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Abstract

This paper leads with the active cancellation problem
of mechanical vibrations in rotor-bearing systems. The
use of an active disk is proposed for actively balancing
a rotor by means of locating a balancing mass at a suit-
able position. Two nonlinear controllers with integral
compensation are proposed to put the balancing mass
at a specific position. Algebraic identification is used
for on-line eccentricity estimation, because of the im-
plementation of this active disk is based on knowledge
of the eccentricity. An important property of this alge-
braic identification is that the eccentricity identification
is not asymptotic but algebraic, in contrast to most of
the traditional identification methods, which generally
suffer of poor speed performance. In addition, a ve-
locity control is designed to take the rotor velocity to
a desired operating point over the first critical speed.
The controllers are developed in the context of an off-
line prespecified reference trajectory tracking problem.
Some numerical simulations are included to illustrate
the dynamic performance of the closed loop system and
the active vibration cancellation.
Keywords: Active vibration control, Algebraic Identi-
fication, Eccentricity identification, Rotordynamics.

1 INTRODUCTION
Vibration caused by mass imbalance is a common prob-
lem in rotating machinery. Rotor imbalance occurs
when the principal axis of inertia of the rotor does not
coincide with its geometrical axis and leads to synchro-
nous vibrations and significant undesirable forces trans-
mitted to the mechanical elements and supports. Many
methods have been developed to reduce the unbalance-
induced vibration by using different devices such as elec-
tromagnetic bearings, active squeeze film dampers, lat-
eral force actuators, pressurized bearings and movable

1A. Blanco-Ortega and F. Beltrán-Carbajal are with the
ITESM, Campus Guadalajara, Escuela de Ingeniería y Arqui-
tectura, Zapopan, Jalisco, México (e-mail: andres.blanco, fran-
cisco.beltran@itesm.mx)

2A. Favela-Contreras is with the ITESM, Campus Monterrey,
Escuela de Ingeniería, Monterrey, Nuevo León, México (e-mail:
antonio.favela@itesm.mx)

3G. Silva-Navarro is with the CINVESTAV-IPN, Departa-
mento de Ingeniería Eléctrica, Sección de Mecatrónica, México
D.F., México (e-mail: gsilva@cinvestav.mx)

bearings (see, e.g., Zhou and Shi [1]; Sheu et al. [2];
Guozhi et al. [3]; Blanco-Ortega et al.[4]). These active
balancing control schemes require information of the ec-
centricity of rotating machinery. On the other hand,
there exists a vast literature on identification and esti-
mation methods, which are essentially asymptotic, re-
cursive or complex, which generally suffer of poor speed
performance (see, e.g., Ljung [5], Soderstrom [6], and
Sagara and Zhao [7, 8]).
This paper leads with the active cancellation problem
of mechanical vibrations in rotor-bearing systems. The
use of an active disk is proposed for actively balancing
a rotor by means of locating a balancing mass at a suit-
able position. Two nonlinear controllers with integral
compensation are proposed to put the balancing mass
at a specific position. Algebraic identification is used
for on-line eccentricity estimation, because of the im-
plementation of this active disk is based on knowledge
of the eccentricity. An important property of this alge-
braic identification is that the eccentricity identification
is not asymptotic but algebraic, in contrast to most of
the traditional identification methods, which generally
suffer of poor speed performance. In addition, a velocity
control is designed to take the rotor velocity to a desired
operating point over the first critical speed.
The proposed results are strongly based on the alge-
braic approach to parameter identification in linear sys-
tems reported by Fliess and Sira-Ramírez [9], which
employs differential algebra, module theory and oper-
ational calculus. Algebraic identification has already
been employed for parameter and signal estimation in
nonlinear and linear vibrating mechanical systems by
Beltrán-Carbajal et al. [10, 11]. Here numerical and
experimental results show that the algebraic identifica-
tion provides high robustness against parameter uncer-
tainty, frequency variations, small measurement errors
and noise.

2 VIBRATING MECHANICAL
SYSTEM

2.1 Mathematical model

The rotor-bearing system consists of a planar and rigid
disk of mass M mounted on a flexible shaft of negligi-
ble mass and stiffness k at the mid-span between two
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Figure 1: Rotor bearing system with active disk.

