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Abstract— This paper will address the issue of reference
trajectory modification in the presence of actuator satura-
tion constraints. A stable adaptive trajectory modification
scheme is proposed that ensures the stability of the closed
loop system under actuator constraints. Also, the specific
issues of the effects of actuator constraints on controller
performance and stability is studied in detail. In partic-
ular, the performance of the control law is evaluated by
considering the spacecraft rendezvous problem with real-
istic actuator constraints. The essential ideas and results
from computer simulations are presented to illustrate the
algorithm developed in paper.

I. INTRODUCTION

Control saturation is one of the major challenges in

in design of feedback control systems, wherein physi-

cal limitations on actuators and/or the plant generally

dictate the control input constraints either to avoid

damage to or deterioration of the process. Thus, it is

imperative that the control input does not exceed its

bounds while simultaneously realizing the performance

objectives. However, there may be some instances where

input saturation may even be desired from an optimality

point-of-view as in the case of bang-bang control for

time optimal purposes [1].

As such, the actuator saturation issues and their effects

on closed loop stability as well as performance is well-

recognized and has received much attention from the

control community. [2] presents an extensive summary

of recent research results in designing and analyzing

control schemes for systems with unknown actuator fail-

ures and unknown parameters. The main focus in [2] is

an adaptive actuator failure compensation approach that

does not need an explicit fault detection and diagnosis

procedure for failure compensation. Adaptive laws are

designed that automatically adjust controller parameters

based on system response errors. This allows an easy

reconfiguration of the remaining functional actuators to

accommodate a wide range of actuator failures and sys-

tems parameter uncertainties (see [2] for more details).

We further note that typical control law formulations

normally do not incorporate any information about ac-

tuator position or rate constraints [3]–[5] a priori. Of

late however, a lot of work has been done to incorporate

actuator constraints in control formulations, however, the

stability of the resultant controller is still an issue [6]–

[9]. In [10], the effect of input saturation was analyzed

on feedback linearization and in design of controllers

for stabilization and tracking. Also, for the feedback

linearization controllers, the regions of attraction of

the controllers were characterized ( [10])in addition to

the space of feasible trajectories. The application of

these controllers included aircraft flight control. Typi-

cal scenarios of trajectory tracking wherein demanding

reference trajectories resulted in actuator saturation were

studied. In [11], a technique for avoiding input saturation

was proposed by re-parameterizing the reference trajec-

tory on a slower time scale. In that sense, this paper tries

to achieve a similar objective albeit differently.

The objective of this paper is to consider the effect

of actuator position and rate constraints on the stability

and performance of a model reference adaptive control

system. The results of this paper can then be used as a

basis for adaptive control formulation for a general non-

linear system under actuation constraints. In particular,

the performance of the control law will be evaluated by

considering the relative spacecraft position and attitude

control problems with realistic actuator constraints.

The rest of the paper is organized as follows. We

first introduce the class of nonlinear dynamical systems

under study. Nominal control laws to meet a desired

tracking trajectory are outlined. This is followed by a

detailed discussion on an adaptive reference trajectory

modification algorithm when control saturation occurs.

Simulation results are presented for a spacecraft ren-

dezvous problem followed by the summary and conclu-

sions.
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II. PROBLEM FORMULATION

In this paper, we seek to design a novel adaptive

reference trajectory modification scheme integrated with

a feedback control law to track some nominal reference

trajectory in space. The reference trajectory is specified

as xr ∈ R
3 and is assumed to be twice differentiable

with respect to time. For the developments in this

paper, we assume a generic mechanical system whose

kinematics is characterized by three position coordinates

and three velocity coordinates. These are represented as

x1 ∈ R
3 and x2 ∈ R

3 respectively. Then, the general

nonlinear system representation can be summarized as

follows:

ẋ1 = x2

ẋ2 = A1x1 + A2x2 + g(x1,x2) + F (1)

where, F ∈ R
3 represents the control forces.

g(x1,x2) ∈ R
3 such that the nonlinearity

‖g(x1,x2)‖ ≤ g0, (g0 ∈ R > 0) is a vector

function of position and velocity coordinates.

