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Abstract— This paper describes a finite-horizon receding
horizon trajectory optimization scheme which uses an approx-
imation of the value function to provide cost-to-go (CTG)
and associated state information. The value function approx-
imation is computed using a finite-state, motion primitive
automaton approximation of the vehicle dynamics. Using an
actual value function approximation instead of heuristic CTG
allows a tighter integration between the planning and control
layers needed for vehicles operating in challenging spatial
environments. It also enables a more rigorous use of the
receding horizon control framework for autonomous control
applications. The paper describes the finite-state value function
approximation and its integration into the receding horizon
scheme. Simulation examples illustrate the scheme’s capabilities
and highlight interesting open issues that will need to be
addressed to take full advantage of the approach.

I. INTRODUCTION

Spatial control of vehicle is fundamental to autonomous

operation. Some of the most capable vehicle platforms, such

as miniature rotorcraft, are highly dynamic systems. Aerial

vehicles can move freely in three dimensional spaces and

can exhibit a broad range of dynamic behaviors. To take

full advantage of their capabilities without compromising

safety, the spatial as well as vehicle state information must be

accounted for in consistent manner. Essentially the planning

and control must be integrated tightly, i.e., accounting for the

vehicle’s dynamics at the trajectory planning level and for the

task or mission elements while controlling the vehicle.

Roboticists have been interested in the interaction of

robots with their environments since the late 60’s. A vast

literature exists addressing various aspects of robot motion

planning [13], [6], [14]. While trajectory planning can be

rigorously formulated as an optimal control problem, solving

them as such cannot be done sufficiently fast to enable

the type of interactive capabilities. Therefore, for practical

reasons, a hierarchic approach is often used: first obstacle-

free path is determined (path planning), second a feasible

trajectory is generated in a post-processing phase (robot

control). Such decoupled techniques have been successfully

applied to vehicles with relatively simple dynamics like

ground robots. For vehicle with more complex dynamics,

such as aerial vehicles, decoupling planning and controlling

limits the performance and also makes it difficult to produce

the type of performance or robustness guarantees needed

for safe and effective operation. For vehicles with complex

dynamics, operating in complex spatial environments and
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disturbed conditions, a more rigorous, control-theoretic ap-

proach is required.

Receding horizon (RH) optimization can help reduce the

computational load by using a finite prediction horizon.

Encouraging results have been obtained in simulations and

experimental demonstration on a number of platforms [2],

[19], [21], [17]. To take full advantage of the RH framework

for motion planning, the key challenge is properly accounting

for the discarded tail of the trajectory. In principle, like

demonstrated for the control of nonlinear systems [18], [9], a

RH scheme combined with an appropriate cost-to-go (CTG)

function, can approach the performance of an infinite-horizon

optimization.

Existing CTG methods for motion planning are mostly

heuristic techniques based on geometric decompositions (like

the visibility graph [2]) or cell decomposition [17]. These

techniques do not explicitly account for the vehicle state

and therefore result in ad-hoc implementation of the RH

framework, making it difficult to attain high levels of control

performance and to rigorously study the performance and

robustness characteristics.

We can achieve a more rigorous implementation of RH

trajectory optimization if the CTG function can be computed

as an explicit approximation of the problem’s value function

(VF). In this paper we describe the integration of a RH

trajectory optimization with an approximate value function

computed using a finite-state approximation of the vehicle

dynamics. Simulation results based on real vehicle data

are used to illustrate the capabilities of the approach. We

conclude the paper by outlining key issues that need to

be addressed in order to make this approach a successful

framework for spatial control of agile vehicles.

II. BACKGROUND: RECEDING HORIZON TRAJECTORY

OPTIMIZATION

RH optimization is an attractive technique for control-

ling autonomous vehicles. It retains the strength of optimal

control (accommodating nonlinear dynamics; explicitly ac-

counting for hard constraints on state and control inputs;

and using performance objectives), but requires a fraction

of the computational load. RH optimization also provides

a conceptual framework to rigorously divide the planning

problem into an on- and offline problem [16]. The online RH

optimization process focuses on the immediate environment

and the most up-to-date information (from onboard sensors)

while the offline (or near real-time) CTG computation pro-

cess focuses on the more global, long-term elements. A

rigorous understanding of the performance of RH schemes

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

FrA06.1

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 3810



will make it possible to precisely understand the fundamental

relationship between computational load and control perfor-

mance.

