utilizing linear objective func-
tion and constraints and solve the resulting LP problem.
Even though this approach is well suited for obstacle free
situations, the addition of obstacle avoidance constraints
makes the optimization problem non–convex and dramati-
cally increases its complexity. The most successful LP based
methods include Mixed–Integer Linear Programming (MILP)
[7] and disjunctive LP (DLP) [9]. Blackmore et al. [1]
uses a probabilistic approach to incorporate environmental
uncertainty into an equivalent deterministic DLP problem.
Unfortunately, the DLP is an NP–complete optimization
and its complexity grows exponentially with the number of
obstacles hence intractable for most practical applications.
This paper presents a discrete–time Time–Optimal motion

planning algorithm based on the Dynamic Programming
(DP) approach [10]. The existing works on the applications
of DP to path planning can be found in [2],[11],[12],[13].
In particular, the approach pursued in [12] is the one
most closely related to the present work. It incorporates
a framed free space approach to reduce the computational
complexity of the previous DP approaches. However, none
of the aforementioned works guarantees time optimality or
the convergence of their algorithm. They also do not consider
state or input constraints and are limited to piecewise linear
paths.
The motion planning algorithm presented here can be used

to navigate a mobile robot through an arbitrary obstacle field
to its destination in a minimum number of discrete time steps
along a smooth spline path. The degrees of freedom of the
robot along with the level of the path smoothness can be
chosen arbitrarily. In addition, the motion state (velocity, ac-
celeration, etc.) and input constraints are naturally enforced.
The algorithm is proven to terminate in a finite number of
steps and its complexity is shown not to increase with the
number of obstacles. A two dimensional robot subject to
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velocity and acceleration limits moving in a field of randomly
placed circular obstacles is used to illustrate the effectiveness
of this approach.

II. PROBLEM STATEMENT
Consider an n–dimensional open subset X ⊂ Rn rep-

resenting the geometric constraint associated with all the
possible paths. Each path is specified as anm–th order spline
defined according to

Sm =
(
x :

N−1[
k=0

[kT, (k + 1)T ]→ X , N = 1, 2, . . .

)
(1)

where T represents the spline step–size (also referred to as
the sampling period) and [kT, (k + 1)T ] is the domain of
the i–th piece of the spline (an m–th order polynomial).
The length or duration of each x ∈ Sm is the number of
polynomials (N ) associated with x. The objective of this
optimization algorithm is to find x ∈ Sm of the shortest
duration N that connects an arbitrary initial point x(0) ∈ X
to a target point τ ∈ X while satisfying following additional
constraints:
• The set X ⊂ Rn containing all possible paths is
assumed to be open and convex with a compact (closed
and bounded) closure X̄ .

• x(t) /∈ O ⊂ X , where O represents the set of obstacles
assumed to be a closed subset of X .

• The time derivatives of x(t), xj := djx
dti , are bounded:

|xji | < xji,max, i = 1, . . . n, j = 1, . . . ,m.

III. SPLINE PATH MODEL
Each x ∈ Sm spline can be represented by the differential

equation xmi (t) = ui(t)where each ui(t) ∈ [−xmi,max, xmi,max]
is a piecewise constant function such that ui(t) = ui,k
for tk ≤ t ≤ tk+1. Defining the i–th partial state vector
ξi =

¡
xi, x

1
i , . . . , x

m−1
i

¢
, i = 1, . . . , n, and integrating

the resulting state equations for tk ≤ t ≤ tk+1 yields
ξi(t) = At−tkξi,k + Bt−tkui,k where ξi,k = ξi(tk), Aτ

is an m ×m upper triangular matrix whose ij–th element,
Aτ,ij =

τ(j−i)

(j−i)! , j ≥ i, and Bτ is an m × 1 vector with its
i–th component Bτ,i =

τ(m−i+1)

(m−i+1)! . For t = tk+1, we have

ξi,k+1 = AT ξi,k +BTui,k (2)

Rather than using ξ = (ξ1, . . . , ξn) as the full state vector,
we employ a permutation of it, z :=

