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Abstract— Angular alignment is a critical requirement in nu-
merous precision motion control applications. Examples include
beam-steering in optical communications and tool-sample align-
ment in imprint lithography. Flexural mechanisms are being
widely used in such applications. The absence of non-linearities,
including friction and backlash, makes flexural components
ideal for achieving atomic-scale resolution. Closed-loop control
implementations of flexural angle alignment mechanisms have
been attempted in the literature in various cases. Performance
limitations in closed-loop control implementations have been
characterized traditionally considering effects of actuators, sen-
sors, and control algorithms used. However, a critical limiting
factor is imposed by the open-loop response of the plant, i.e.
the natural frequencies of the flexural mechanism itself. In
this paper, we assemble models for characterizing the dynamic
behavior of flexural mechanisms for angular alignment. The
performance trade-offs in terms of range, load-capacity, and

control bandwidth are highlighted. A state-space formulation
is proposed for mapping design performance variables, such
as vertical deflection or angular acceleration. The effects on
dynamic performance imposed by asymmetry resulting from
manufacturing errors are studied.

I. INTRODUCTION

Angular alignment is critical to an emerging class of small-

scale precision manufacturing and motion control applica-

tions. The drive for better performance steers design and

control effort into achieving high tolerances and stringent

specifications in terms of parameters, such as resolution,

range, load-capacity, and bandwidth. Examples of applica-

tions needing precision angular alignment include (i) high-

bandwidth steering of mirrors in telecommunication applica-

tions [1], (ii) tool-sample alignment in stamping applications

such as imprint lithography [2], [3] and micro-contact print-

ing [4], and (iii) alignment of optically flat surfaces brought

in close proximity to characterize fields and forces on small-

scales, such as the Casimir force [5].

A widely used set of designs for precision applications

described above involve compliant mechanisms based on

slender beam modules, also referred to as flexures [6]. The

advantages flexures offer are mainly smooth elastic motion

without non-linearities such as friction or backlash [7].

Flexure-based mechanisms such as the diaphragm flexure

involve the payload suspended on a radial or tangential

arrangement of flexural beams. Various forms of such flex-

ures have appeared over the past few decades for angle

alignment and guidance applications [4], [8]. Analysis of the

statics and dynamics of flexure-based mechanisms have been

extensively studied [7], [9].

While flexure-based engineering designs have been around

for many decades [10], designing them for dynamic perfor-

mance has sought little attention. Few publications have ap-

peared in this context. The design for dynamical performance

of flexures in the context of mechanical advantage is detailed

in [11]. A finite-element approach based on Euler-Bernoulli

beam bending theory is formulated for analyzing dynamics

in [12] and optimizing the design space for precision flexure-

based applications in [13].

We build on the work presented in the literature and

integrate models that can enhance the accuracy in predicting

the dynamics of a given flexure-based design by including

the effects of distributed mass and compliance of the flexures

covering shear and rotational effects. These effects are shown

to dominate for flexures with comparable thickness and

length. Further, we use the models to characterize design

space parameters such as range, load-capacity, and band-

width. While most of the current literature in flexure-based

designs focuses on static values of performance variables

such as angular position, or acceleration, we present a state-

space approach for characterizing the bounds on these vari-

ables in the frequency domain. This is critical for ensuring

that performance requirements are met within the usually

large bandwidths of operation, an example application being

fast steering of mirrors in telecommunications [1].

The rest of this paper is organized as follows. In Section II

we assemble lumped parameter models for a diaphragm

flexure design. Section III covers the closed-form characteri-

zation of the design space from the dynamic models. A state-

space approach is used for characterizing key performance

variables in Section IV. The effects of manufacturing errors

are studied in this section. Finally, we conclude with a

summary of the contributions of the work.
II. DYNAMIC MODELING

Our goal is to capture the out-of-plane behavior, i.e.

the vertical translation, pitch, and roll degrees of freedom

of diaphragm flexures used in precision angle alignment

mechanisms. In this section, we assemble dynamic models

for a class of diaphragm flexures — namely, those applying

radial constraints on a central rigid mass via flexural beam

units. We derive lumped parameter models representing the

mass and stiffness of the diaphragm flexure.

