
 
 

 

  

Abstract— A Lyapunov direct method is presented for 
the stabilization of underactuated, mechanical systems.  
The Lyapunov approach provides the tools for control 
law design.  This work represents a continued 
development of previously published techniques.  The 
major contribution of the presentation is that a method is 
demonstrated for assuring the positive definiteness of 
certain matrices associated with the formulation.  A 
stabilization example using the rotary inverted pendulum 
is included. 

I. INTRODUCTION 
nderactuated mechanical systems form a challenging 
application area for control research.  Examples of 
underactuated systems consist of aerial rockets, 

overhead crane cargo transport, hovercraft, and underwater 
vehicles.  The control design difficulty stems from the 
nonlinear nature of the system dynamics and the 
underactuation which is characterized as having fewer 
actuators than mechanical degrees of freedom.  Furthermore, 
some familiar control design schemes such as feedback 
linearization that work well for fully actuated systems are 
unsuccessful for underactuated systems.  Linearization with 
pole placement or LQR work well in a neighborhood of the 
set point or equilibrium however, the basin of attraction may 
be limited. 

Recent developments of control design approaches for 
underactuated systems include the Hamiltonian/Lagrangian 
based approaches.  These developments as well as the results 
of this paper are applied to the stabilization of an unstable 
equilibrium.  Owing to the similarity of the approach 
presented in this paper to Lagrangian/Hamiltonian methods, 
the literature will be reviewed in regard to work being done in 
this area.  Notable contributions in the study of stabilizing 
underactuated mechanical systems have been made by Bloch, 
Leonard, and Marsden (2000, 2001) with their controlled 
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Lagrangian design scheme, Auckly, Kapitanski, and White 
(2000) with the λ method, and Ortega, Spong, Gómez-Estern, 
Blankenstein (2002) in addition to Acosta, Ortega, Astolfi 
and Mahindrakar (2005) with interconnection damping 
assignment – passivity based control (IDA-PBC).  Recent 
contributions to the IDA-PBC literature include 
Gómez-Estern, Van der Schaft, and Acosta (2004) together 
with Laila and Astolfi (2006).  Another recent study is the 
Direct Lyapunov Approach (DLA) of White, Foss, and Guo 
(2006, 2007) which also contain more extensive literature 
reviews.  All of these approaches rely on a matching equation 
solution method.  The DLA application has shown promise in 
that its range of application appears to be larger than the 
Hamiltonian/Lagrangian methods which become intractable 
for systems having complicated dynamics or several degrees 
of freedom.  The merits and limitations of these approaches 
are discussed further in the two cited DLA papers.  The main 
concentration of the control design methods just mentioned as 
well as this paper is the stabilization of holonomic, 
underactuated systems. 

The present paper continues the development of the DLA 
for more complicated systems.  The DLA was first presented 
in White, Foss, and Guo (2006) and was applied to the 
stabilization of a class of systems characterized by dynamic 
equations where the nonlinearities depended on only one 
generalized coordinate and generalized velocity.  The 
applications consisted of the inverted pendulum cart and the 
inertia wheel pendulum.  Applying DLA to more complicated 
systems showed that certain matrices used in the formulation 
did not return to the original form after equilibrium was 
reached, a difficulty that altered the system dynamics during 
subsequent disturbances.  This difficulty was addressed in 
White, Foss, and Guo (2007) where the formulation was 
changed so that a matrix associated with the kinetic energy 
(KD, defined in the Section II as the product of a matrix P and 
the dynamic system mass matrix M) was made to return to the 
same form as equilibrium was approached.  The resulting 
formulation was successfully applied to the stabilization of 
the ball and beam system.  The formulation was such that the 
matrix KD essentially stayed constant during the stabilization 
period. 

Further testing of the approach showed that the procedure 
used to make KD return to a nominal form also had the 
tendency to drive the rate of change of the candidate 
Lyapunov function to zero and in some cases even positive 
and thus limiting the basin of attraction for stabilization of the 
system.  A better formulation of the problem addressed in 
White, Foss, and Guo (2007) will be presented in this paper 
where it will be seen that certain parameters will be 

Improvements in Direct Lyapunov Stabilization of Underactuated, 
Mechanical Systems 

Warren N. White, Mikil Foss, Jaspen Patenaude, Xin Guo, and Deyka García 

U 

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

ThB15.2

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 2927



 
 

 

introduced that preserve the sign of the candidate Lyapunov 
function rate of change. 