¡
x,x1, . . . ,xm−1

¢
,

which can incorporate the geometric and dynamic constraints
more naturally. It can be seen that the transition from
zk = z(tk) to zk+1 = z(tk+1) is given by zk+1 =
ϕ+(zk,uk)where ϕ+(z,u) = (AT ⊗ In×n)z + (BT ⊗
In×n)u, ⊗ is the Kronecker product, and In×n the n × n
identity matrix. The backward state transition, ϕ− : Rmn ×
Rm → Rmn, which maps (zk+1,uk) to zk, is given by
ϕ−(z,u) = (A−T ⊗ In×n)z + (B−T ⊗ In×n)u. We shall
use the symbol Z to denote the subset of the state space that
meets the geometric ( x ∈ X ) and dynamic constraints: Z =
X × X 1 × · · · × Xm−1, where X j =

nQ
i=1
(−xji,max, x

j
i,max).

The space of all admissible inputs, uk’s, is denoted by
U =

nQ
i=1
(−xmi,max, xmi,max).

The path planning algorithms to be presented will guaran-
tee that the spline knots xk, k = 1, 2, . . ., will be outside the
obstacle set O. However, it is possible for the intermediary
points on the spline to enter the obstacle space. To avoid this
situation, the set of obstacles O may be slightly expanded
beyond the actual ‘hard’ obstacles to ensure that the entire
path in addition to the knots will stay outside of the obstacles.
Let H be a closed set representing the hard obstacle set and
Bε = {x : kxk ≤ ε}, the closed ball of radius ε for some
ε > 0. The following proposition shows that if O = H+Bε,
then x(t) is guaranteed to stay outside of H if the discrete
positions xk /∈ O for a sufficiently small sampling period T .
Proposition 1: Let Sm be the spline space of order m

given by (1) and suppose that O = H+Bε such that xk /∈
O, ∀k ≥ 0. Then x /∈ H, ∀x ∈ Sm, ∀m ≥ 1, provided
that the sampling period T < 2 ln(1 + ε)/σ where σ =

max0≤j≤m

°°°³xj1,max, . . . , xjn,max´°°° and k·k is any vector
norm.

Proof: Letting τ = t − tk then from
xmi (t) = ui(t) it can be seen that x(t) − xk =Pm

j=1
τj

j! x
j
k, where xjk =

¡
djx/dtj

¢
t=tk

. Letting

σ = max1≤j≤m

°°°³xj1,max, . . . , xjn,max´°°°, then it follows
that kx(t)− xkk ≤

Pm
j=1

T jσj

2jj! ≤ eTσ/2 − 1 for
all tk − T/2 ≤ t ≤ tk + T/2, ∀k ≥ 1. Choosing
eTσ/2 − 1 < ε or equivalently T < 2 ln(1 + ε)/σ
implies that supt∈[tk−T/2,tk+T/2] kx(t)− xkk < ε. Thus
x /∈ xk +Bε and x /∈ H.

IV. OBSTACLE FREE MOTION PLANNING

In this section we present the main time–optimal opti-
mization algorithm. In terms of the notations introduced in
the preceding section, the main objective of this algorithm
will be to transfer a given state z ∈ Z to the target state
zτ = (τ , 0, . . . , 0) in the minimum number of steps possible
while avoiding the obstacles. We begin our development in
the absence of any obstacles and then extend the results to
incorporate a fairly general set of obstacles. It turns out that
the obstacle free case plays a key role in establishing the
convergence properties of the general case.
To state our first preliminary result, let Z0 be the set of

equilibrium states in Z: Z0 = {(x,0, . . . ,0) : x ∈ X}. The
following proposition [14], which follows from the convexity
of X , shows that any two states in Z0 can be joined by a
spline in a finite number of steps with the resulting path lying
entirely in Z.
Proposition 2: There exists an integer K such that any

two states z,z0 ∈ Z0 can be joined by a spline lying entirely
in Z in at most K steps. That is, there exists a sequence
of inputs u0, u1, . . . , uK−1 ∈ U such that if z0 = z then
zk = ϕ+(zk−1,uk−1) ∈ Z and zK = z0.
The next definition is key in developing the motion plan-

ning algorithm.
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Definition 1: The forward reachable set of z ∈ Z is the
set of all states in Z that can be reached from z in a single
step:

R+(z) =
©
y ∈ Z : y = ϕ+(z,u), u ∈ U

ª
The backward reachable set from z ∈ Z is the set of all
states in Z that can reach z in a single step:

R−(z) =
©
y ∈ Z : z = ϕ+(y,u), u ∈ U

ª
=

©
y ∈ Z : y = ϕ−(z,u), u ∈ U

ª
If W ⊂ Z , then R+(W) =

S
z∈W

R(z) and R−(W) =S
z∈W

R−(z). The k–th composition of R±, denoted by Rk
±,

is defined as follows: Rk
±(W) = R±(Rk−1

± (W)) with
R0
±(W) =W . In addition, for each z ∈ R±(W), the set of

all control inputs u ∈ U that connects z to some w ∈W or
vice versa is denoted by C±(z,W) :

C±(z,W) =
©
u ∈ U : ϕ±(z,u) ∈W

ª
The following Proposition [14] summarizes some of the

important properties of the forward and backward reachable
sets to be utilized in the sequel:
Proposition 3: The forward and backward operation R±

posses the following properties:
i. The sets Rk

±(τ ), ∀k ≥ m, are open sets and nonde-
creasing: Rk

±(τ ) ⊂ Rk+1
± (τ ).

ii. There exists a finite integer K ≥ 1 such that Z0 ⊂
Rk
±(τ ), for all τ ∈ Z0 and k ≥ K.

iii. R±
³T

k≥1Wk

´
⊂
T
k≥1R± (Wk), ∀Wk ⊂ Z.

iv. R±
³S

k≥1Wk

´
=
S
k≥1R± (Wk), ∀Wk ⊂ Z.

Before presenting the general case, we consider the motion
planning in the absence of any obstacles. The basic idea used
here is inspired by the Dynamic Programming [10] approach.
Starting from the target we first determine the set of all states
that can reach the target (origin) in a single step, or simply
R−(τ ). Having identified R−(τ ), we will then recursively
expand our search to the sets R2

−(τ ),R3
−(τ ), . . . ,Rk

−(τ ),
where as defined earlier, Rk

−(τ ) represents the set of all
states within Z that can reach the target in k steps with all the
intermediary states lying in Z . This process continues until
Rk
−(τ ) covers the entire equilibrium space Z0. Theorem 3.ii

justifies the viability of this approach by furnishing a finite
integer K for which the set Rk

−(τ ) (and also Rk
+(τ )), ∀k ≥

K, for an arbitrary state in τ ∈ Z0 fills the entire Z0. We
shall refer to D := RK

− (τ ) ⊃ Z0 as the algorithm’s domain
of operation.

V. THE MAIN ALGORITHM
In this section we present the main path planning algorithm

that incorporates both the obstacle avoidance requirement as
well as the dynamic constraints. The obstacle space including
the dynamic constraint is a subset of Z given by Θ := O×
X 1 × · · · × Xm−1. As in the obstacle free case, the general
algorithm is also based on Dynamic programming. Starting
with the target set W0 = {τ}, we first identify the set of
all states except for those within the obstacle set Θ that can

reach the target in a single step. We will then recursively
remove the obstacle set Θ from each backward reachable
space until all the states in Z0 are covered. We will prove
that the algorithm terminates in finite number of steps not
depending on the number of obstacles. The only restriction
that we place on the set of obstacles is that it is a closed
subset of the space X without additional requirements such
as convexity.
Algorithm 1: The main objective of the algorithm is to

recursively identify the states than can reach the target
set {τ} in k steps for all integer k = 1, 2, . . . until the
termination criterion is met. Given the constrained state
space Z = X × X 1 × · · · × Xm−1, equilibrium space
Z0 = {(x,0, . . . ,0) : x ∈ X}, the obstacle set Θ := O ×
X 1 × · · · × Xm−1, an open set Oo ⊂ X containing O, and
the target set {τ}, execute the following steps:

i Initialize the set W0 = {τ}.
ii For k = 1, 2, . . .update Wk: Wk = R−(Wk−1 − Θ).
To each z ∈Wk −Wk−1 assign the next state η(z) ∈
R+(z) ∩Wk−1.