A. Modeling Flexural Beam

To model bending of the flexural beam unit, shown in

Fig. 2, we use a Timoshenko beam [14] model since a simple

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

ThB17.3

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 3005



Y

Z X

Fixed Periphery

Rigid Body

A
1

A
2

A3

R

Do

l

Fig. 1. A diaphragm flexure as a parallel kinematic mechanism with a
central rigid mass connected by n = 3 flexural beam units to the ground.
The dimension D0 = 2ℓ+2R is referred in this paper as the footprint of the
mechanism. The Z axis is shown pointing out of the page.
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Fig. 2. Schematic diagram showing a flexural beam element with deflection
w(x,t), slope θ (x,t), and twist about the X-axis by an angle φ(x,t).

Euler-Bernoulli beam model cannot capture the effects of

shear and rotational inertia. To model torsion of the flexural

element, we use St. Venant’s torsion formulation assuming

that (i) the effects of restrained warping are negligible and

(ii) bending and torsion are decoupled. Further, we assume

that the deflections of the flexural beam element are small

(an order of magnitude smaller than the beam thickness) and

hence, neglect the effects of axial stretching and the resultant

stress stiffening along the length of the beam element.

Under the above-mentioned assumptions, the distributed

parameter model for the beam is well-documented in the

literature [14] as being depicted by a set of partial differential

equations in the deflection w(x,t), slope θ (x,t), and angle of

twist φ(x,t) listed in Section A of the Appendix.

The infinite-dimensional behavior governed by the set of

partial differential equations can be approximated to that

arising for a one-element model using the method of assumed

modes [15]. This method (see [17]) approximates the dy-

namic response to a finite-series made up of spatially varying

mode shape functions (or trial functions) with temporally

varying mode amplitudes [16]. Since a one-element model

is used for the beam, the distributed properties of the beam

are lumped to the node at the guided end of the beam; the

fixed node of the beam has no lumped mass or stiffness.

Hence, from the three displacements assumed for the guided

end of the beam, a three-DOF lumped parameter model can

be derived.1

Under the geometric boundary conditions of (i) one end

x = 0 of the flexural beam being grounded and (ii) the other

end x = ℓ subject to generalized displacements V(t) = [w(ℓ,t)
θ (ℓ,t) φ(ℓ,t)]T , (where w(ℓ,t) is the vertical deflection,

θ (ℓ,t) the slope, and φ(ℓ,t) is the angle of twist), the

1A many-element model can be used for each flexural beam to develop
higher-order lumped parameter models, if desired. As will be evident from
simulations in this paper, assumed modes methods tend to be powerful in
that they can converge to the actual plant with relatively lower-order models.

corresponding 3×3 matrices — mass M f and stiffness K f

are as given below:

M f =





M1 M2 0

M2 M3 0

0 0 M4



 ; K f =





K1 K2 0

K2 K3 0

0 0 K4





where the matrix values depend on material properties and

geometry, and are tabulated in Section A. 1 of the Ap-

pendix. Formulations for serial kinematic configurations can

be developed by altering the choice of geometric boundary

conditions [17].

B. Assembling Global Lumped Parameter Model

Here, we formulate the dynamics of parallel kinematic

mechanisms that contain a rigid body connected to the

ground through a multitude of flexural beam units. We

integrate the lumped parameter model for the flexural beam

in Section II with rigid body dynamical models using appro-

priate transformations to obtain the global model [12]. These

transformations are chosen to ensure the continuity of nodal

displacements at the interface between the rigid body and

the flexures.

Consider a parallel kinematic mechanism with a central

rigid circular disk centered at the origin and parallel to the

horizontal XY plane of the cartesian XYZ space, as shown

in Fig. 1. In the rest position, the principal axes of the disk

X’, Y’, and Z’ coincide with the cartesians axes X, Y, and Z,

respectively. Let the disk be of radius R, thickness T , mass

MR, and moments of inertia JRxx and JRyy about the X and

Y axes respectively. A number n of slender beam flexures,

each of width W , thickness H, and length ℓ, are in the XY

plane connecting every peripheral point Pi to the ground. The

coordinates of Pi in the X’Y’ plane are (Rcosαi,Rsinαi) with

angles αi ∈ [0,2π) for i = 1,2,3... n.

