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Abstract— This paper studies the problem of reliable H∞ state
feedback controller design for linear continuous-time systems.
Actuator partial failures and actuator lock-in-place failures are
simultaneously considered, and the signals in the case of certain
actuators being locked in place are treated as zero-frequency
disturbances, which gives an exact description for the lock-in-
place failures. Based on the generalized KYP lemma in finite
frequency domain, the controller design is developed in the
framework of linear matrix inequality (LMI) approach, which
can guarantee the asymptotic stability and H∞ performances of
the resulting closed-loop systems when all control components
are operational as well as when some actuators fail. Finally, the
design procedure and the effectiveness of the proposed method
in comparison with the entire frequency approach by using
bounded real lemma are illustrated via a numerical example
of flight tracking control of an F-16 aircraft.

I. INTRODUCTION

Since control components failures often occur in practical

applications, it is always necessary to design controllers that

achieve desired performance requirements, not only when

the system is operating properly, but also in the case of any

admissible failures. This motivated the study of the so-called

reliable control. In the past years, a number of theoretical

results as well as application examples has now been de-

scribed in the literature (see, e.g., [1]-[15]). [1] presented a

new methodology for the design of reliable centralized and

decentralized control systems by using the algebraic Riccati

equation approach. [2] and [3] proposed design approaches

of the reliable H∞ controller for linear systems with actuator

failures and sensor failures, respectively. [4] extended the

results given in [1] to the case of sensor and actuator partial

failures. [7] solved the problem of flight tracking control in

the presence of stuck-actuator faults by modeling a stuck

fault as a bounded input. [11] basically followed the design

guideline of the adaptive two-stage LQ reliable control, and

This work was supported in part by Program for New Century Excellent
Talents in University (NCET-04-0283), the Funds for Creative Research
Groups of China (No. 60521003), Program for Changjiang Scholars and
Innovative Research Team in University (No. IRT0421), the State Key
Program of National Natural Science of China (Grant No. 60534010), the
Funds of National Science of China (Grant No. 60674021) and the Funds
of PhD program of MOE, China (Grant No. 20060145019), the 111 Project
(B08015).

Guang-Hong Yang is with the College of Information Science and
Engineering, Northeastern University, Shenyang 110004, China. He is also
with the Key Laboratory of Integrated Automation of Process Industry,
Ministry of Education, Northeastern University, Shenyang 110004, China.
Corresponding author: yangguanghong@ise.neu.edu.cn

Xiao-Ni Zhang is with the College of Information Science and Engi-
neering, Northeastern University, Shenyang 110004, China. She is also
with the Key Laboratory of Integrated Automation of Process Industry,
Ministry of Education, Northeastern University, Shenyang 110004, China.
zhangxiaoni0826@126.com

considered the faults are not confined to a preselect set of

actuators.

In the above-mentioned results for reliable control in

the presence of actuators being locked in place, the inputs

being locked in place were modeled as the entire frequency

disturbances, which is not an exact description of the faults.

The main objective of this paper is to develop an exact

method of reliable H∞ control problem for the case of

actuator partial failures and actuator lock-in-place failures

occurring simultaneously. The inputs being locked in place

are modeled as zero-frequency disturbances and are treated

by using the generalized KYP lemma in finite frequency

domain [19]. The new development gives a multi-model

mixed frequency H∞ design method. The rest of this paper is

arranged as follows. Section 2 presents the problem statement

and some preliminaries. Section 3 proposes a new method for

designing stabilizing reliable H∞ state feedback controllers.

In Section 4, the entire frequency approach based on bounded

real lemma is described. In Section 5, an example of flight

tracking control of an F-16 aircraft is provided to illustrate

the design procedure and their effectiveness. Some conclud-

ing remarks are given in Section 6.

Notation: For a matrix A, A∗ denotes its complex conjugate

transpose. The Hermitian part of a square matrix A is denoted

by He(A) := A + A∗. The symbol Hn stands for the set of

n × n Hermitian matrices. The symbol ∗ within a matrix

represents the the symmetric entries. I denotes the identity

matrix with an appropriate dimension. For a transfer function

matrix G, its H∞ norm is defined by

∥

∥G( jω)
∥

∥

∞
:= supσ{G( jω)}

where σ(G) = {λmax(G
∗G)}

1
2 represents the maximum sin-

gular value of G, λmax represents maximum eigenvalue.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider a linear time-invariant plant described by

ẋ(t) = Ax(t)+Bu(t)+B1ω(t)

z(t) = Cx(t)+Du(t) (1)

with a state feedback controller of the following form:

u(t) = Kx(t) (2)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control

input, ω(t)∈ Rr is the disturbance input and z(t)∈ Rq is the

regulated output, respectively. A, B, B1, C and D are known

constant matrices of appropriate dimensions.

For the control input u, let uF denote the signal vector in the
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case of some actuator failures. The actuator partial failure

model is as follows:

uF = αu, (3)

where

α := diag
[

α1 α2 . . . αm

]

(4)

with αi satisfies

0 ≤ α i ≤ αi ≤ α i, (i = 1,2, . . . ,m). (5)

Denote

α = diag
[

α1 α2 . . . αm

]

, (6)

α = diag
[

α1 α2 . . . αm

]

. (7)

While the actuator lock-in-place failure model is:

uF = Fju+(I −Fj)β j, ( j = 1,2, . . . ,L) (8)

where

Fj = diag
[

f j1 f j2 . . . f jm

]

, (9)

β j =
[

β j1 β j2 . . . β jm

]T
(10)

with

f ji =

{

1 the ith actuator is operational

0 the ith actuator is locked in place
i = 1, . . . ,m.