Figure 2: Configuration of the Active disk.

symmetric bearing supports (see Fig. 1 when a = b).
Due to rotor imbalance the mass center is not located
at the geometric center of the disk S but at the point
G (center of mass of the unbalanced disk), the distance
u between these points is known as disk eccentricity or
static unbalance (see Vance [12]; Dimarogonas [13]).
In our analysis the rotor-bearing system has an active
disk mounted on the shaft and near the main disk (see
Fig. 1). The active disk is designed in order to move a
mass m1 in all angular and radial positions inside the
disk, which are given by α and r1, respectively. In fact,
these movements can be got with some mechanical ele-
ments such as bevel gears and ball screw (see Fig. 2).
The mass m1 and the radial distance r1 are designed in
order to compensate the residual unbalance of the rotor
bearing system.
An end view of the whirling rotor is also shown in Fig.
3, with coordinates that describe its motion. The coor-
dinate system (η, ξ, ψ) of this figure is fixed to the active
disk, and the coordinate system (X,Y,Z ) is an inertial
frame with Z the nominal axis of rotation.
The mathematical model of the five degree-of-freedom
rotor-bearing system with active disk was obtained using
Euler-Lagrange equations, which is given by

(M +m1) ẍ+ cẋ+ kx = px (t)
(M +m1) ÿ + cẏ + ky = py (t)

Jeϕ̈+ cϕϕ̇ = τ1 + pϕ (t)
m1r

2
1α̈+ 2m1r1ṙ1α̇+m1gr1 cosα = τ2
m1r̈1 −m1r1α̇

2 +m1g sinα = F

(1)

Figure 3: Inertial disk considering the balancing mass
of the active disk.

with

px (t) = Mu
£
ϕ̈ sin (ϕ+ β) + ϕ̇2 cos (ϕ+ β)

¤
+m1r1

£
ϕ̈ sin (ϕ+ α) + ϕ̇2 cos (ϕ+ α)

¤
py (t) = Mu

£
ϕ̇2 sin (ϕ+ β)− ϕ̈ cos (ϕ+ β)

¤
+m1r1

£
ϕ̇2 sin (ϕ+ α)− ϕ̈ cos (ϕ+ α)

¤
pϕ (t) = −Mÿu cos (ϕ+ β)−m1ÿr1 cos (ϕ+ α)

+Mẍu sin (ϕ+ β) +m1ẍr1 sin (ϕ+ α)

Here J and cϕ are the inertia polar moment and the
viscous damping of the totor, τ1(t) is the applied torque
(control input) for rotor speed regulation, x and y are
the orthogonal coordinates that describe the disk posi-
tion, r1 and α denote the radial and angular position
of the balancing mass, which are controlled by means of
the control force F (t) and control torque τ2 (t) (servo-
mechanism).
Defining the state variables as z1 = x, z2 = ẋ, z3 =
y, z4 = ẏ, z5 = ϕ, z6 = ϕ̇, z7 = r1, z8 = ṙ1, z9 =
α and z10 = α̇, one obtains the following state space
description

ż1 = z2

ż2 =
1
∆

³
1
Me

¡
b2 + JeMe

¢
f1 +

ab
Me

f2 + a (τ1 − z6cϕ)
´

ż3 = z4

ż4 =
1
∆

³
ab
Me

f1 +
1
Me

¡
JeMe − a2

¢
f2 + b (τ1 − z6cϕ)

´
ż5 = z6
ż6 =

1
∆ (−af1 − bf2 −Me (τ1 − z6cϕ))

ż7 = z8
ż8 =

1
m1

¡
F − gm1 sin z9 +mz7z

2
10

¢
ż9 = z10
ż10 =

1
m1r21

(τ2 − gm1z7 cos z9 − 2m1z7z8z10)

y = z21 + z23
(2)

with f1 = cϕz2 + kz1 −Mz26uy − m1ryz
2
6 , f2 = cz4 +

kz3 −Mz26ux −m1rxz
2
6 , a = −Mux −m1rx, b =Muy +
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m1ry, Je = J +Mu2 +m1r
2
1,Me = M +m1 and ∆ =

a2 + b2 − JeMe.
The rotor-bearing system with active disk is then de-
scribed by the five degree-of-freedom, highly nonlinear
and coupled model (2). The proposed control objective
consists of reduce as much as possible the rotor vibration
amplitude, denoted in adimensional units by