Since the beams provide high axial (and hence in-plane

XY) stiffness and low out-of-plane stiffness, we expect that

the dominant modes correspond to the out-of-plane motion,

namely vertical deflection, pitch, and roll. We hence assume

that the out-of-plane motion of the disk is decoupled from

the in-plane motion, i.e. the center of the disk always moves

only vertically. For small vertical deflection z(t) of the center

of mass, and small angular rotations θx(t) and θy(t) about

the X and Y axes respectively, the principal plane X’Y’ of

the disk moves out of the XY plane to the one depicted by

Zp(t) = θy(t)X+ θx(t)Y+ z(t) (1)

For continuity of displacement at each of the nodes Pi,

Eq. (1) can be used to show that the end-displacements Vi(t)
of every ith flexure are related to the global generalized (rigid

body) displacements VR(t) as follows:

Vi(t) =







wi(ℓ,t)
θi(ℓ,t)
φi(ℓ,t)







= ℜ







z(t)
θx(t)
θy(t)







= ℜVR(t)

where the transformation matrix ℜ =




1 Rsinαi Rcosαi

0 −sinαi −cosαi

0 −cosαi −sinαi




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C. Dynamics

By formulating the Lagrangian of the assembly in terms of

the rigid body displacements VR(t), we develop the lumped

mass and stiffness matrices of the overall parallel kinematic

mechanism as follows:

M =
n

∑
i=1

ℜT
M f iℜ+MR; K =

n

∑
i=1

ℜT
K f iℜ (2)

where M f i and K f i are the lumped mass and stiffness ma-

trices, respectively, of the individual flexure building blocks

given in Section II-A, and Tables III and IV; MR is the mass

matrix of the rigid body and is given by:




M 0 0

0 JRxx 0

0 0 JRyy





The equations of motion of the lumped parameter repre-

sentation, for the free response case, is in the form given

below:

MV̈R +BV̇R +KVR = 0 (3)

Note that we have not presented the modeling of damping

matrix B in this paper. Models such as proportional damping,

given by B = bmM + bkK, are widely used in the litera-

ture [18], where bm and bk are constants that depend on

material properties and are experimentally determined from

sine-sweep frequency response measurements. For the design

of active or passive damping in flexure mechanisms, a survey

and foam-based methods are detailed in [19].

III. DYNAMIC PERFORMANCE OF DIAPHRAGM

FLEXURES

In this section, we use the dynamic models developed from

Section II-C to examine (i) modal coupling (ii) natural fre-

quencies, and (iii) the performance trade-offs of diaphragm

flexure mechanisms.

A. Coupling

Static and dynamic decoupling is desirable, for instance,

when the diaphragm flexure mechanism is controlled to

vertically position the central rigid mass while ensuring

low error motions in the other DOFs, namely pitch and

roll. Stable decoupled systems tend to be more amenable to

low error motions even under open-loop control. It should,

however, be noted that perfect decoupling cannot be achieved

in practice owing to non-uniformities arising from manu-

facturing or material properties. Nonetheless, designing a

compliant mechanism to be as close to a decoupled dynamic

system as possible is desirable [20].

Based on the analysis presented in Section II-A, the

conditions necessary for the off-diagonal terms in the global

mass M and stiffness K matrices to be zero are as follows:
n

∑
i=1

cosαi = 0;
n

∑
i=1

sinαi = 0;
n

∑
i=1

sin2αi = 0; (4)

Hence, the geometric arrangement of a number n ≥ 3 of

flexures around the central rigid mass allows for the overall

mechanism to be close to being statically and dynamically

decoupled if the above conditions are satisfied.

B. Natural Frequencies

The best −3 dB bandwidth possible for a closed-loop

system depends on many factors, including the natural

frequencies or poles of the open-loop plant. Fig. 3 shows

the plots of undamped natural frequencies of the first three

modes of the symmetric diaphragm flexure of Fig. 1. The

plots show the variation corresponding to diaphragm flexure

configurations with flexural beam length, ℓ, varied in the

range of about 0.5 in to 3 in, while keeping the footprint

2ℓ+2R at a constant value of 7 in. This constant footprint

is chosen as a scaling factor for the length dimension and

will be used in Section III-C to normalize all lengths in the

design to formulate a non-dimensional study.

