
  

  

Abstract— The plug-in hybrid electric vehicle (PHEV), 
utilizing more battery power, is considered a next-generation 
hybrid electric vehicles with great promise of higher fuel 
economy. The charge-depletion mode is more appropriate for 
the power management of PHEV, i.e. the state of charge (SOC) 
is expected to drop to a low threshold when the vehicle reaches 
the destination of the trip. Global optimization charge-depletion 
power management would be desirable. However, this has so far 
been hampered due the a priori nature of the trip information 
and the almost prohibitive computational cost of global 
optimization techniques such as dynamic programming (DP). 
This situation can be changed by the current advancement of 
Intelligent Transportation Systems (ITS) based on the use of 
on-board GPS, GIS, real-time and historical traffic flow data 
and advanced traffic flow modeling techniques. In this paper, 
gas-kinetic base trip modeling approach was used for the 
highway portion trip and for the local road portion the traffic 
light sequences throughout the trip will be synchronized with 
the vehicle operation. Several trip models approaches were 
studied for a specific case. The simulation results demonstrated 
significant improvement in fuel economy using DP based 
charge-depletion control compared to rule based control. The 
gas-kinetic based trip model for the highway portion can 
describe the dynamics of the traffic flow on highway with on/off 
ramps which may be missed by the model which used only the 
main road detectors data.  

I. INTRODUCTION 

nergy shortage and environmental concern have 
jeopardized the sustainability in the contemporary world. 

The hybrid electric vehicle (HEV) has provided a promising 
alternative means for sustainable mobility [1-4]. The 

propulsion power of HEV comes from two or more kinds of 
energy sources, e.g., the gasoline internal combustion engine 
(ICE) and battery [4-6]. The plug-in hybrid electric vehicle 

(PHEV) is a new generation of HEV with higher battery 
capacity and the ability to be recharged from an external 

electrical outlet [7]. Unlike the conventional HEV (i.e., the 
so-called HEV-0) which can sustain little purely electric 
range, the PHEV can sustain a longer all-electric range 

(AER). More fuel can be replaced by the four times cheaper 
grid electricity in USA [7].  

Similar to conventional HEV, power management is an 
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important operational factor for PHEV to enhance fuel 
economy and reduce emissions. HEV power management is 
generally concerned about how to split the power demand 
between the two power sources in order to achieve the best 
fuel economy, minimize the emission and maintain the health 
of the battery. Limited by the current battery technology, the 
PHEV with 10 ~ 20 miles AER is considered, according to 
the DOE authority [8], to be more commercially feasible 
within the near future, although much higher AER can be 
obtained from showroom vehicles by using more battery 
packs. For PHEV-10 or PHEV-20, the electric vehicle (EV) 
mode cannot sustain the whole trip for most commuters. 
Therefore, it is necessary to optimize the power management 
strategies for PHEV.  

In the past decade, HEV power management has been 
studied from both control and optimization perspectives. The 
rule-based control strategies, such as fuzzy logic control 
techniques, were investigated in power management, by 
dividing the actual driving conditions into different scenarios 
[5] [9]. Rule-based controllers are easier to implement, while 
the resultant operation may be quite far from optimal due to 
the omission of the detailed dynamic models. Driving mode 
classification was also studied by using a pattern recognition 
approach [10] based on the current and previous driving 
condition. A blend of pattern learning and fuzzy classification 
was presented in recent work by Langari and Won [11] [12]. 
Dynamic feedback control approaches solve for the control 
strategies based on the current and previous operation, which 
are easier for the real-time implementation purpose. An 
optimal control design approach was studied [13] [14]. A 
sliding mode control has also been studied to achieve better 
robustness regarding parameter and model variation and 
external disturbances [15]. For the power management 
problem in particular, a major drawback of rule-based, 
driving-mode based, and the dynamic feedback control based 
approaches is the absence of global optimality, i.e. the power 
distribution is not optimized for the whole trip. In order to 
obtain the globally optimal solutions, dynamic programming 
(DP) techniques have been investigated [16-20] for the power 
management of various types of HEV. The application of a 
DP algorithm have relied on certain driving cycles, e.g., the 
standard driving cycles provided by the U. S. Department of 
Transportation (DOT). The DP based work has all been 
considered not applicable for real-time implementation 
because the trip model (driving cycle) is future information 
for vehicle operation. Therefore, it was claimed that global 
optimization result can only used as reference for power
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management. More research has been done to seek other 
alternative methods to optimize the power control. In addition 
to DP, quadratic programming and model predictive control 
frameworks were also explored [20] An adaptive algorithm 
based on the equivalent consumption minimization strategy 
(ECMS) was developed based on the on-line adaptive 
estimation of an equivalence factor based on the current 
driving conditions [21]. Good parameter tuning was required 
in order to achieve similar performance as the DP methods. 
Dependency on the current driving conditions makes this 
method more suitable for charge-sustaining strategy, but 
quite difficult to be extended to the plug-in HEV for which 
charge-depleting operation is desired.  