R =

p
z21 + z23
u

(3)

for run-up, coast-down or steady state operation of the
rotor system, even in presence of small exogenous or
endogenous perturbations.
In the following table are given the rotor system para-
meters employed troughtout the paper:

Table 1: Rotor system parameters
M = 1.2 kg m1 = 0.003 kg a = b = 0.3m
β = π/6 rad α = 0 rad rdisk = 0.04m

u = 100μm cϕ = 1.5× 10−3 N
m/ s D = 0.01m

3 ACTIVE VIBRATION CON-
TROL

3.1 Active disk control

We are proposing to use an active disk for actively bal-
ancing of the rotor (see Fig. 1 and Fig. 3). We
can see that if the mass m1 is located at the position³
r̄ = Mu

m1
, ᾱ = β + π

´
the unbalance can be cancelled.

In order to design the position controllers for the bal-
ancing mass m1, consider its associated dynamics:

ż7 = z8
ż8 =

1
m1

¡
F − gm1 sin z9 +m1z7z

2
10

¢
ż9 = z10
ż10 =

1
m1z27

(τ2 − gm1z7 cos z9 − 2m1z7z8z10)

y2 = z7
y3 = z8

From these equations, one can get the following nonlin-
ear controllers with integral compensation to take the
balancing mass to the equilibrium position (ȳ2 = r̄ =
Mu
m1
, y3 = ᾱ = β + π):

F = m1v2 + gm1 sin z9 −m1z7z
2
10 (4)

τ2 = m1z
2
7v3 + gm1z7 cos z9 + 2m1z7z8z10 (5)

with

v2 = ÿ∗2 (t)− γ21 [ẏ2 − ẏ∗ (t)]− γ21 [y2 − y∗2 (t)]

−γ20
Z t

0

[y2 − y∗2 (σ)] dσ

v3 = ÿ∗3 (t)− γ32 [ẏ3 − ẏ∗3 (t)]− γ31 [y3 − y∗3 (t)]

−γ30
Z t

0

[y3 − y∗3 (σ)] dσ

where y∗2(t) and y∗3 (t) are desired trajectories for the
outputs y2 and y3. Thus the tracking errors e2 = y2 −
y∗2 (t), e3 = y3 − y∗3 (t), obey the following set of linear,
decoupled, homogeneous differential equations:

e
(3)
2 + γ22ë2 + γ21ė2 + γ20e2 = 0

e
(3)
3 + γ32ë3 + γ31ė3 + γ30e3 = 0

which can be made to have the point: (e2, e3) =
(0, 0), as an exponentially asymptotically stable equi-
librium point by selecting the design parameters
{γ20, γ21, γ22, γ30, γ31, γ32} such that the characteristic
polynomials

p2 (s) = s3 + γ22s
2 + γ21s+ γ20

p3 (s) = s3 + γ32s
2 + γ31s+ γ30

are Hurwitz polynomials.
It is evident, however, that the controllers (4) and (5)
require information of the disk eccentricity (u, β). In
what follows we will apply the algebraic identification
method to estimate the disk eccentricity (u, β).

3.2 A certainty equivalence angular ve-
locity controller

In order to control the speed of the rotor, consider its
associated dynamics, under the assumption that effect
of the unbalance was cancelled by the active disk and
that the disk eccentricity (u, β) is perfectly known:£

J +
¡
Mu2 +m1r

2
1

¢¤
ż6 + cϕz6 = τ1

y1 = z6 (6)

From this equation, one can get the following PI con-
troller to asymptotically track a desired reference tra-
jectory y∗1 (t):

τ =
£
J +

¡
Mu2 +m1r

2
1

¢¤
v1 + cϕz6

v1 = ẏ∗1 (t)− γ11 [y1 − y∗1 (t)]

−γ10
Z t

0

[y1 − y∗1 (σ)] dσ (7)

The use of this controller yields the following closed-
loop dynamics for the trajectory tracking error e1 =
y1 − y∗1 (t) as follows

ë1 + γ11ė1 + γ10e1 = 0 (8)

Therefore, selecting the design parameters {γ10, γ11}
such that the associated characteristic polynomial for
(8) be Hurwitz, one guarantees that the error dynamics
be globally asymptotically stable.
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4 ON-LINE ALGEBRAIC
IDENTIFICATION OF EC-
CENTRICITY

Consider the first two equations in (1), where measure-
ments the position coordinates of the disk (z1, z3) are
available to be used in the on-line eccentricity identifi-
cation scheme.