Truncating the optimization horizon can lead to stabil-

ity and performance issues. Several techniques have been

proposed to handle these [15]. The technique that is the

most consistent with the original infinite-horizon form is

to approximate the discarded tail of the optimization by a

CTG function. For nonlinear control, it has been shown that

Control Lyapunov Functions representing an upper bound to

the true VF could be used as CTG function [9]. For trajectory

planning amidst complex geographical environments this

approximation cannot be used.

The main technique used so far for RH trajectory planning

is based on Visibility Graph decompositions [2]. The graph

is constructed based on the goal location and a polygonal

obstacle configuration. CTG values for the graph’s vertices

can be computed using a shortest path algorithm. In a

minimum-time problem the CTG is determined based on

the edge length and an average vehicle speed. Maneuvering

limitations can be accounted for heuristically. For example, a

penalty based on the direction change between two edges at

the vertices can be added to the cost. In [16], [17], a multi-

resolution cell decomposition of the environment is used

for CTG computation. Heuristics were used to incorporate

vehicle state information: vehicle speed was related the the

cell’s dimension (via the minimum turn radius) and the

optimal heading was assumed equal to the direction of the

CTG gradient.

These existing CTG computation techniques have both

practical and theoretical shortcomings. First, they make it

very difficult to properly incorporate vehicle state infor-

mation and account for vehicle dynamics. Therefore it is

impossible to prescribe a terminal state (heading or velocity)

at the goal; important control performance margins have to

be used to ensure safety and robustness. Second, viewed

from a control-theoretic standpoint, they are not explicit

approximation of the VF of the underlying trajectory opti-

mization problem. This makes it difficult to determine their

precise performance and robustness characteristics. Empir-

ical evaluations have to be used to determine appropriate

implementation.

A. Trajectory Optimization Formulation

The task in a general trajectory optimization problem is

to determine a control history u(t) which drives the vehicle

from its current state x0 to a desired goal state xgoal while

minimizing a chosen performance objective of the form:

J∞(x) =

∫
∞

0

g(x,u)dt, (1)

where g is the instantaneous cost functional. The mathemat-

ical formulation is given as:

min
u

J∞(x) (2)

subject to

ẋ = f(x,u)

x(t = 0) = x0

x(t = ∞) = xgoal

u ∈ U(xv)

xp(t) ∈ Xfree

xv(t) ∈ Xvhc(xv),

where, f is the vector differential equation for the vehicles

dynamics, and U is the set of admissible controls given the

current state of the vehicle. The state vector x is partitioned

in vehicle states xv and vehicle position xp. Xvhc is the set

of admissible vehicle states; Xfree represents the admissible

region of the environment (e.g. obstacle free).

The optimal command history u∗(t) at the current state x

is given by:

u∗

∞
(t) = argmin{J∗

∞
(x)}. (3)

B. Receding Horizon Trajectory Optimization

In finite horizon RH optimization, the optimization hori-

zon is truncated to a finite duration T . The problem is solved

repeatedly to obtain the control action based on the most

up-to-date state information. The horizon length T and the

trajectory update time interval Tupdt are typically set based

on the online computational capabilities.

The optimal control for the RH+CTG scheme is the one

that minimizes the composite cost

u∗

T = argmin{JT (x(t)) + JCTG(x(t+ T ))}, (4)

where JT (x(t)) is the finite-horizon cost

JT (x(t)) =

∫ T

0

g(x(t),u)dτ, (5)

and JCTG(x(t+ T ) represents the cost of the discarded tail

of the trajectory or cost to go. It is a function of the vehicle

state attained at horizon end x(T).
Note that if JCTG(x) is identical to the optimal, infinite-

horizon cost J∗

∞
(x), the RH- and the infinite-horizon solu-

tions are identical, i.e., the optimality gap is zero. J∗

∞
(x)

is also called the optimal value function (VF) V ∗(x) [20].

Hence, ideally, the CTG should be chosen as an approxima-

tion of the VF Ṽ ∗.