iii Continue until (Wk ∩Z0) − Θo reaches a limit: i.e.,
(Wk+1 ∩ Z0) − Θo = (Wk ∩ Z0) − Θo where Θo =
Oo ×X 1 × · · · × Xm−1.

The next lemma is key in proving the convergence of the
algorithm.
Lemma 1: Let W be an open and B a closed subset of

Z . Then R− (W − B) = R− (W)− V where V is a closed
subset of Z given by

V = {z ∈ Z : R+(z) ∩W ⊂ B}
=

©
z ∈ Z : ϕ+(z,u) ∈ B, ∀u ∈ C(z,W)

ª
Proof: Let z ∈ R− (W − B). Then ϕ+(z,u) ∈W −

B for some u ∈ U . This implies that z ∈ R−(W) and
ϕ+(z,u) /∈ B. Thus z /∈ V since otherwise ϕ+(z,u) ∈
W ∩ B, ∀u ∈ C(z,W). Consequently, z ∈ R− (W) − V
proving that R− (W − B) ⊂ R− (W) − V . To prove the
converse, let z ∈ R− (W) − V . Then z ∈ R− (W) and
z /∈ V implying that ϕ+(z,u) /∈ B for some u ∈ C(z,W).
Thus ϕ+(z,u) ∈W − B and z ∈ R− (W − B).
To prove that V is closed, let zk be a converging sequence

in V . We will show that z = limk→∞ zk ∈ V . If R+(z) ∩
W = ∅ then R+(z) ∩ W ⊂ B and there is nothing to
prove. Assuming R+(z) ∩ W 6= ∅, let u ∈ U be such
that ϕ+(z,u) ∈ W. We need to show that ϕ+(z,u) ∈ B.
SinceW is open, there exists an open neighborhood N ⊂W
containing ϕ+(z,u). The continuity of ϕ+(.,u) implies that
limk→∞ϕ+(zk,u) = ϕ+(z,u). Thus there exists k̄ ≥ 1
such that if k ≥ k̄ then ϕ+(zk,u) ∈ N . By the definition of
V , zk ∈ V and ϕ+(zk,u) ∈W imply that ϕ+(zk,u) ∈ B,
∀k ≥ k̄. The sequence ϕ+(zk,u) is a converging sequence
in the closed set B hence ϕ+(z,u) = limk→∞ϕ+(zk,u) ∈
B proving that z ∈ V . Thus the set V is a closed set.
Applying the preceding lemma to W2 = R−(W1 − Θ)

givesW2 = R−(W1)−V1 where V1 is a closed set satisfying
R+(V1) ∩W1 ⊂ Θ. Defining Θ1 = V1 ∪ Θ, then it can be
seen thatW2−Θ = R2

−(τ )−Θ1. Applying the lemma once
more toW2−Θ givesR−(W2−Θ) = R3−(τ )−V2 where the
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closed set V2 satisfies R+(V2) ∩R2−(τ ) ⊂ Θ1. Continuing
this procedure recursively using a simple induction, we arrive
at the next proposition.
Proposition 4: The sets Wk in Algorithm 1 satisfy the

following recursive relationships Wk = Rk
−(τ ) − Vk−1

where Vk is a closed set satisfying R+(Vk) ∩ Rk
−(τ ) ⊂

Θk−1, Θk = Vk ∪Θ and V0 = Θ.
Remark 1: The sets Θk−1, k = 1, 2, . . ., which is an

expansion of the obstacle set in Θ ⊂ Z contains all the
states in Rk

−(τ ) that cannot reach the target in k steps or
fewer (i.e., blocked states). Of course, in general there may
be states such as those completely surrounded and blocked by
obstacles that can never reach the target. We will show later
in the paper that the main algorithm identifies all the blocked
equilibrium states in a finite number of steps not necessarily
depending on the number or size of the obstacles.
The next definition formalizes the notion of the blocked

states alluded to in the preceding remark.
Definition 2: Let K be the smallest integer such that D =