(M +m1) ż2 + cϕz2 + kz1 =
M
£
ż6u sin (z5 + β) + z26u cos (z5 + β)

¤
+m1

£
ż6r1 sin (z5 + α) + z26r1 cos (z5 + α)

¤
(M +m1) ż4 + cϕz4 + kz3 =

M
£
z26u sin (z5 + β)− ż6u cos (z5 + β)

¤
+m1

£
z26r1 sin (z5 + α)− ż6r1 cos (z5 + α)

¤
(9)

Multiplying (9) by the quantity t2 and integrating the
result twice with respect to time t, one getsR (2) ¡

(M +m1) t
2 dz2
dt + cϕt

2z2 + kt2z1
¢
=R (2) ¡

Mut2 d
dt [z6 sin (z5 + β)]

¢
+
R (2) ¡

m1r1t
2 d
dt [z6 sin (z5 + α)]

¢R (2) ¡
(M +m1) t

2 dz4
dt + cϕt

2z4 + kt2z3
¢
=

−
R (2) ¡

Mut2 d
dt [z6 cos (z5 + β)]

¢
−
R (2) ¡

m1r1t
2 d
dt [z6 cos (z5 + α)]

¢
(10)

where
R (n)

ϕ (t) are iterated integrals of the formR t
0

R σ1
0
· · ·
R σn−1
0

ϕ (σn) dσn · · · dσ1, with
R
ϕ (t) =R t

t0
ϕ (σ) dσ and n a positive integer.

Using integration by parts, one gets

(M +m1)
h
t2z1 − 4

R
tz1 + 2

R (2)
z1

i
+cϕ

hR
t2z1 − 2

R (2)
tz1

i
+ k

R (2)
t2z1 =

Mu
hR

t2z6 sin (z5 + β)− 2
R (2)

tz6 sin (z5 + β)
i

+mr
hR

t2z6 sin (z5 + α)− 2
R (2)

tz6 sin (z5 + α)
i

(M +m1)
h
t2z3 − 4

R
tz3 + 2

R (2)
z3

i
+cϕ

hR
t2z3 − 2

R (2)
tz3

i
+ k

R (2)
t2z3 =

−Mu
hR

t2z6 cos (z5 + β)− 2
R (2)

tz6 cos (z5 + β)
i

−mr
hR

t2z6 cos (z5 + α)− 2
R (2)

tz6 cos (z5 + α)
i
(11)

The above integral-type equations (11), after some alge-
braic manipulations, leads to the following linear system
of equations

A(t)θ = b(t) (12)

where θ = [uη = u cosβ, uξ = u sinβ]T denotes the ec-
centricity parameter vector to be identified and A(t),
b(t) are 2×2 and 2× 1 matrices, respectively, which are
described by

A(t) =

∙
a11(t) a12(t)
−a12 (t) a11(t)

¸
, b(t) =

∙
b1(t)
b2(t)

¸

whose components are time functions specified as

a11 =M
hR

t2z6 sin z5 − 2
R (2)

tz6 sin z5

i
a12 =M

hR
t2z6 cos z5 − 2

R (2)
tz6 cos z5

i
b1 = (M +m1) t

2z1
+
R ¡
−4 (M +m1) tz1 + ct2z1

¢
−
R ¡
−m1z6z7t

2 sin (z5 + α)
¢

+
R (2) ¡

2 (M +m1) z1 − 2ctz1 + kt2z1
¢

+
R (2)

(2m1z6z7t sin (z5 + α))
b2 = (M +m1) t

2z3
+
R ¡
− (M +m1) 4tz3 + ct2z3

¢
+
R ¡

m1z6z7t
2 cos (z5 + α)

¢
+
R (2) ¡

2 (M +m1) z3 − 2ctz3 + kt2z3
¢

−
R (2)