If we denote the relative position and velocity tracking

errors by e1 � x1−x1r and e2 � x2−x2r respectively,

then it is easy to show that the error dynamics can be

written as:

ė1 = e2

ė2 = A1x1 + A2x2 + g(x1,x2) + F− ẍr (2)

To compute the control effort F to track the nominal

base trajectory xr (t), we impose the following error

dynamics:

ë1 + Cdė1 + Kde1 = 0 (3)

Now, since nominal base trajectory is assumed to be

twice differentiable, on substituting Eq. (2) in Eq. (3),

we get:

F = −A1x1−A2x2−g(x1,x2) + ẍr −Cdė1−Kde1

(4)

Remarks:
(1) The above control law can be shown to be a straight-

forward dynamic inversion based control algorithm that

essentially seeks to cancel the nonlinearities and render

the tracking error dynamics linear.

(2) While there are several choices for the control

algorithm, we just pick this control law for this paper.

The adaptive reference trajectory modification and the

actuator saturation issues are pertinent to the applica-

tions irrespective of what sort of a control algorithm

chosen.

(3) Note, the above-mentioned control law assumes that

there are no position as well as rate constraints on the

control vector F.

Since control saturation could occur in practice, the

applied control (Fa) is limited by the actuator saturation

constraints and therefore will be different from the

computed control F. This applied control is thus a

restriction of the computed control to the set of feasible

control inputs Fa (t) = �F (t)�. Certainly, the choice
of the restriction operator �.� is an important part of
the problem, and this issue will be discussed in the full
paper.

Let δ be the difference between the computed and the

applied control,

δ(t) = F(t)− Fa(t) (5)

Substituting for the applied control vector Fa in the

equations of motion, given by Eq. (2), we get the

following expression for the closed-loop dynamics:

ë1 + Cdė1 + Kde1 = −δ (t) (6)

Note, however that the RHS of Eq. (6) i.e., δ(t) is

essentially a state dependent disturbance forcing the

second order tracking error dynamics. This is because

δ(t) = F(t) − Fa(t) and F(t) is a function of the

states as well as the reference trajectory as seen in Eq.

(4). Beside canceling the nonlinearities of the system,

the terms that influence the magnitude of F(t) are

the stabilizing terms Cdė1, Kde1 and the reference

trajectory demand ẍr.

There is a significant amount of prior work in the

design of the control gain matrices that ensure stabil-

ity of the closed loop when actuator saturation hap-

pens [12]–[16]. Further [9], [17] has addressed the issue

of reference trajectory modification using a “pseudo-

control-hedging” (PCH) technique. The PCH component

designed by Johnson et al. utilizes an estimate of actu-

ator position based on actuator command and possibly

vehicle state.

The work presented in this paper is clearly different

from any of the earlier works as we present a direct

adaptation of the gain matrices Cd and Kd to alleviate

the problems due to saturation.

Note, in the absence of any control saturation, δ(t) = 0
and the gain matrices Cd and Kd are constant. When

δ(t) �= 0, we propose time varying gain matrices C(t)
and K(t) to compensate for the non-zero δ(t). Hence,

we modify the control law of Eq. (4) as follows:

F = −A1x1−A2x2−g(x1,x2)+ẍr−C(t)ė1−K(t)e1

(7)

Now, we can write the closed loop error dynamics of

Eq. (6) with the gain adaptation as:

ë1s + C(t)ė1s + K(t)e1s = −δ (t) (8)
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where, δ(t) denotes the difference between computed

control of Eq. (7) and its restriction Fa = �F�. Now,

we seek adaptation/update laws for the gain matrices

C(t) and K(t) such that closed loop error dynamics

of Eq. (8) follows the exponentially stable desired error

dynamics of Eq. (3).

Let us define

e = e1 − e1s (9)

The second time derivative of e can be written as:

ë = −Cdė1 −Kde1 + C(t)ė1s + K(t)e1s + δ (t)
= −Cdė−Kde + δ (t) + (C(t)−Cd) ė1s

+ (K(t)−Kd) e1s

= −Cdė−Kde + C̃ė1s + K̃e1s + δ (t)

The above can be re-cast as follows:

ë + Cdė + Kde = C̃ė1s + K̃e1s + δ (t) (10)

where, C̃ = C(t)−Cd and K̃ = K(t)−Kd.