RK
− (τ ) ⊃ Z0. The set of states in D that cannot reach the

target in a finite number of steps are called the blocked states
and denoted by V∞ =

T
k≥K Vk. The subset of X whose

corresponding states z = (x, 0, . . . , 0), x ∈ X , are the
equilibrium states are in V∞ are called the blocked positions
and are denoted by B = π(V∞ ∩Z0) where π : Rmn → Rn
is the projection mapping that maps z =

¡
x,x1, . . . ,xm−1

¢
to π(z) = x. The set of all the positions in X that can reach
the target in a finite number of steps is called the admissible
set and is denoted by A = X − B.
As was shown in Proposition 4 the set of blocked states

can be determined indirectly by the algorithm as a limit of
Vk = Rk

−(τ )−Wk as k approaches infinity. The next lemma
[14] shows that once the domain of operation D = RK

− (τ ),
which is independent of the obstacles, is known the set of
blocked states V∞ can be identified directly without going
through an iterative process.
Lemma 2: The set of blocked states V∞ =

T
k≥K Vk in-

troduced in Definition 2 satisfies the relationship R+ (V∞)∩
D ⊂ V∞ ∪Θ. Furthermore, for any open set Oo ⊃ O there
exists an open set Bε ⊂ X containing the blocked positions
B = π(V∞ ∩ Z0) such that Bε ∪Oo = B ∪Oo.
The convergence proof of Algorithm 1 is provided in the

following theorem.
Theorem 1: Algorithm 1 terminates in a finite number of

steps for an arbitrary open set Oo ⊂ X containing O. In
particular, for m = 1 the algorithm terminates in a finite
number of steps with Oo = O.

Proof: Let W0
k = Z0 ∩Wk and V0k = Z̄0 ∩ Vk, where

Z̄0 is the closure of Z0. Intersecting Wk = Rk
−(τ )− Vk−1

with Z0 yields

W0
k = Z0 ∩Rk

−(τ )− V0k−1 = Z0 − V0k−1 (3)

for ∀k ≥ K. The setW0
k represents the set of all equilibrium

sates (i.e., z = (x, 0, . . . , 0) ∈ Z0) that can reach the target
in at most k steps. Thus clearly W0

k ⊂W0
k+1 implying that

V0k+1 ⊂ V0k . The sets V0k = Z0 ∩ Vk are closed subsets of
the compact set Z̄. Let V0∞ = limk→∞ V0k =

T
k≥K V0k =

V∞ ∩ Z̄0. If V0∞ = ∅, then by the Henie–Borel property
[15] of compact sets, there exists a finite N ≥ K such thatTN
k=K V0k = ∅ implying that W0

k = Z0 for all k > N .
Otherwise, V0∞ is a closed non–empty subset of Z0. We will
now prove that even if V0∞ 6= ∅, the algorithm terminates in
a finite number of steps. Let Bε ⊂ X be the open set given
in Lemma 2 satisfying Bε ∪Oo = B ∪Oo and consider the
closed subsets B̃k = π(V0k)−Bε of Z̄ . It can be easily seen
that \

k≥K
B̃k = π(V0∞)− Bε = B − Bε = ∅

Once more by the Henie–Borel property of compact sets,
there exists a finite N ≥ K such that

Tk
p≥K B̃p = ∅

implying that B ⊂ π
¡
V0k
¢
⊂ Bε, ∀k ≥ N . Thus π

¡
V0k−1

¢
∪

Oo = Bε ∪Oo = B ∪ Oo, ∀k > N . Using this property in
(3) implies that

π(W0
k)−Oo = X − π

¡
V0k−1

¢
∪Oo = X − B ∪Oo

which completes the proof.
Remark 2: As evidenced from the proof of the theorem,

the execution time of algorithm 1 does not necessarily
grow with the number of obstacles as many of the existing
computational algorithms do. Instead, it is exactly equal to
the maximum number of steps required to connect any point
in the admissible space X −O0 to the target while satisfying
all the geometric and dynamic constraints.