The plots of Fig. 1 show values of the undamped natural

frequencies obtained from models based on St. Venant’s tor-

sion theory and one of two distinct beam bending theories—

either (i) Timoshenko beam bending theory, or (ii) Euler

Bernoulli beam bending theory. As explained earlier, the

former beam bending theory accounts for shear and rotational

effects versus, while the latter does not. In the plots of the

figure, the frequency values obtained from a commercial

FEA package are superimposed for comparison of the chosen

models.

The trends observed for the variation of natural frequencies

for small flexural beam lengths is as expected, since small

beam lengths result in large stiffness. Since the footprint is

maintained constant, smaller beam lengths also imply large

radius of the central disk and hence larger moving mass.

However, the cubic dependence of stiffness on beam length

dominates over the square dependence of mass on radius of

the disk; hence the large natural frequencies at short beam

lengths. For large beam lengths, the radius of the central

disk is small, and hence the moving mass.2 This effect is

marginally larger than the loss in stiffness and hence the

slight increase in natural frequency at large beam lengths.

For flexural beam lengths smaller than the shear approxi-

mation length factor c ≈ 0.6 in (i.e. smaller length to thick-

ness aspect ratios), the Timoshenko model matches the trend

from the FEA data better than the Euler-Bernoulli model.

This confirms the prediction that shear effects dominate at

beam lengths comparable to beam thickness and agrees with

similar observations for short AFM cantilevers in [21].

Closed-form expressions for the natural frequency of the

first three-dominant modes in the decoupled case, for large

flexure lengths, are presented in Table I. These expressions

can be used as part of formulating an optimization problem,

or to gain useful insights from parametric dependencies

in designing a precision angular alignment setup based on

diaphragm flexures.

C. Performance Trade-offs

The design space for utilizing flexure-based precision

angular alignment mechanisms can be characterizing in terms

2At the length scale of the diaphragm flexure discussed here, the moving
mass is mainly composed of the central rigid disk. The lumped mass of
the flexural beam is small at this length scale. However, it can be higher in
other length scales, as in the case of a torsional MEMS mirror.
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Fig. 3. Plot of undamped natural frequencies of first three modes of the
diaphragm flexure of Fig. 1 for beam length ℓ varying from about 0.2 in

to 3 in, keeping foot-print D0 = 2ℓ+2R at a constant value of 7 in. Other
parameter values used are: beam width W = 0.75 in, beam thickness H =
0.1 in, central rigid disk thickness T = 2.5 in, poisson’s ratio ν = 0.33,

elastic modulus E = 69 GPa, density ρ = 2700
kg

m3 .

TABLE I

CLOSED-FORM EXPRESSIONS FOR NATURAL FREQUENCIES OF FIRST

THREE MODES OF DIAPHRAGM FLEXURE.

ωz =

√

3EW H3

L3

m+ 39
35

m f

ωθx,θy =

√

3EWH3

L3 (L2+3R2+3LR)+ GW H3

2L3

m( 3R2+T 2

12
)+m f (

L2+39R2+11LR
70

+ W 2+H2

24
)

of key parameters such as the range, payload capacity, and

bandwidth. Fig. 4 shows the variation of the key non-

dimensionalized performance parameters as a function of the

non-dimensional flexural beam length ℓ for all diaphragm

flexures with a constant footprint of D = 2ℓ+ 2R. The per-

formance parameters plotted in the figure are (i) the natural

frequencies of the first three modes, namely deflection z and

the two rotations θx and θy, (ii) the maximum load-capacity,

Fmax, defined as the load that causes the resultant axial stress

in the flexural beams to reach the yield strength, σY , of the

material within a safety factor η , and (iii) the maximum

vertical deflection δmax, i.e. range under a given load. The

normalization factors used for non-dimensionalizing the pa-

rameters are tabulated in Table II, where ρ and E are the

density and elastic modulus, respectively, of the material

constituting the diaphragm flexure.

The trade-off between load-capacity and range at different

flexural beam lengths is evident from the figure. Small beam

TABLE II

NORMALIZATION FACTORS USED FOR DESIGN PARAMETERS IN FIG. 4.