(2m1tz6z7 cos (z5 + α))

From the equation (12) can be concluded that the pa-
rameter vector θ is algebraically identifiable if, and only
if, the trajectory of the dynamical system is persistent
in the sense established by Fliess and Sira-Ramírez [9],
that is, the trajectories or dynamic behavior of the sys-
tem satisfy the condition

detA(t) 6= 0

In general, this condition holds at least in a small time
interval (t0, t0+δ], where δ0 is a positive and sufficiently
small value.
By solving the equations (12) it is obtained the following
algebraic identifier for the unknown eccentricity parame-
ters

uηe =
b1a11 − b2a12
a211 + a212

uξe =
b1a12 + b2a11
a211 + a212

ue =
q
u2ηe + u2ξe

βe = cos
−1
³
uηe
ue

´

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
∀t ∈ (t0, t0 + δ0] (13)

5 SIMULATION RESULTS
In Fig. 4 is depicted the identification process of the
eccentricity. We can observe a good and fast estimation
(t << 0.1 s).
Fig. 5 shows the dynamic behavior of the adaptive-
like control scheme (7), which starts using the nomi-
nal value u = 0 μm. We can observe the asymptotic
output tracking of a desired reference trajectory. Here,
we selected a desired Hurwitz polynomial r (s) given as
r (s) =

¡
s2 + 2ζωns+ ω2n

¢
with ζ = 0.7071, ωn = 12.

The planned trajectory for the output y1 = z6 is given
by

y∗1 (t) =

⎧⎨⎩ 0 for 0 ≤ t < T1
ψ (t, T1, T2) ȳ1 for T1 ≤ t ≤ T2

ȳ1 for t > T2
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Figure 4: Excentricty (u) and angular position (β) iden-
tification.

Figure 5: Close loop system response using an adaptive-
like control scheme.

where ȳ1 = z̄6 = 300 rad/s, T1 = 0 s, T2 = 50 s and
ψ (t, T1, T2) is a Bézier polynomial, with ψ (T1, T1, T2) =
0 and ψ (T2, T1, T2) = 1, described by

ψ (t) =
³
t−T1
T2−T 1

´5
[r1 − r2

³
t−T1
T2−T 1

´
+ r3

³
t−T1
T2−T 1

´2
− ...− r6

³
t−T1
T2−T 1

´5
]

with r1 = 252, r2 = 1050, r3 = 1800, r4 = 1575, r5 =
700, r6 = 126.
Fig. 6 shows the dynamic behavior of the active disk
controllers to take the balancing mass to the equilibrium

position
³
r̄ = M

m1
ue, ᾱ = βe + π

´
. In this position the

active disk cancels the unbalance, as it is shown in Fig.
7. The controllers were implemented when the eccen-
tricity has been estimated. The gains of both controllers
were selected to have a third order characteristic polyno-

Figure 6: Dynamic response of the balancing mass: ra-
dial position (z7), angular position (z9), control force
(F ) and control torque (τ2).

Figure 7: Active balancing response using the active
disk.

mial r(s) = (s+ p)
¡
s2 + 2ζωns+ ω2n

¢
, with ζ = 0.7071,

ωn = 12, p = 10.
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6 CONCLUSIONS

The active vibration control of rotor-bearing systems us-
ing an active disk is addressed. This approach consists in
locating a balancing mass at a suitable position. Since
this active control scheme requires information of the
eccentricity, a novel algebraic identification approach is
proposed for the on-line estimation of the eccentricity
parameters. This approach is quite promising, in the
sense that from a theoretical point of view, the alge-
braic identification is practically instantaneous and ro-
bust with respect to parameter uncertainty, frequency
variations, small measurement errors and noise. Thus
the algebraic identification is combined with two con-
trol schemes to put the balancing mass at the correct
position to cancel the unbalance of the rotor. A ve-
locity control is designed to take the rotor velocity to a
desired operating point over the first critical speed in or-
der to show the vibration cancellation. The controllers
were developed in the context of an off-line prespecified
reference trajectory tracking problem. Numerical sim-
ulations were included to illustrate the high dynamic
performance of the active vibration control scheme pro-
posed. Some experiments are being implemented on a
real rotor system in order to validate the results.
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