Note: The above essentially amounts to incorporation

of a parallel error dynamical system that has within it

two time varying gain matrices that are updated based

on the control defect term, δ(t).
To obtain the adaptation/update laws for the gain

matrices, we define a candidate Lyapunov function as:

V =
1
2

[
ėT ė + eT Kde + Tr

(
C̃T Γ−1

C C̃
)

+

Tr
(
K̃T Γ−1

K K̃
)]

(11)

where, Γ−1
C and Γ−1

K are symmetric positive definite

matrices of appropriate dimension. They will serve as

tuning parameters to speed up (or slow down) the

adaptive laws. The time derivative of V evaluated along

the trajectories of Eq. (10)can be written as:

V̇ = ėT
(
−Cdė−Kde + C̃ė1s + K̃es + δ (t)

)

+ėT Kde + Tr
(
C̃T Γ−1

C
˙̃C
)

+ Tr
(
K̃T Γ−1

K
˙̃K
)

= −ėT Cdė + ėT C̃ė1s + ėT K̃e1s + ėT δ (t)

+Tr
(
C̃T Γ−1

C
˙̃C
)

+ Tr
(
K̃T Γ−1

K
˙̃K
)

= −ėT Cdė + Tr
(
C̃T Γ−1

C
˙̃C + C̃T ėėT

1s

)

+Tr
(
K̃T Γ−1

K
˙̃K + K̃T ėeT

1s

)
+ ėT δ (t)

= Tr
(
C̃T Γ−1

C
˙̃C + C̃T ėėT

1s + αėδT (t)
)

+Tr
(
K̃T Γ−1

K
˙̃K + K̃T ėeT

1s + (1− α)ėδT (t)
)

−ėT Cdė (12)

Thus, from Eq. (12) if we choose the following adapta-

tion laws:

˙̃C = Ċ = −ΓC

[
ėėT

1s + C̃−T αėδ(t)T
]

˙̃K = K̇ = −ΓK

[
ėeT

1s + K̃−T (1− α)ėδ(t)T
]

(13)

Then substituting the adaptation laws in Eq. (12) we

obtain,

V̇ = −ėT Cdė

which is negative semi-definite and ensures that in the

presence of actuator saturation the actual tracking errors

are close to the desired tracking error states (in the

absence of saturation) asymptotically.

By repeated evaluation of the higher order derivatives

of V and the application of the asymptotic stability

theorem given by Mukherjee and Chen [18] we

conclusively prove that even in the presence of

actuator saturation, the actual tracking error dynamics

asymptotically approach the ideal desired tracking error

dynamics (in the absence of saturation). As shown, this

is achieved by adaptively modifying the gains C(t) and

K(t).

Remark:
It is to be noted that the structure of control law has

not been re-designed in this case. It is the dynamics of

the parallel error reference system that is modified by

introducing the time varying matrices. This dynamics is

forced by the control defect between the applied and

the saturated values. In essence, the net effect is to have

modified the ẍr values in the overall control law to

facilitate the actuator saturation.

III. NUMERICAL SIMULATIONS

To illustrate the effectiveness of the proposed adap-

tation laws in presence of control saturation, we con-

sider the problem of spacecraft rendezvous. Let us

consider the chaser spacecraft motion relative to the

target spacecraft, in the Local-Vertical-Local-Horizontal

(LVLH) frame as shown in Fig. 1. The LVLH reference

frame is attached to the center of mass of target space

vehicle with X-axis pointing radially outward of its

orbit, Y -direction perpendicular to X along its direction

of motion and Z completes the right handed co-ordinate

system. Usually in rendezvous and docking problems,

the trajectory of target spacecraft is described in the

LVLH coordinate system, and this frame is taken as the

reference target trajectory for the chaser spacecraft. The

relative dynamics between two spacecrafts is governed
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by fully non-linear Clohessy-Wiltshire equations, given

as follows [19]:

ẍ− 2θ̇ẏ − θ̈y − θ̇2x = −μ(rc + x)
ρ3/2

+
μ

r2
c

+
Fx

m

ÿ + 2θ̇ẋ + θ̈x− θ̇2y +
μ

r3
c

y = − μy

ρ3/2
+

μ

r3
c

y +
Fy

m

z̈ +
μ

r3
c

z = − μz

ρ3/2
+

μ

r3
c

z +
Fz

m
(14a)

r̈c = rcθ̇
2 − μ

r2
c

θ̈ = −2
ṙcθ̇

rc

ρ =
√

(rc + x)2 + y2 + z2

where x, y, z represents the relative position of chaser

spacecraft w.r.t. the target, rc and ρ refer to the scalar

radius of the target and chaser from the center of the

Earth, respectively, θ represents the latitude angle of

the target, and μ is the gravitational parameters. Fx, Fy

and Fz are the control forces and m is the mass of

chaser spacecraft. These equations amount to the clas-

sical nonlinear Encke [19] relative motion differential

equations of the chaser vehicle written in the rotating

LVLH coordinate system, centered in the target vehicle.