Parameter Normalization Factor

ℓ D = 2ℓ+2R

fz, fθx , fθy f0 = 1
4π

√

E

ρD2

Fmax F0 = 1
6

WH2

D
100σY

η

δmax δ0 = 106F0
ED
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Fig. 4. Non-dimensional plots capturing the key dynamic performance
parameters for diaphragm flexures of Fig. 3 with n = 3 flexural beams of
the same footprint D, but different flexure lengths ranging in the approximate
range 0-0.45 D. The parameters of interest are (i) the natural frequency of
first three modes fz, fθx , and fθy , all normalized by f0, (ii) load capacity

Fmax normalized by F0 and (iii) static vertical range δmax normalized by δ0.

lengths allow for large load capacity and low range, whereas

large beam lengths allow for low load capacity and large

range. Natural frequencies are relatively low for intermediate

beam lengths. The trade-off between natural frequencies and

range is evident for small beam lengths, since stiffer beams

have smaller deflections. The compromise between natural

frequency and range is relatively mild at large beam lengths.

IV. STATE-SPACE PERFORMANCE ANALYSIS

Characterization of parameters such as maximum dis-

placement (or range), maximum velocity and acceleration

is critical for precision motion control applications. A pro-

cedure for identifying the static (ω = 0) values of these

parameters is developed for precision control of ball-screw

drives in [22]. In this section, we present a state-space

approach for determining the design performance parameters

— maximum values of deflection (or range), velocity, and

acceleration that are possible not only for static (ω = 0) but

for a large range of operating frequencies.

We follow the approach for the case of a diaphragm flexure

used for precision angle alignment. To account for the case

when symmetry cannot be ensured for the diaphragm flex-

ure, we assume a coupled multi-input multi-output (MIMO)

model, as against a collection of independent single-input

single-output (SISO) models. We focus our analyses to pa-

rameters such as maximum vertical and angular displacement

(range), velocity, and acceleration. The presented approach

can be extended to map other design parameters to the state-

space. Further, while the ideas presented here are general and

applicable to the case when state or output feedback control

is used as well, we focus our analysis on just the open-loop

system.

A. State Space Formulation

We begin with a state vector x containing the generalized

coordinates depicting the equations of motion of the system.

3008



One choice of state variables could be the generalized

displacements and their first-order derivatives.

ẋm×1 = Am×mxm×1 + Bm×rur×1 (5)

yp×1 = Cp×mxm×1 + Dp×rur×1 (6)

The goal here is to find the maximum values of displace-

ments, velocities, and acceleration for any set of inputs

(which can be oriented in any direction in the input space).

That means we need to compute the upper bounds on the

amplification of a scalar component xi, which is derived as:

xi = Ei1×mxm×1 (7)

where the ith element of the row vector Ei is 1 and the

rest of the m− 1 elements are zero. The component xi can

be any design variable, such as angular velocity, or vertical

deflection of the diaphragm flexure.

For a chosen control law, in the Laplace domain, the

following relations hold between the state vector X(s)m×1,

its ith component Xi(s), and the input vector U(s):

X(s)m×1 = G(s)m×rU(s)r×1 (8)

Xi(s)1×1 = Ei1×mG(s)m×rU(s)r×1 (9)

The maximum amplification of the component Xi(s) for

a given input U(s) can be expressed as the 2-induced

(Euclidean) norm of the gain matrix Ei1×mG(s)m×r . For the

choice of Ei, the gain matrix reduces to the ith row of G(s).
Hence, its 2-induced norm reduces to a vector norm, and

is given by its lone singular value. This singular value of

Ei1×mG(s)m×r is always smaller than or equal to the singular

values of the matrix G(s) and hence provides a tighter bound

on the amplification of Xi(s).

B. Application to Diaphragm Flexure

We now apply the above formulation to the case of the

diaphragm flexure of Fig. 3 to derive tight upper bounds3

on the amplification of state vector components, such as

vertical deflection, or say, maximum angular velocity of the

diaphragm flexure in a given control situation. We do not

consider the feedback control problem here; however, the

proposed method can be extended to that case as well.