The global optimization type of approaches such as using 
the DP method is more appropriate for PHEV power 
management. In order to achieve the global optimality for a 
trip, the trip model for an individual trip is required in 
advance. Another difficulty is the computational load for 
global optimization algorithms in the micro-processor inside 
the vehicle. A two-scaled dynamic programming algorithm is 
developed for improving the computation efficiency while 
maintain the optimality of the power management [22].The 
computation time is greatly shortened by using the approach, 
which shows a great potential for the real time 
implementation. 

Recently, trip prediction and modeling has been greatly 
facilitated by the rapid development of the Intelligent 
Transportation Systems (ITS), Geographical Information 
Systems (GIS) and Global Positioning Systems (GPS) 
[23-25]. On-board GPS can report the vehicle location in 
real-time. Vehicle-to-vehicle and vehicle-infrastructure 
interaction have been made realistic with readily available 
wireless technology. Traffic flow monitoring systems have 
been developed for many arterial and express roads. Real 
time and historical traffic information can be obtained from 
roadside sensors. Combining all these information will 
greatly reduce the uncertainty of trip prediction. If the trip 
becomes predictable to a large extent, global optimization 
techniques such as DP will then be realizable. The paper 
presents a DP based global optimal power management 
scheme for plug-in hybrid vehicles by trip modeling with 
traffic data. The charge-depleting strategy is followed. The 
vehicle model is a hybrid sports-utility vehicle (SUV) with 
battery capacity of a low AER plug-in level.  

I. HYBRID SUV CONFIGURATION AND DYNAMIC 
OPTIMIZATION PROBLEM 

A. System Configuration 
The SUV model for this study was derived from the 

ADVISOR program [26-27]. The resultant SUV has the ICE 
power of 102 kW. Then the hybrid design was performed by 
downsizing the engine and adding an electric motor. The ICE 
was downsized to 75 kW, and a 50 kW AC electric motor was 

selected from the database in ADVISOR. The total power 
capability can meet the requirement for most DOT standard 
driving cycles. The energy storage unit is a 15 A-h lead-acid 
battery. The ICE and motor are connected through a typical 
parallel configuration.  

B. Dynamic Programming Based Charge-Depletion 
Power Management 
The dynamic optimization approach of HEV power 

management relies on a dynamic model for the vehicle along 
with the powertrain to compute the best control strategy. For 
a given driving cycle, the optimal operation strategy which 
minimizes fuel consumption, or combined fuel consumption 
and emissions can be obtained. A numerical dynamic 
programming approach [18] is adopted to solve this finite 
horizon dynamic optimization problem. 

In the discrete-time format, the hybrid electric vehicle 
model can be expressed as 

)](),([)1( kukxfkx =+             (1) 

where x(k) is the state vector of the system, such as vehicle 
speed, transmission gear number, and battery SOC; u(k) is the 
vector of control variables such as desired output torque from 
the engine, desired output torque from the motor, and gear 
shift command to the transmission. The optimization problem 
is to find the control input u(k) in order to minimize the 
following cost function: 
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where N is the duration of the driving cycle, L is the 
instantaneous cost including fuel use and engine-out NOx and 
particulate matter (PM) emissions. In the current stage of 
study, we only consider the fuel consumption minimization, 
i.e. µ = ν = 0.  

A simplified but sufficiently complex vehicle model has 
been adopted [18] in our previous study [27] for the DP based 
optimization Discretization and interpolation methods were 
used for the backward calculation of DP. For a plug-in HEV, 
the vehicle can be assumed fully charged to the highest 
healthy level, typically SOC of 0.8, while the healthy low 
level of SOC is 0.3. Therefore, for the DP problem to be 
solved, the initial and terminal values of SOC are 0.8 and 0.3, 
respectively. The constraints to the DP procedure are the 
system dynamics throughout the trip to be made. 