The matrices A1, A2 and vector g in Eq. 1 can be

constructed as follows:

A1 =

⎡
⎢⎣

θ̇2 + 2 μ
r3

c
θ̈ 0

−θ̈ θ̇2 − μ
r3

c
0

0 0

⎤
⎥⎦ (15)

A2 =

⎡
⎣

0 2θ̇ 0
−2θ̇ 0 0
0 0 0

⎤
⎦ (16)

g =

⎧⎪⎨
⎪⎩

−μ(rc+x)
ρ3/2 + μ

r2
c
− 2 μ

r3
c
x

− μy
ρ3/2 + μy

r3
c− μz

ρ3/2 + μz
r3

c

⎫⎪⎬
⎪⎭

(17)

For simulation purposes, it is assumed that chaser space-

craft is at a distance of (−50, − 50, − 50)T m from

the target spacecraft. The target spacecraft is assumed

to be in a circular orbit at an altitude of 400 km.

The actual mass of chaser spacecraft is assumed to be

400 kg. The reference target trajectory for the translation

motion of the chaser is generated by connecting a 3rd

order spline curve between the initial state to the final

desired position of the chaser. To fit the smooth curve,

the rendezvous time is assumed to be 60 seconds. We

assume the control limits to be:

−1 ≤ Fx ≤ 1, −0.2 ≤ Fy ≤ 0.2, −0.1 ≤ Fz ≤ 0.1

Nominal stiffness matrix Kd and damping matrix Cd

were chosen to be:

Kd = Cd =

⎡
⎣

0.1 0 0
0 0.1 0
0 0 0.1

⎤
⎦

The various adaptation gains were assigned following

values:

ΓK = 10−7I, ΓC = 10I, α = 0.7, I =

⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦

We deliberately choose very low value for adaptation

gain corresponding to the adaptation of stiffness matrix

since higher value of adaptation gain ΓK can lead to

high bandwidth for error dynamics. Fig. 2(a) shows

the position level tracking error ‖e1s
‖ with respect to

time while Fig. 2(b) shows the velocity level tracking

error ‖ė1s‖ with respect to time. The red solid line

represents the case without any adaptation of controller

gain parameters while blue dotted line represents the

case with adaptation of controller gain parameters. From

these plots, it is clear that nominal error dynamics of

Eq. (2) is unstable in presence of saturation constraint

and with constant controller gain parameters while the

tracking errors are still bounded with the adaption of

controller gain parameters. Further, Fig. 2(c) shows the

plot for vehicle state trajectory for both the cases (with

and without adaption) and actual reference trajectory.

Once again, it is clear that with the adaptation of

controller gain the vehicle state trajectory is bounded and

remains in the neighborhood of true reference trajectory.

Fig. 2(d) shows the plot of the applied control effort with

respect to time. As expected the adaptation of controller

gain matrices Cd and Kd in presence of saturation

changes the control profile and hence, results in bounded

tracking errors. Further, Figs. 2(e) and 2(f) show the

plots of adaptation of controller gain matrices K and C,

respectively. From these plots, it is clear that with the

adaptation of controller gain matrices the tracking errors

can be reduced even in presence of control saturation.

Finally, we mention that the controller parameter

adaption is shown to work well in the presence of

bounded control saturation, fully consistent with the

bounded stability analysis presented. While, the simu-

lation results presented in this paper merely illustrate

formulations for a particular rendezvous and docking

maneuver, further testing would be required to reach any

conclusions about the efficacy of the control and adapta-

tion laws for tracking arbitrary maneuvers. In particular,

optimization of the remaining parametric degrees of

freedom to extremize some measure of performance or
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Fig. 1. The LVLH and Body Frame

robustness should be considered, subject to the stability

constraints derived herein.

IV. CONCLUSIONS

This paper addressed the issue of reference trajec-

tory modification in the presence of actuator saturation

constraints. A stable adaptive trajectory modification

scheme was developed that ensured the stability of the

nominal control algorithms under actuator constraints.

Issues concerning the effects of actuator constraints

on controller performance and stability are studied. In

particular, the performance of the control law is evalu-

ated by considering the spacecraft rendezvous problem

with realistic actuator constraints. The essential ideas

and results from computer simulations illustrate the

effectiveness of the algorithm developed in paper.
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