This paper will present derivation of the DLA and the 
innovation used to improve the performance.  Proofs of the 
viability of the approach are included in the development.  An 
example involving a rotary, inverted pendulum is presented 
that illustrates the veracity of the formulation. 

II.  THE LYAPUNOV FORMULATION AND MATCHING 
CONDITIONS 

The application of the Lyapunov direct method to 
stabilization of mechanical systems possessing n degrees of 
freedom is done so that the state vector x(t) ∈ ℜ2n is driven to 
the state space origin, i.e. the zero vector (result derived from, 
perhaps, suitable axis translation).  The derivation of the new 
controller follows, in many respects, that presented by White, 
Foss, and Guo (2007) resulting in three matching conditions, 
the solution of which determine the stabilizing controller.  It 
will be seen in the development that the first matching 
condition differs from previous versions of this approach. 

The motion of the mechanical system is governed by 
( ) ( ) ( ) τqGqCqqqCqqM =+++ &&&&& D,            (1) 

where q∈ ℜn is the vector of generalized coordinates for the 
mechanical system, M(q) ∈ ℜn×n is the symmetric, positive 
definite mass matrix, ( )qqqC &&, ∈ ℜn consists of centripetal 
and corilis forces and/or torques, CD ∈ ℜn×n is the symmetric, 
positive semi-definite, viscous damping coefficient matrix, 
and G(q) ∈ ℜn consists of forces and/or moments stemming 
from gradients of conservative fields.  

The candidate Lyapunov function is stated as 

( ) ( )qqKqqq Φ+= &&& D
TV

2
1,            (2) 

where ( ) :,qq &V  ℜ2n → ℜ is the candidate Lyapunov 
function, Φ(q): ℜn → ℜ is a potential function, and KD ∈ℜn×n 
is a symmetric, positive definite matrix defined as 

( ) ( )qMPK tD =              (3) 
where P(t) ∈ℜn×n is a matrix chosen such that KD has the 
stated properties.  Lyapunov’s equation (Chen, 1999) can be 
used to show that all of the eigenvalues of P have positive real 
parts.  This important result will be used in the second 
matching condition. 

The time derivative of the candidate Lyapunov function is 
computed as 

( ) qKqqqqKqqKq &&&&&&&&&&
V

TT
D

T
D

TV −=Φ∇++=
2
1

   

(4) 

where the matrix KV ∈ ℜn×n is symmetric and at least positive 
semi-definite and ∇Φ(q) is the gradient of the potential with 
respect to the generalized positions.  Owing to the nature of 
the right hand side of (4), LaSalle’s theorem, as discussed by 
Khalil (2002), will be necessary to demonstrate asymptotic 
stability, however the right side of (4) is similar to the 
Hamiltonian formulations cited earlier.  The result in (4) 
shows that ( )qV && ,q  is a non-positive function.  Substituting 
for q&& from (1) into (4) produces 

( ) ( )( ) ( )( )

( ) .
2
1

,1

qKqqqqKq

τqGqCqqCqMKq

&&&&&&

&&&&

v
T

d
T

D
T

DD
TV

−=Φ∇++

+−−−= −

   (5) 

The strategy in solving (5) is through a matching equation 
approach by breaking (5) into three separate equations.  The 
three matching conditions are developed in the coming 
sections. 

Examination of (5) shows that there are two classes of 
terms that occur excluding the input.  The first involves those 
terms that are pre and post multiplied by the generalized 
velocities.  The other terms are pre-multiplied by a 
generalized velocity and involve a vector function of 
generalized coordinates (gravity terms and potential gradient) 
and these terms will give rise to the third matching condition.  
The first class of terms can be further divided into terms that 
are a function of the generalized velocities such as 

( )qqC &, (these terms are found in the first matching 
condition) and terms that are constant such as Kv or CD (terms 
comprising the second matching condition).   The input 
vector τ will be broken into three parts, one for each matching 
condition.  Following these descriptions, (5) is written as 
three separate equations or matching conditions.  The first 
matching condition is 