C. Cost-To-Go for Trajectory Optimization

The optimal value function is the solution to the Hamilton-

Bellman-Jacobi (HBJ) differential equation [20], [5]. How-

ever, for many problems of practical interest, this equation

cannot be solved analytically and computational techniques

have to be used. A brute-force approach would be to numer-

ically solve the infinite-horizon optimization problem over a

spatial grid xpos ∈ Xfree.
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Since the VF is a function of the environment and the goal

state. To accommodate changes occurring when operating in

partially known or dynamically changing environments, it is

critical to develop computationally efficient VF algorithms.

We also need to understanding what approximation level in

the VF would be sufficient to enable the RH+CTG scheme

to perform at a specified performance level.

III. FINITE-STATE VALUE FUNCTION APPROXIMATION

In the following we formulate the CTG computation

as a finite-state approximation of the continuous optimal

control problem. Such a motion primitive automaton (MPA)

representation has originally been proposed as part of a

hybrid guidance system [7]. With a finite-state representation

of the vehicle dynamics, the trajectory optimization becomes

a sequential decision problem which can be solved as a

dynamic program [3].

A. Hybrid Guidance vs. RH-CTG

The finite-state MPA is obtained from a quantization of the

system dynamics [10]. In contrast to the hybrid guidance

scheme [7], when used as CTG function in the RH+CTG

scheme, the finite set of states and control does not directly

constrain the vehicle control and the resulting trajectories.

This is because the online optimization uses a model of the

actual dynamics of the system; the choice of finite states

affect the control performance and behavior only in so far

that they constrain the system’s states at the horizon end,

and indirectly through their effect on the CTG accuracy.

Therefore, much simpler MPA can be used in a RH-CTG

scheme addressing a potential issue due to the curse of

dimensionality [3].

B. RH-CTG Formulation

The receding horizon optimization with the finite-state

value function can be formulated as:

u∗

T = argmin{JT (x(t)) + Ṽ ∗(x(t+ T ))}. (6)

The additional constraint is that at the horizon end, the

system state must be equal to the finite state associated with

the finite-state value function Ṽ ∗(x̃).

x(t+ T ) = x̃. (7)

1) RH-CTG Design Problem Statement: The idea is that

with an appropriate finite-state model and RH implementa-

tion (selection of prediction model, trajectory update rate,

sampling time, horizon length) the optimality gap due to

the finite-state approximation can be partially recovered.

Therefore the RH-CTG control design problem can be stated

as: find the lowest dimensional finite-state MPA and the RH

implementation that satisfies the performance specifications.

The required VF update is determined by the dynamics of

the environment (and task). The practical constraints for

this design problem are the online computational resources

(processing and storage).

One way to measure the quality of the finite-state approxi-

mation is through the optimality gap between the actual value
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Fig. 1. (top) Illustration of an example motion primitive automaton (MPA).
The motion primitives (MPs) are specified for quantized vehicle speeds.
Transition between the speeds is enabled by acceleration and deceleration
primitives. Each MPs trajectory segments start and end on a grid. (bottom)
The transition graph of the MPA.
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Fig. 2. Finite-state value function map computed based on the motion
primitives illustrated in Figure 1. The field corresponds to a 4x3 meter region
we setup to perform our evaluation. The plot shows the contour lines of the
CTG values (spacing 0.5 sec) together with the vector field describing the
optimal MPA state at each grid point (shown by dot). The line length indicate
the velocity and the color indicate the type of MP (blue: straight p1, p2
or m1,m2; green: π/4 turns p7, p8; red: π/2 turns p3 . . . p6). (bottom)
Trajectories from a receding horizon planner.

function and its approximation ∆V ∗(x) = Ṽ (x) − V (x)∗.

However, ultimately the form of implementation of the RH

optimization scheme plays an important role in determining

what the optimality gap will be under the RH+CTG scheme.

C. Finite-State Vehicle Model

As a starting point we use a simple planar MPA. The

preliminary results will help us illustrate the approach and

highlight the overall performance issues.