VI. DISCRETE IMPLEMENTATION OF THE OPTIMIZATION
ALGORITHM

The trajectory optimization algorithm presented in the pre-
ceding section may be implemented by discretizing the input
space. A simple way to discretize of the input space would
be to divide the interval [0, ui,max] for some ui,max < xmi,max
intoM equal subintervals and restrict each ui to the discrete
values ± c

M ui,max, c = 0, 1, . . .M . According to Proposition
2 and its discrete counterpart (Lemma 3) settingM to cm :=
max0≤j≤m

m!
j!(m−j)! guarantees that any two points in Z0 can

be connected to one another arbitrarily close using the dis-
cretized input set for a sufficiently small sampling period T .
Let bU = ©(u1, . . . , un) : ui = ± c

M ui,max, c = 0, 1, . . . cm
ª

denote the set of discretized inputs. Clearly the set of all the
states that can reach the target with u ∈ bU is a discrete
subset of the operation domain D. Later in this section,
we shall show that the equilibrium states contained in this
discrete subset approximate Z0 to within a prescribed degree
of accuracy by choosing the sampling period T sufficiently
small. To this end, we first define the discrete counterpart of
the forward and backward reachable sets.
Definition 3: The discrete forward and backward

reachable sets for any are given by R̂±(z) =n
y ∈ Z : y = ϕ±(z,u), u ∈ bUo. The k–th composition
of R̂±, denoted by R̂k

±, is defined as follows:
R̂k
±(W) = R̂±(R̂k−1

± (W)) with R̂0±(W) =W.
The following lemma [14] shows that for any two arbitrary

positions in X can be approximately connected by means of a
finite length spline to within a prescribed degree of accuracy.
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To state the lemma, let Bε = {x ∈ Rn : kxk ≤ ε} be the
closed ball of radius ε centered at the origin and define Xε :=
{x ∈ X : x+Bε ⊂ X} and Zε

0 = {z ∈ Z0 : π(z) ∈ Xε}.
It can be easily seen that the set Xε is an open and convex
subset of Rn and Xε +Bε ⊂ X .
Lemma 3: For any ε > 0 there exists a sampling period T

and an integer Kε ≥ 1 such that given any two equilibrium
states z,w ∈ Zε

0 a third equilibrium state ŵ ∈ R̂k
±(z)∩Z0,

∀k ≥ Kε, can be chosen to approximate w to within ε:
kŵ − wk ≤ ε. In other words, R̂k

±(z)+B
ε
0 ⊃ Z0, ∀z ∈ Zε

0 ,
∀k ≥ K̂, where Bε

0 = Bε × 0× · · · × 0.
We now present the discrete version of the optimization

algorithm. The difference between the two is that the discrete
input set bU is used in place of U .
Algorithm 2: The main objective of the algorithm is to

recursively identify the states than can reach the target
set {τ} in k steps for all integer k = 1, 2, . . . until the
termination criterion is met. Given the constrained state space
Z = X × X 1 × · · · × Xm−1, equilibrium space Z0 =
{(x,0, . . . ,0) : x ∈ X}, the obstacle set Θ := O × X 1 ×
· · · × Xm−1, and the target set {τ}, execute the following
steps:

i Initialize the set cW0 = {τ}.
ii For k = 1, 2, . . .update cWk: cWk = R̂−(cWk −Θ). To
each z ∈ cWk − cWk−1 assign the next state η(z) ∈
R̂+(z) ∩ cWk−1.

iii Continue until π
³cWk ∩Z0

´
−O reaches a limit: i.e.,

π
³cWk+1 ∩ Z0

´
−O = π

³cWk ∩ Z0
´
−O.