( ) ( ) .0
2
1

0
, 11 =+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
+−− qKq

F
qqqCqMKq &&&&&& D

T
D

T         (6) 

The second matching condition is given by 

( ) .
0

21 qKq
F

qCqMKq &&&& v
T

DD
T −=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
+−−         (7) 

Finally, the third matching condition is provided by 

( ) ( ) ( ) .0
0

31 =Φ∇+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
+−− qq

F
qGqMKq T

D
T &&        (8) 

In (6) – (8), the input vector τ has been broken into three 
terms given by 

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=

000
321 FFF

τ               (9) 

where the Fi is used in the ith matching condition.  In (9), the 
m nonzero inputs will be placed in the first m rows of τ while 
the last n-m rows will correspond to unactuated mechanical 
degrees of freedom.  It should be realized that the sum of (6) – 
(8) observing (9) is the same as (5). 

Each of the matching conditions and its corresponding 
solution will be treated in the following sections. 

A. The First Matching Condition 
Before developing a solution for the first matching 

condition, consideration is given to nature of this solution.  
The goal in solving the first matching condition is the 
determination of both the matrix KD such that the matrix is 
symmetric and positive definite and the control input F1.  
Likewise, the goal of the second matching condition solution 
is both the matrix Kv such that it is symmetric and at least 
positive semi-definite and the control law contribution F2.  
The overall goal in satisfying the third matching condition is 
the determination of the potential Φ and the final portion of τ, 
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namely F3.  In examining (7) and (8), it is seen that the matrix 
KD plays a role in satisfying the second and third matching 
conditions.  Suppose a given system is at equilibrium and is 
subjected to a disturbance.  If the matrix KD does not return to 
the same form after equilibrium has been restored, then the 
response of the system will be different should the system be 
subjected to the same disturbance.  That KD must return to the 
same form as equilibrium is attained is a necessary 
requirement for the first matching condition. 

The requirement concerning the limiting form of KD as 
equilibrium is approached is satisfied by the inclusion of 
additional terms in both the first and second matching 
conditions.  So that these additional terms do not alter (5), 
they will be subtracted from the first matching condition and 
added to the second matching condition.  By including these 
new terms, (6) and (7) become 

( ) ( )( )

0
2
1

0
, 1'1

=+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
+−−−−

qKq

F
qCCqqCqMKq

&&&

&&&

D
T

DDD
T

            (10) 

and 

( ) ( ) qKq
F

qCCCqMKq &&&& v
T

DDDD
T −=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
+++−−

0
2'1 ,  (11) 

respectively, where CD’ ∈ℜn×n and DC ∈ℜn×n are symmetric 
matrices.  Notice that the sum of (10) and (11) is the same as 
the sum of (6) and (7).  The matrices DC  and F1 will be used 
to drive KD back to a specified form as equilibrium is attained.  
The matrix CD’ is used with the second matching condition 
and further discussion of CD’ will be deferred until that time. 

By defining the first matching condition control input as 

q
FF

&⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
00

11 m                     (12) 

where Fm1 ∈ ℜm×n is a coefficient matrix yet to be determined, 
it can be seen that each term in the first matching condition is 
pre and post multiplied by the vector of generalized 
velocities.  By introducing (12) into (10) and stripping off the 
generalized velocities, the first matching condition becomes 

( ) ( ) 0
2
1

0
, 1'1 =+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
+−−−−

D
m

DDD K
F

CCqqCqMK &&       (13) 

which is a linear, differential equation for the matrix KD.  
When the leftmost matrix product of (13) (term in 
parentheses) is pre and post multiplied by the generalized 
velocity vector, the skew-symmetric part of that matrix 
vanishes.  By setting the symmetric part of (13) to zero, then 
(10) will be automatically satisfied.  Performing this 
operation provides 

( ) ( )( ) ( )( ) ( )

( ) ( ) .0
00

,,

1111

1''1

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
+−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
+−

++−+−

−−

−−

D

T
m

D
m

DD

D
T

DDDD

KqM
F

C
F

CqMK

KqMCqqCCqqCqMKK &&&
 (14) 

The strategy for driving KD to the same form as equilibrium is 
approached is to choose the elements of Fm1 and DC so that 
the last two terms of (14) will equal 