II. DRIVING CYCLE MODEL USING GAS-KINETIC TRAFFIC 
FLOW MODEL 

The purpose of the trip modeling is to find the driving 
cycle (e.g., travel speed, time, acceleration and deceleration) 
for each trip. A trip is defined as a driving path from an origin 
to a destination. Trip modeling includes two scenarios: local 
road and freeway. A simplified trip modeling approach with 
using of the traffic lights signals which can be obtained from 
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the traffic management center was discussed [27] [32]. On 
most freeways around metropolitan areas, traffic flow sensors 
have been widely deployed and thus both historical and 
real-time traffic data are available for trip modeling. There 
are large databases of the archived ITS data. For example, the 
Wisconsin Department of Transportation has archived the 
traffic flow data in its WisTransPortal that is maintained by 
the Wisconsin Traffic Operations and Safety (TOPS) 
Laboratory [33]. This WisTransPortal allows the users to 
access the traffic data on the web. The procedures for traffic 
data based model were discussed [27]. In this paper, 
gas-kinetic base traffic model will be used for the modeling of 
traffic flow on the highway portion with on/off ramps. 

A.  Problem Description for the Traffic Modeling 
For the trip modeling in the highway portion, it is not 

enough to model the trip using only the speed values obtained 
from the detectors, and interpolating, since traffic flow in the 
highway is a dynamic problem. Different modeling 
approaches have been applied to understand various 
characteristic properties of traffic flow that are common on 
freeway. Some early pioneers were Lighthill  and Whitham 
and Richards, who developed independently a continuum 
(macroscopic) model for traffic flow operations on freeways. 
This model is known as LWR model and is still applied and 
extended frequently. In the 1960s, Prigogine and Herman 
developed gas-kinetic modeling, which was based on the 
analogy between traffic flow and gas dynamics and has 
become the basis for further development of high-order 
continuum traffic models by many researchers such as 
Phillips, Helbing, and Hoogendoorn. In general, these efforts 
concentrated mainly on describing uninterrupted traffic flow. 
Relatively little progress has been made in investigating 
interrupted traffic flow such as with on- and off-ramps. 
Helbing derived a gas-kinetic based traffic model considering 
on- or off-ramps[34]. D. Ngoduy proposed a continuum 
traffic model for freeway with on- and off-ramp [35]. In his 
model, multilane situation is considered, and lane changing is 
studied in this model. Also the effect of the length of the ramp 
is studied in his paper.      

 

Fig. 1. Traffic flow of highway with on/off ramps 

The case of our research is the trip model on the freeway 
considering the effect of the on- or off-ramp. The diagram is 
shown in Fig. 1. The blue dots are the detectors fixed along 
the main road and ramps, which can obtain the traffic flow, 

speed information. At current step, we consider only the one 
lane situation, which means lane changing is not considered . 

B. Gas-Kinetic-Based Traffic Model 
On a macroscopic scale, many aspects of traffic flow are 

similar to those of aggregated physical systems. In particular, 
if one abstracts from the motion of the single vehicles, traffic 
can be modeled as a continuum compressible fluid [34-37]. 
Existing macroscopic traffic models have been able to 
explain various empirically observed properties of traffic 
dynamics.  

Kerner and Rehborn presented experimental data 
indicating a first-order transition to “synchronized” traffic 
(ST) [38]. Traffic data indicate that ST is the most common 
form of congested traffic. ST typically occurs at on-ramps 
when vehicles are added to already busy “freeways” [34]. 

Dirk Helbing proposed a gas-kinetic-based traffic model 
which can explain the characteristic properties of ST. It’s a 
macroscopic effective one-lane model that was derived from 
a gas-kinetic level of description and treats all lanes in an 
overall manner. The kinetic equation has some similarities to 
the gas-kinetic Boltzmann equation for one-dimensional 
dense gases with the vehicles playing the role of molecules 
[34]. There are also some features specific to traffic. 

The model is based on a kinetic equation for the 
phase-space density ),,(~ tvxρ , which corresponds to the spatial 
vehicle density ),( txρ times the distribution ),;( txvP of vehicle 
velocities v at position x and time t [36]. The model equation 

for the lane-averaged vehicle density ∫= ),,(~),( tvxdvtx ρρ and 

the average velocity ∫−= ),,(~),( 1 tvxdvvtxV ρρ are [37] 
 )/(/)(/ nLQxVt rmp=∂∂+∂∂ ρρ                                                       (3) 
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Without on- or off- ramps, the density equation (3) is just a 
one-dimensional continuity equation reflecting the 
conservation of the number of vehicles. Along on-ramps (or 
off-ramps), the source term )/(nLQrmp is given by the actually 
observed inflow 0>rmpQ from (or outflow 0<rmpQ to) the ramp, 
divided by the merging length L and by the number n of lanes. 