1) Basic MPA: The state-space for the basic 2D trajectory

planning problem consists of the: position in a geographical

reference system xp = [xN , yE ]T the vehicle heading ψ and

vehicle longitudinal speed u. The MPA are typically obtained

by quantizing the vehicle dynamics. In the following we
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Fig. 5. Trajectory (in red) obtained from the RH+VF scheme with the VF
shown in Figure 2 for a goal xgoal = [4, 0]T , and final states ψgoal = 0
and velocity ugoal = v1 = 0.4m/sec. Also shown are the CTG points with
associated states that were extracted along the way.
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Fig. 6. Comparison of the trajectories obtained using the NLP planner
(left) and those obtained with the RH+CTG planner (right) using the VF
illustrated in Figure 2.

discrete time model used in the planner Ts = 0.2sec; 5

evenly space nodes for the prediction horizon. The con-

straints for the online planner are amax = 2.5m/sec2 and

umax = 2m/sec. The local VF set is extracted based on

the vehicle heading (33 local VF points are extracted from

a triangular region in front of the vehicle; the set is pruned

by keeping the five points with lowest CTG values).

IV. PERFORMANCE EVALUATION

To evaluate the overall behavior of the of the RH+CTG

scheme, its computational performance, and its ability to

recover the optimality gap (resulting from the MPA-based

finite-state VF approximation) we used a simple, planar goal-

directed control task. The scale of the problem is chosen to

enable to fully exercise the maneuvering capabilities of the

200-gram Blade-CX helicopter used in our facility.

The goal is located at xgoal = [4, 0]T , and the final state

is ψgoal = 0 and velocity ugoal = v1 = 0.4m/sec. At this

point in time, all results are based on simulations using a

model of the helicopter.

A. Performance Benchmark

As benchmark for optimality we formulated a nonlinear

program (NLP) that we solved using an interior point method

(IPOPT) [22]. We chose a minimal parameterization (20

evenly space nodes), just sufficient to achieve good, full-

horizon performance for all start-goal configurations in our

test task. The NLP trajectories that are used are open loop

(they were computed once at the starting points). This way

we can consider these trajectories as the true optimal ones

for the system.

Figure 6 shows the trajectories resulting from the RH

scheme and the corresponding NLP ones. The RH trajec-

tories display more variability that the open-loop NLP ones

but are qualitatively quite similar to the NP ones. There is a

quite a strong bias toward the fields diagonal which is likely

due to the coarse heading discretization in the MPA.
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Fig. 7. Performance comparison of the control schemes: (top) only
finite-state system; (middle) RH planner with cost-to-go; (bottom) nonlinear
trajectory optimization with full horizon.

B. Vector Field Comparison

To better compare the performance we computed the x−y
spatial distributions of the actual cost-to-go and vehicle states

as vector field . The values were computed by averaging the

cost and system states using a cell decomposition (dxy = 0.3

m) of the test field. Figure 7 shows the comparison between

the finite-state approximation and the two online planners:
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(top) finite-state system; (middle) RH planner with cost-to-

go; (bottom) nonlinear trajectory optimization. First, notice

that the RH scheme recovers a significant portion of the the

optimality gap (time-to-go for the RH and NLP plots) and

performs close to the full-horizon nonlinear planner. This is

achieved by taking advantage of the full range of speed (up

to 2m/sec) and the continuous control inputs and states.

C. Computational Load

Finally, we evaluated the computational load for the two

planning schemes. Table I gives the statistics of the planner

performance for our test task. The trajectory performance

is measured by the optimality gap with respect to the full-

horizon, NLP planner; the computational efficiency of the

planner is measured by the average CPU time per trajectory

update (based on the AMD Athlon processor). All the values

were obtained by averaging over all the trajectories of our

test task.

We see that the finite-state approximation using the MPA

has an average gap of 1.34 sec (also visible in Figure 7). This

is quite large considering that the total trajectory duration is

of the order of 1.5 to 2.5 seconds. We also see that the

average optimality gap is near zero for the RH scheme. The

computing times are on average at least half for the RH

scheme. Also, the RH optimization has a much smaller stan-

dard deviation. The NLP can take vastly different computing

times from one case to the next.

TABLE I

AVERAGE OPTIMALITY GAP AND COMPUTATIONAL PERFORMANCE.