( )

( ) ( )DfDD

T
m

D

m
DD

KKKqM
F

C

F
CqMK

−−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
+−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
+−

−

−

β11

11

0

0   (15) 

where β is a negative constant and KDf is the final form of the 
matrix KD.  The matrix KDf is a user supplied quantity.  In 
solving (15), only the minimum number of elements in the 
two unknown matrices on the left of (15) is used. In order to 
satisfy (15), n(n+1)/2 equations can be written to determine 
the same number of unknowns.  In (15), there are a total of 
n(n+1)/2 + nm unknowns in the matrices DC and Fm1.  In fact, 
the matrix DC can be used exclusively to solve (15), however 
there is some advantage in using both of the arrays DC and 
Fm1 to solve (15).  By utilizing as much of the matrix Fm1 as 
possible to build the right side (15), then fewer terms of DC  
(a term shared with the second matching condition) are 
needed.  Substituting (15) into (14) yields 

( ) ( )( )
( )( ) ( ) ( ) 0,

,
1'

'1

=−−+

−+−
−

−

DfDD
T

D

DDD

KKKqMCqqC

CqqCqMKK

β&

&&
.  (16) 

In order for (16) to have the correct steady state solution, 
the term containing the matrices CD’ and ( )qqC &, must vanish 
as equilibrium is approached.  Because ( )qqC &,  is linear in the 
generalized velocities, this is easily accomplished.  In order 
for the vanishing of this term to be completely accomplished, 
CD’ will have to be defined so that it approaches zero as 
equilibrium is approached.  In the presentation of the second 
matching condition, this requirement will be included. 

There are two advantageous parts of (16), the first of which 
is that the matrix KD can be evaluated numerically as part of 
the feedback.  The other advantageous part is that the matrix 
KD can be made essentially constant by a suitably ample 
choice for the constant β.  If KD is constant, then the matrix P 
shown in (3) becomes a function of q alone as seen by 

( ) ( ) 1−= qMKqP D .           (17) 
In the sequel, the constant β will be assumed to be large 
enough so that (17) is true. 

B. The Second Matching Condition 
This section will present the solution of the second 

matching condition and in so doing will provide a definition 
for the matrix CD’.  Let the forcing term of (11) be written as 

q
FF

&⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
00

22 m               (18) 

where Fm2 is a m × n real matrix.  Substituting (18) into (11), 
removing the pre and post multiplication by the generalized 
velocity vector, and simplifying shows 

( )( ) ( ) .
0

2'
vDDD

m
K

F
qPCCCqP −=⎥

⎦

⎤
⎢
⎣

⎡
+++−      (19) 

Because the quantity DC was used with Fm1 in the first 
matching condition to construct β(KD- KDf), it has no intended 
purpose in the second matching condition.  The matrix CD’ is 
used for two purposes, the first of which is to remove DC  
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from the second matching condition and the second purpose 
is to introduce “virtual” viscous damping.  The intended 
purpose of the viscous damping is to facilitate energy 
removal and to vanish as equilibrium is attained, i.e. the 
dynamics of the system remain unaltered.  Let the matrix CD” 
contain the virtual damping where 

( )'" DDD CCC +−= .               (20) 
The matrix CD” nominally consists of diagonal entries.  Once 
CD” is defined, (20) then provides a definition for CD’. 

In order to solve (19), we choose 

( ) 1
1

1

2

0 v

m
KqP

F −−=⎥
⎦

⎤
⎢
⎣

⎡
        (21) 

for which the solution is 

∑
=

=
m

i

T
iiiv

1
1 PPK α              (22) 

where the αi are constants chosen so that Kv1 is positive 
semi-definite and Pi is the ith column of P(q).  Note that the 
matrix on the left side of (21) (part of the control law) is 
evaluated by extraction of the first m rows of the matrix 
product on the right side of (21).  Applying (20) and (21) to 
(19) shows that 

( )( ) vvDD KKCCqP −=−−− 1" .           (23) 
The product of P(q) and the viscous damping matrices is 

not symmetric, however, the pre and post multiplication by 
q& extracts the symmetric portion of the product matrices.  
Thus, we require 