The velocity equation (4) contains the velocity variance 
∫ −= − ),,(~)],([),( 21 tvxtxVvdvtx ρρθ . Instead of deriving a 

dynamic equation for θ  from the kinetic equations, they use 
the constitutive relation 

2)( VA ρθ = with 
 [ ]ρρρρ ∆−∆+= /)(tanh)( 0 cAAA                                           (5) 

where 008.00 =A , 015.0=∆A , max28.0 ρρ =c , and 
max1.0 ρρ =∆ . These coefficients can be obtained from 

single-vehicle data.  

3
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2
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The first term on the right-hand side of (4) is the gradient of 
the “traffic pressure” ρθ . It describes the kinematic dispersion 
of the macroscopic velocity in inhomogeneous traffic as 
consequence of the finite velocity variance. The second term 
denotes the acceleration towards the (traffic-independent) 
average desired velocity 0V of the drivers with a relaxation 
time ∈τ [10 s, 50 s]. The third term denotes the breaking 
interaction term. A gas-kinetic derivation leads to the 
“Boltzmann factor” [38]. 
 

⎥⎦
⎤

⎢⎣
⎡ ++= ∫ ∞−

−− )2/()1()2/(2)( 2/22/ 22 V
v y

vVV dyeeB
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where aaV VV θθδ +−= /)(  is dimensionless velocity difference 
between the actual location x and the interaction point 

)/1( max TVxxa ++= ργ . The average safe time headway T is 
of the order of one second. For the “anticipation factor” γ , 
we assume values between one and two.  

C.  Finite Difference Method Used for the Model 
The simulations are carried out with an explicit 

finite-difference integration scheme. The conservative form 
of the traffic equation reads (3) and the flowing equation  

)/(/)(/)/(/ 2 nLVQQVxPQtQ armpe +−=∂+∂+∂∂ τρρ                (7) 

where dynamic equilibrium velocity Ve is: 
( )[ ]Vaaae BTAVV δρρρρθθ 2

maxmax0 )]/1/()][(2/)[(1 −+−=                 (8) 

Writing the equations in the form of )(/)(/ usxuftu =∂∂+∂∂ , we 
have 
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For the explicit numerical solution methods, x and t are 
discretized with uniform values of Δ x, Δ t. Hence we 
calculate u at the discrete points (jΔx, nΔt) with { },...2,1,0, ∈nj . 

For brevity, we use the notation ),( tnxjuu n
j ∆∆= . 

The Lax-Friedrichs method is as  
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D. Simulation Results for the Case 
For our study case [27], there are 11 ramps along the trip 
which can present correct and complete data. The distance of 
the ramps to the roads that intersect with the highway is 
approximately 200 m. The parameters used in the gas-kinetic 
based trip model are: L=0.4 km, ρmax=160 vehicles/km, 
Qmax=2300 vehicles/h, τ=32 s, V0=105 km/h, γ=1.2, Qrmp=840 
vehicles/h, T=1.8 s. The length of the simulation for each 
segment near the ramp is chosen as 0.4 km, with 0.2 km 
before the ramp and 0.2 km after the ramp.The initial 
condition for the simulation is ρ(x, 0)=30 vehicles/km, Q(x, 

0)=1700 vehicles/h. The initial condition was studied that 
may not affect the simulation results much in [34] [39]. The 
left boundary condition for the simulation is chosen as the 
state of the main road condition before the ramp, and the right 
boundary condition for the simulation is chosen as the state of 
the main road condition after the ramp. The simulation results 
of the gas-kinetic-based model for the first on ramp case are 
shown in Fig. 2. There was an evident speed slowing down 
near the ramp which was cased by the inlet flow of the on 
ramp.  

 

Fig. 2. Simulation results of the first on ramp case 

Combing the model of the highway portion with the model 
of local road portion, four different models were obtained. 
Trip model I is the traffic data based highway portion model 
combining with simple local road model, trip model II is the 
traffic data based highway portion model combining with 
traffic signal based local road model, trip model III is the 
gas-kinetic based highway portion model combining with 
simple local road model, and trip model IV is the gas-kinetic 
based highway portion model combining with traffic signal 
based local road model. The comparison of the four trip 
models in time based plot is shown in Fig. 3.  

 

 

 

 

 

 

 

 

 

Fig. 3. Comparison of the four trip models 

By using the gas-kinetic traffic flow model for the 
segments with on/off ramps, the trip model can describe the 
dynamic characteristics of the highway segments with on/off 
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ramps. Usually synchronized traffic which is a common 
traffic congestion phenomenon happened near on ramps, 
where the on ramp vehicles try to merge into the already busy 
traffic, happens during the peak hours. Trip model using only 
traffic data on main road will miss such kind phenomenon 
near the ramps.  