The next proposition follows directly from its continuous
counterpart, Proposition 4.
Proposition 5: The sets cWk in Algorithm 2 satisfy the

following recursive relationships cWk = R̂k
−(τ ) − bVk−1

where bVk is a finite discrete (hence closed) set satisfying
R̂+(Vk)∩R̂k

−(τ ) ⊂ Θ̂k−1, where Θ̂k = bVk∪Θ and bV0 = Θ.
Definition 4: Let Kε, ε > 0 be the smallest integer for

which R̂k
±(z)+B

ε
0 ⊃ Z0, ∀k ≥ Kε with the sampling period

T as specified in Lemma 3. Define the discrete domain of
operation to be D̂ε = R̂Kε

± (z) and denote the set of positions
in π(Z0 ∩ D̂ε) that can reach the target τ in a finite number
of steps while remaining in X −O by bAε referred to as the
set of discrete admissible positions.
A natural question here is how the set of discrete admissi-

ble positions bAε is related to its continuous counterpart. The
theorem below sheds light on the relationship between the
two admissible sets:
Theorem 2: Let A and Aε be the the admissible positions

corresponding to the continuous Algorithm 1 (see Definition
2) with the domain sets X and Xε = {x ∈ X : x+Bε ∈ X}
and obstacle sets O and O+B3ε, respectively. The discrete
admissible positions bAε ⊂ A satisfies bAε +Bε ⊃ Aε.
Remark 3: The theorem shows that bAε is large enough

to approximate the admissible set Aε of the continuous
algorithm with domain Xε and obstacle set O+B3ε to within
ε.

Proof: Clearly we have bAε ⊂ A. To show that
Aε ⊂ bAε +Bε, let x ∈ Aε. There exists an integer Kx and

an input sequence u0, u1, . . . , uKx−1 ∈ U such that that if
z0 = (x, 0, . . . , 0) then zk = ϕ+(zk−1,uk−1) ∈ Z, xk :=
π(zk) /∈ O +B3ε, and zKx = (τ , 0, . . . , 0). By Proposition
1 the resulting spline path x(t) ∈ Xε − (O +B2ε), ∀t ∈
[0,KxT ]. Since the path x(t) is a continuously differentiable
path in Xε, there exists an integer P ≥ Kx and a correspond-
ing sequence of discrete points xp ∈ {x(t) : 0 ≤ t ≤ KxT},
p = 0, 1, 2, . . . , P such that x0 = x, xP = τ , and the
straight line joining xp to xp+1 is not in O + Bε. By
Lemma 3 it is possible to construct a discrete path x̂p
with the input functions ui ∈ bU such that x̂P = τ and
sup0≤p<P kx̂p − xpk < ε. Thus x̂p ∈ X −O implying that
x ∈ bAε +Bε.
The following is the discrete counterpart of the continuous

convergence theorem (1):
Theorem 3: Suppose that for ε > 0 the sampling period

T is chosen in accordance with Lemma 3. Then, Algorithm
2 terminates in a finite number of steps.

Proof: Let Ẑ0 = Z0 ∩ bRKε
− (τ ) and define cW0

k = Ẑ0 ∩cWk and bV0k = Ẑ0 ∩ bVk. Intersecting cWk = bRk
−(τ ) − bVk−1

with Ẑ0 yieldscW0
k = Ẑ0 ∩ bRk

−(τ )− bV0k−1 = Ẑ0 − bV0k−1 (4)

for ∀k ≥ K. The set cW0
k represents the set of all discrete

equilibrium sates (i.e., z = (x, 0, . . . , 0) ∈ Ẑ0) that can
reach the target in at most k steps. Thus clearly cW0

k ⊂ cW0
k+1

implying that bV0k+1 ⊂ bV0k . The sets bV0k = Ẑ0 ∩ bVk are finite
and discrete (hence compact) subsets of the compact set Z̄.
Let bV0∞ = limk→∞ bV0k = T

k≥K
bV0k . We shall show that

even if bV0∞ 6= ∅, the algorithm terminates in a finite number
of steps. Consider the closed subsets eV0k = bV0k− bV0∞ of Z̄ . It
can be easily seen that