( )( ) ( ) ( )[ ] 2""
2
1

v
T

DDDD KqPCCCCqP −=−−+−−  (24) 

where Kv2 is a symmetric, real matrix with non-negative 
eigenvalues.  This last result in (24) can be recognized as 
Lyapunov’s equation.  From Section 5.4 of Chen (1999), if  
all of the eigenvalues of P(q) has positive real parts and if the 
viscous damping matrices are symmetric and with 
non-negative eigenvalues, then Kv2 is symmetric with 
non-negative eigenvlaues.  The matrix Kv on the right side of 
(19) is always positive definite (semi-definite) and is given by 

vvv KKK =+ 21 .              (25) 

C. The Third Matching Equation 
From (8) we have 

( ) ( ) .0
0

)()( 3 =Φ∇+⎥
⎦

⎤
⎢
⎣

⎡
+− q

F
PqGP tt       (26) 

The first m equations in (26) are used to determine the control 
law contribution F3 while the last n – m rows of the equation 
provide linear, first order partial (ordinary) differential 
equations for the potential Φ.  The last result in (26) is 
identical to previous DLA analyses. 

In taking the time derivative of the candidate Lyapunov 
function, the potential Φ is assumed to be a function of the 
generalized positions q alone.  In examining (18), it is seen 
that P(t) appears in the equation leading to the conclusion that 
Φ also depends upon P(t).  If KD is constant then (17) applies 

and P is a function of q alone.  When viewed in this light, it is 
seen that the time derivative of the candidate Lyapunov 
function was correctly calculated. 

III. THE EVOLUTION OF KD 
The equations of motion can be expressed as 

( ) 321 FFqFGqCCqM ++=+++ &&&& D     (27) 
where the three control law terms have been written in a more 
compact format.  As before, the lower n – m rows of the 
control law vectors are zero. 

Define the candidate Lyapunov function as 
( ) [ ] ( )qqqKqq Φ+⋅= &&& )(, tV D .         (28) 

Then 

[ ]

[ ]( ){ }
( ) .

2
1),(

321
1

qq
q

qGFFqCCFMK

qqKqq

&

&&

&&&

⋅Φ
∂
∂

+

⋅−++−−

+⋅=

−
DD

DV

      (29) 

The first matching condition is 
( ) ( )

( ) ( ) ( ) .01
11

1

1''1

=+−++−+

+−+−
−−

−−

T
D

T
DDD

T
D

T
DDDD

KqMFCFCMK

KMCCCCMKK&  (30) 

We show that if KD is positive definite at t = 0, then it is 
always positive definite. 
Lemma 1. Suppose that KD :[0, +∞) → ℜn×n is continuously 
differentiable and satisfies KD(0) = KD(0)T.  If the 1st matching 
condition holds for all t ∈ (0, +∞), then KD is positive definite 
for all t ∈ (0, +∞) provided that KD(0) is positive definite. 
Proof.  If KD satisfies the 1st matching condition it is clearly 
symmetric. 

Let x : [0, +∞) → ℜn be a normalized eigenvector of KD 
with λ : [0, +∞) → ℜ the corresponding eigenvalue.  Because 
KD is symmetric and continuously differentiable, we may 
assume that x and λ are continuously differentiable. 

Because KD(t)x(t) = λ(t)x(t) for all t ∈ [0, +∞), we find that 

[ ] .xxxKxKxK &&&& λλ +=+= DDDdt
d

   (31) 

Also, KD(t) is symmetric and )(tx  = 1 for all t ∈ [0, +∞), so 

.22 xxKxxxxxKx λλλ &&&&& =⋅−⋅+=⋅ DD  (32) 

Multiplying the 1st matching condition by x, taking the 
inner product of the resulting vector with x and using the 
symmetry of KD we deduce that 

( ) ( )
( ) ( ) ( )

( ) .02

0

1
'1

1
11

1

1''1

=−++⋅−⇒

=+−⋅++−⋅

++⋅−+⋅−⋅

−

−−

−−

xFCCCMx

xKqMFCxxFCMKx

xKMCCxxCCMKxxKx

DD

T
D

T
DDD

T
D

T
DDDD

λλ&

&

  (33) 

Define the function ϕ : [0, +∞) → ℜ by 

( ) ( ) ( ) ( ) .2:
0

1
'1 drrrt

t

DD xFCCCMx∫ −++⋅= −ϕ   (34) 