With the choice of Ei as described earlier, the maximum

bound on each of the components of the state vector are

found as shown in Fig. 5 for the diaphragm flexure of Fig. 3

containing three flexural beam units arranged symmetrically

around the central rigid mass, and with linear actuators

located at angles: 0, 2π
3

, 4π
3

. The system is decoupled as seen

from the variation of the singular values. With zero damping

at the resonance peak, the maximum values of all variables

assume exceedingly large values at the resonance frequency.

3The lower bound is zero, since for zero inputs, the components of the
state vector are all zero.
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Fig. 5. The maximum amplification of states for an unit input vector (along
any direction in the position space) is plotted for the case of three flexural
beam units arranged symmetrically around the central rigid mass.
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Fig. 6. The maximum amplification of states for an unit input vector
(along any direction in the position space) is plotted for the case when a 1◦

misalignment of one of the flexural beam units is caused by a manufacturing
error. Note that the system is now coupled as seen from the variation of the
singular values.

C. Effect of Deviation from Symmetry

The same analysis is repeated for the case when a 1◦

misalignment of one of the flexural beam units is caused by a

manufacturing error. The system is now coupled, with deflec-

tion and angular position being dependent on each other, as

seen from the two resonance peaks appearing in the variation

of the singular values in Fig. 6. This coupling implies that

the angular position can assume exceedingly large values at a

resonance frequency lower than that expected when perfect

symmetry is ensured. The input directions that correspond

to the maximum bound on a component Xi( jω) at a chosen

frequency ω lie along the right eigen vectors of the matrix

GH
i ( jω)Gi( jω), where Gi( jω) is the ith row of the matrix

G( jω).

In summary, the benefits of using this approach for

specifying the design performance variables are two fold

— (i) it is applicable in case of deviations from perfect

symmetry, allowing to analyze the effects of the deviations,

and (ii) it gives the bounds not only for the static case

(ω = 0) but also for the desired frequency range of interest.

This approach can be incorporated into the design decision-
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making process, along with other important considerations,

such as constraints imposed by physical limits, for example,

saturation of the actuators, or limit stops in the path of a

motion stage.
V. CONCLUSIONS

In this paper, we have examined the need for diaphragm

flexures in precision angular positioning applications. To

accurately characterize the dynamics, we assembled lumped

parameter models for individual flexural building blocks and

the overall mechanism. Models included here can capture

shear effects that dominate for flexures with comparable

thickness and length. We identified the key performance

trade-offs in range, load-capacity, and natural frequencies

of the diaphragm flexure. Further, a state-space performance

analysis was formulated to capture the maximum values of

performance specifications such as linear or angular posi-

tion. We plan to test the presented models through system

identification experiments in future. While the tested models

will be useful for control implementations, they can also be

a valuable tool for identifying trade-offs in design synthesis.
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APPENDIX

Distributed Parameter Model and Approximation

The set of partial differential equations governing Timoshenko beam bend-
ing and St. Venant’s torsion under the assumptions stated in Section II-A
can be written in terms of the deflection w(x,t), slope θ (x,t), and angle of
twist φ(x,t) as follows [17]:

EIyy
∂ 2θ (x,t)

∂x2
+κAG

{

∂w(x,t)

∂x
−θ (x,t)

}

−ρIyy
∂ 2θ (x,t)

∂ t2
= 0 (10)

ρA
∂ 2w(x,t)

∂x2
−κAG

{

∂ 2w(x,t)

∂x2
−

∂θ (x,t)

∂x

}

= 0 (11)

GJxx
∂ 2φ(x,t)

∂x2
+ Ixx

∂ 2φ(x,t)

∂ t2
= 0 (12)

where ρ,E,GJxx are the density, elastic modulus, and torsional rigidity,
respectively; A, Iyy, and κ are the cross-sectional area, area moment of
inertia about the neutral axis Y, and a geometry-dependent shear-factor,
respectively. For a rectangular cross-section κ assumes a value of 0.833 [21].
The component values of the mass M and stiffness K matrices are listed in

Tables III and IV. The parameters used in the tables are α=
{

1
1+2p

}2

and

β =
EIyy

6
c2

l5 , where, p = ( c
ℓ
)2, and c =

√

6EIyy

κAG
representing the length scale at

which effects of shear dominate. For a flexural beam with rectangular cross-

section of height H, c reduces to
√

1.1(1+ν)H, where ν is the poisson’s
ratio of the material.
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