T
k≥K

eV0k = ∅. By the Henie–Borel
property of compact sets, there exists a finite N ≥ K such
that

Tk
p≥K

bV0p = bV0k ⊂ bV0∞, ∀k ≥ N . Using that bV0∞ ⊂ bV0k ,
∀k ≥ Kε, it follows that bV0k = bV0∞,∀k ≥ Kε. Thus cW0

k =
Ẑ0 − bV0∞, which proves the theorem.
Remark 4: The theorem shows that, similarly to its con-

tinuous counterpart, the discrete algorithm terminates in a
finite number of steps depending on the size of the domain
X and the complexity of the obstacles but not necessarily
the number of obstacles. The computational complexity of
the algorithm (number of FLOPS) is directly related to the
number of admissible states (i.e., states that can reach the
target in a finite number of states). This number clearly is
maximum in the absence of any obstacles (i.e., free space
motion) and can only decrease as the number of obstacles
increases. Therefore the complexity of the algorithm does not
grow as the number of obstacles increases. See the illustrative
example in the next section for a numerical justification.

VII. NUMERICAL CASE STUDY
The discrete version of the proposed optimal control

strategy is applied to the navigation of a mobile robot
modeled as a point–mass through a set of arbitrary obstacles.
The domain of operation of the robot is a rectangular box
X = (−xmax, xmax) × (−xmax, xmax) with xmax = 5 m.
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No. of No. of No. of No. of
Obstacles Steps Admissible States Blocked States
5 20 76494 13330
10 22 69700 20124
20 33 49039 40785
30 45 38265 51559
40 52 31431 58393
50 57 23260 66564

TABLE I
TABLE 1: SUMMARY OF THE COMPUTATIONAL COMPLEXITY OF THE

OPTIMIZATION ALGORITHM

Additionally, the motion of the robot is subject to velocity
and acceleration limits (m = 2) of vmax = 3 m/sec
and amax = 10 m/sec2, respectively, in both the x and
y directions. The sampling period is set to T = 0.1 sec
and for simplicity the origin τ = (0, 0) is selected as the
target position. Each obstacle is a circle with its radius
varying between 0.7 m and 1 m. The algorithm is evaluated
for randomly placed obstacles ranging in number from a
minimum of 5 to a maximum of 50. Figure 1 shows the
time optimal trajectories starting from the vicinity of the four
corners of X . As can be seen each of the 4 trajectories avoid
the obstacles and arrive at the destination along a smooth
path. Table 1 shows the number of steps required to terminate
the algorithm as well as the the total number of the resulting
admissible discrete states (i.e., the states that can reach the
target in a finite number of steps) as the number of obstacles
increases from 5 to 50. The significance of the latter quantity
is that it is directly proportional to the complexity of the
algorithm (i.e., number of FLOPS). The table shows that
while the number of required steps increases with increasing
the number of obstacles the overall algorithm complexity
remains fairly constant.

-1 0 1 2

-2

-1

0 

1

2

x (m)

y 
(m

)

Fig. 1. Time Optimal Trajectories Corresponding to 20 Obstacles

VIII. CONCLUSIONS
This paper presented a discrete–time motion planning

algorithm for mobile robots and vehicles. It generates a
global navigation map, which enables a robot to reach its
destination through an arbitrary obstacle field in a minimum
number of time–steps. The resulting path is a smooth spline
incorporating the motion state and input constraints such as
velocity, acceleration, and jerk limits. To implement the pro-
posed algorithm, a discrete version of it was formulated by
discretizing the input space into a finite set. Each algorithm
was shown to terminate in a finite number of steps with
its overall computational complexity being independent of
the type and number of obstacles. The effectiveness of the
discretized algorithm was demonstrated on a mobile robot
modeled as a point–mass in a 2–dimensional space subject
to velocity and acceleration constraints.
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