The general solution to the result of (33) may be written as 
( ) ( ) .0 )(tet ϕλλ =               (35) 
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Because KD(0) is positive definite, we necessarily have that 
λ(0) > 0, so we may conclude that λ(t) > 0 for all t ∈ [0, +∞).  
Hence, KD(t) is positive definite provided that KD(0) is.      � 

IV. ROTARY INVERTED PENDULUM EXAMPLE 
The control law design method was applied to a rotary 

pendulum system.  The system geometry together with the 
dynamic equations of motion are shown in Figure 1 with 
definitions of the physical parameters.  The potential ( )φθ ,Φ  
was found to be  

( ) ( )( )

( )

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+−

−+

+−−=Φ

−

DenDen

rl
l

rlg

D
DoD

D

D

D

D
DoD

KKK

K
K

K
K

KK

2
tan32

tanh4cosh

cos32ln,

1211
1

12

22

12
1211

φ

φθ

φφθ   (36) 

where 
2

12
2

1112 94 DoDD rDen KKK +−= .           (37) 

The matrix '
DC  was defined as 

  
( )⎥⎦

⎤
⎢
⎣

⎡
+

−⎥
⎦

⎤
⎢
⎣

⎡
−=−−= − qqqqC

CCC TT
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Figure 1 :  Rotary Inverted Pendulum 

The values of the physical parameters are  rp= .01 m,         
ro= .2159 m, l=.430 m, g= 9.81 m/s2, mr =.2 kg, mp  =.14 kg,  
KD11=.41622, KD12=-.74191, KD22=1.81207, β = -1000,  and 
α1=.0142 with the closed loop linearized system poles located 
at  -10,-2,-3,-4. 

Figures 2-7 show the response of the system at rest to an 
initial displacement of φ(0) = 0.65 radians. The chosen 
example could not be stabilized by the linear controller.  The 
KD matrix was evaluated through numerical integration of 
(16).  Figure 4 shows that the elements of KD are remaining 
essentially constant.  Figure 5 shows that the Kv matrix is 
either positive definite or positive semi-definite.  The 
behavior shown in Figures 6 and 7 demonstrate the validity of 
the Lyapunov candidate function. 
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Figure 2 : Pendulum Position 
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Figure 3 : Wheel Position 
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Figure 4 : Elements of KD Matrix 
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Figure 6 : Lyapunov Time History 
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Figure 7 : Time Derivative of Lyapunov 

V. CONCLUSION 
A direct Lyapunov method for underactuated systems has 

been presented.  The matching method results in three 
equations.  The first matching condition results in linear 
ODEs for the matrix KD that can be solved as part of the 
feedback and it was mathematically proved that the 
eigenvalues of KD remain positive and bounded for all time.  
Also, the eigenvalues of P(q) all have positive real parts.  In 
this formulation as was done in the previous one, KD 
approaches a constant matrix.  The first matching equation 
improvement also results in a modified second matching 
condition that still consists of linear algebraic equations.  The 
major difference between this formulation and its predecessor 
is in the way the matrix KD is made to approach its final value 
and in the way that the second matching condition is solved. 

The second matching condition is formulated and solved in 
such a way that the matrix Kv always remains at least positive 
semi-definite.  By Lyapunov’s equation the inclusion of 
virtual positive viscous damping on the un-actuated axes 
provides a Kv matrix that is positive definite.  In the previous 
formulation of the DLA, the way in which the KD matrix was 
made to approach its final form could contribute to the Kv 
matrix becoming indeterminate, possibly leading to 
instability.  In cases where there was no viscous damping 
present on the un-actuated axes, the previous formulation 
resulted in one eigenvalue of Kv exhibiting a small oscillation 
about zero.  The formulation presented in this paper does not 
suffer such drawbacks.  The presented simulation 
demonstrates expected performance.  

The third matching condition produces n – m linear PDEs 
for the potential Φ.  The third matching condition presents the 
limitation on the basin of attraction.  The basin of attraction in 
the example is limited by a singularity in the potential 
function, a singularity determined by the choice of constants 
for KDf.  Further study of the third matching condition is 
necessary so that the basin of attraction can be expanded.  
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