∆J σ∆J TCPU σTCP U

MPA 1.34 0.38 0 0

RH+CTG 0.043 0.22 .68 0.55

NLP 0 0 3.84 3.13

When interpreting these results it is important to realize

that the RH+CTG scheme’s computational load is inde-

pendent of the planning problem, while the full-horizon

NLP’s parameterization will have to be increased for larger

problems. For example, increasing the horizon length to

accommodate larger problems is bounded above by the

exponential scale and is NP-hard with respect to the number

of nodes [8]. Finally, the RH+CTG performance can still be

improved significantly by using better heuristics to extract

the smallest local CTG set or alternatively use local point

to generate an analytic representation of the local VF. There

is also significant improvement that can be achieved using

more efficient software implementations (currently based on

Matlab and Simulink).

D. Application to Obstacle Field

The RH control scheme and VF computation can be read-

ily applied to a terrain environments. Figure 8 illustrate the

results for a fictional environment setting in our indoor lab

space with three obstacles. It shows the resulting trajectories

for three different starting points in the obstacle field. Also

shown are the local VF points used by the planner as it

progresses through the environment. The goal coordinates

are xgoal = [4.2, 2]′ with same goal state as previously. The

environment is provided to the VF value iteration algorithm

as an occupancy grid. Any point which is inside an obstacle

region is assigned an infinite cost-to-go value.
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Fig. 8. Trajectories for the RH-CTG scheme in an obstacle field. The plot
also shows the local VF points that were retrieved along the way.

Figure 9 illustrates the importance of taking into account

the state in addition to the cost-to-go values in RH schemes.

The trajectories were obtained by using the same start-

ing state and goal location, but four different goal states

(ψgoal = 0, π/2, π,−π/2 and ugoal = v1). Notice how these

differences result in large differences in the trajectories.
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Fig. 9. Trajectories for the RH-CTG scheme in an obstacle field. All
trajectories have the same starting state but each a different goal states are
used (terminal heading ψgoal = 0, π/2, π,−π/2).

V. CONCLUSIONS

The results obtained in this paper are encouraging but

they also highlight important questions that will need to

be answered if we want to take advantage of the RH+CTG

schemes full potential for autonomous vehicle control.

3815



A. Highlights and Summary

The main results of this initial study are:

• A relatively simple MPA model of the vehicle can be

used to approximate the VF. By itself, the VF map

already conveys information about the relationship be-

tween the spatial environment and the vehicle behavior.

• VF map provides a control-theoretic framework to study

the complex interaction between a vehicle and the envi-

ronment (spatial and behavioral dimensions). It should

provides a way to explicitly relate the algorithmic quan-

tities to vehicle dynamics capabilities (e.g. close-loop

control requirements), the environment characteristics,

and task requirements.

• Combined with online receding horizon control, the

VF map should enable computation of a trajectory in

real time which approaches the performance of the true

optimal trajectory, but is computationally cheaper.

• The finite-state VF computation does not require any

geometrical processing of the environment data. Envi-

ronments given in form of digital elevation maps or

occupancy maps can be used directly in this scheme.

• A variety of optimization techniques can be used in the

RH planner. This makes it possible to apply this scheme

to a variety of nonlinear systems.

• We expect that like in other application, the RH schemes

should display good robustness in the face of uncertain-

ties and disturbances.

B. Current and future work

These results also raise several important questions. First,

we need to better understand the relationship between the

level of approximation in the MPA, its effect on the VF

accuracy, and on the performance of the RH+CTG scheme.

This will help us develop methods and guidelines to design a

system that achieves the best performance given the available

on-board computational resources, the characteristics of the

environment and operational conditions, and the capabilities

of the vehicle.

In general, the behavior of the RH+CTG schemes for

nonlinear systems as a function of implementation settings

(e.g. length of optimization horizon and trajectory update

rate) is hard to predict. Previous results were mainly based

on Control Lyapunov functions (CLF) [18]. For the special

case of vehicular planning tasks and by using the finite-state

VF approximations we expect to be able to obtain stronger

results.

Most real-world problems are characterized by uncertain,

partially known environments, and disturbed operating con-

ditions. We are extending the CTG computation and RH

implementation to account for these stochastic effects. This

will enable analyzing the robustness and performance charac-

teristics of the system and develop the type of performance

and robustness guarantees needed for autonomous control

systems. Finally, we are in the process of implementing this

scheme in our interactive flight research lab.
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