III. SIMULATION RESULTS 
A. Benefits of DP-Based Control 

With the hybrid SUV model as described in Section II, 
three power management strategies have been implemented: 
1) the DP based charge-depletion control, 2) the rule-based 
control; and 3) the charge-depleting-then sustaining 
(simplified as “depletion-sustenance”) control. The operation 
of the conventional SUV before hybridization has also been 
simulated as benchmark. The rule-based control strategy is 
obtained from the references [5] [18]. The algorithms for 
depletion-sustenance are presented in [27]. These four 
scenarios were simulated for the four trip models for the 
example route generated in the previous section. For all cases, 
the initial and terminal battery SOC’s were selected to be 0.8 
and 0.3, respectively.  

The power management of the conventional SUV, the 
rule-based control, the depletion- sustenance control and DP 
based charge-depletion control for the hybrid SUV were 
simulated for the four trip models. For the four trip model, the 
results show that the SOC for the DP based charge-depletion 
control can deplete to 0.3 at the final time of the driving cycle, 
while for the rule-based control the terminal SOC were 
dropped only to 0.4916, 0.5205, 0.4633, 0.5047 respectively. 
For the depletion-sustenance control, the terminal SOC were 
0.2947, 0.2861, 0.2999, 0.2971 respectively 

The fuel economy results are summarized in TABLE IV. 
For the four trip models, the fuel economy of DP based 
charge-depletion control is the best, while compared with the 
conventional SUV, rule based control and 
depletion-sustenance control also have some improvement of 
the fuel economy. Take the average fuel economy for 
example, the fuel economy of DP based charge-depletion 
control is 3.992 L/100 km, which has 54.9%and 55.9% 
improvement compared with rule-based control and the 
depletion-sustenance control respectively, and 61.1% 
improvement compared with conventional SUV. The 
standard deviation results also show the consistence of the DP 
based charge-depletion control results. The fuel economy of 
the gas-kinetic based model has a little worse fuel economy 
than only main road data based, since the synchronized traffic 
was described in the gas-kinetic model which causes speed 
down and up in the highway portion. The results of model 
considering traffic lights signals for the local road portion 
have a little better improvement than the ones do not. The 
more accurate traffic model can be used for the prediction of 
the traffic for the power management of the PHEV system. 

B. Two-Scale DP Simulation Results 
Using the SOC profile of average historical traffic data 

based trip model as the macro SOC profile, and implement 
the two scale DP algorithm to the trip model III described 
above (gas kinetic based model for highway portion, and 
simple model for local road).  The detailed description of two 
scale DP is in [22]. The fuel economy result of the adapted 
approach is 4.677 L/100 km, which is 9.2% worth then the 
global optimal results of trip model III in Table I. But the 
great benefit of this approach is the computation efficiency 
which is detailed discussed in [22]. The SOC profiles of the 
simulation results are shown in Fig. 4. 

 
TABLE  I. 

SIMULATION RESULTS FOR TRIP MODEL BASED POWER MANAGEMENT 
 

I II III IV Mean Std. Dev.

DP Charge-depletion 
Control 3.83 3.75 4.28 4.1 3.992 0.245 

Depletion-Sustenance 
Control 8.7 7.8 10.3 9.4 9.05 1.06 

Rule-based Control  8.7 8 9.6 9.1 8.85 0.676 

Conventional SUV 10.5 8.9 11.5 10.1 10.25 1.076 

 

 

 

 

 

 

 

 

 

Fig. 4. SOC profiles of the two scale DP 

IV. CONCLUSION 
DP based optimal power management was carried out for a 

plug-in hybrid SUV, based on the usage of trip modeling to 
obtain the driving cycle. Trip modeling was approached 
differently for local road and freeway situations. Gas-kinetic 
based traffic modeling approach was used for freeway trip 
model, which can better describe the traffic dynamics for the 
freeway with on/off ramps. Four trip models have been 
simulated for four different scenarios: conventional SUV, 
hybrid SUV with rule-based control and the 
depletion-sustenance control, and hybrid SUV with the DP 
based charge-depletion control. The results have shown the 
significant improvement of fuel economy of the last method. 
Two-scale DP can get nearly optimal results while greatly 
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reduce the computation time. The more accurate traffic model 
can be used for the prediction of the traffic for the power 
management of the PHEV system.  

Since there are cars interactions exist on the road including 
the local road, so traffic signal may not enough for the traffic 
model for the local road. Car following model which describe 
the interaction of cars on the road may be studied in the next 
step for the trip modeling for the local road portion. 
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