(11)

Here, the index j denotes the jth failure mode and L is

the total failure modes. And β ji is an unknown constant.

Actually, the actuator failure mode adopted in this paper is:

uF = Fjαu+(I −Fj)β j, ( j = 1,2, . . . ,L) (12)

Remark 1: It considers the case of actuator partial failure

and actuator locking in place simultaneously. When f ji = 1

and α i = α i = 0, it covers the case of outage of the ith

actuator ui in the jth failure mode. When f ji = 1 and α i > 0,

it corresponds to the case of partial failure of the ith actuator

ui in the jth failure mode. When f ji = 0, the ith actuator ui

is locked in place in the jth failure mode. Without loss of

generality, we assume that F0 = I. Note that, when F0 = I

and α = α = I, it corresponds to the normal control input

vector uF(t) = u(t).
Then the resulting closed-loop system in the event of the

actuator failures described by (12) is

ẋ(t) = (A+BFjαK)x(t)+B1ω(t)+B(I −Fj)β j

z(t) = (C +DFjαK)x(t). (13)

Remark 2: Here, z is defined as the regulated output. But

the inputs being locked in place are uncontrollable. So we

do not consider the lock-in-place inputs in z.

In the closed-loop system, if β j in the failed actuator is

regarded as a zero-frequency disturbance, then the transfer

function matrices Gi(s)(i = 1,2) from ω and β j to z are

respectively denoted by

Gi(s) = C(sI −A)−1Bi +Di, (14)

where state space realizations (A,Bi,C,Di) of Gi(s) are

correspondingly given by
[

A B1 B2

C D1 D2

]

=

[

A+BFjαK B1 B(I −Fj)
C +DFjαK 0 0

]

.

(15)

The control synthesis problem under consideration is to find

a state feedback controller (2) such that the resulting closed-

loop system is asymptotically stable and the following H∞-

norm bound constraints
∥

∥G1( jω)
∥

∥

∞
< γ1, ω ∈ R∪{∞} (16)

∥

∥G2( jω)
∥

∥

∞
< γ2, ω = 0 (17)

hold not only when all control components are operational,

but also in the case of some actuator failures by (12).

For the later development, the following preliminaries are re-

quired. First, the below Lemma 1 and Lemma 2 respectively

follow from Theorem 1 and Theorem 2 in [17].

Lemma 1: Let (A,B2,C,D2) in (15) be given. The following

statements are equivalent:

(i)

J∗
[

B∗
2 D∗

2

0 I

]∗

Π2

[

B∗
2 D∗

2

0 I

]

J < 0, (18)

J :=

[

( jωI −A∗)−1C∗

I

]

, Π2 :=

[

I 0

0 −γ2
2 I

]

(19)

holds for ω = 0.

(ii) There exist P = P∗ and Q = Q∗ > 0 such that
[

M∗

I

]∗

X

[

M∗

I

]

< 0, (20)

where

M :=

[

A B2

C D2

]

, X :=









−Q 0 P 0

0 I 0 0

P 0 0 0

0 0 0 −γ2
2 I









. (21)

Proof. Lemma 1 is a special condition of Theorem 1 in [17].

Lemma 2: Let P,Q ∈ Hn and R =
[

0 0 I 0
]

be given.

The following statements are equivalent:

(i) The inequality (20) holds.

(ii) There exist W such that

X < He

([

I

−M

]

W

)

(22)

where X is defined by (21).

Proof. The result basically follows from Theorem 2 of [17]

by changing

[

−I

M

]

into

[

I

−M

]

which is also the range space

of
[

M I
]∗

for a special case.

Lemma 3: Let (A,B1,C,D1) in (15) be given. The following

statements are equivalent:

(i)

J∗
[

B∗
1 D∗

1

0 I

]∗

Π1

[

B∗
1 D∗

1

0 I

]

J < 0, (23)
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Π1 :=

[

I 0

0 −γ2
1 I

]

(24)

holds for ω ∈ R∪{∞} with J defined by (19).

(ii) There exists a matrix P = P∗ such that
[

A I

C 0

][

0 P

P 0

][

A I

C 0

]∗

+

[

B1 0

D1 I

]

Π1

[

B1 0

D1 I

]∗

< 0.

(25)

Proof. The result basically follows by dualizing Theorem 1

of [16].

III. RELIABLE H∞ CONTROL VIA STATE FEEDBACK

In this section, we would like to give the design method

of reliable H∞ controller for the linear time-invariant system

(1) via state feedback. The following theorem presents a

sufficient condition for the solvability of this problem.

Theorem 1: Consider the linear time-invariant system (1).

For all j = 1,2, . . . ,L, if there exist scalars τ > 0, δ > 0

and matrices P = P∗, Q = Q∗ > 0, W = W ∗ > 0, V =
[

V1 V2 V3 V4

]

, K satisfying the following inequalities
[

AW +WA∗ +BFjaK +K ∗aFjB
∗ + τB1B∗

1

∗

WC∗ +K ∗aFjD
∗

−τγ2
1 I

]

< 0, a ∈ {α,α} (26)









−Q −V ∗
1 P−W +V ∗

1 F jB
∗

∗ δ I −He(V2) −V3 +V ∗
2 F jB

∗

∗ ∗ He
[

AW +BF jV3 +BFjaK
]

∗ ∗ ∗

0

−V4

BF jV4 +WC∗K ∗aFjD
∗

−δγ2
2 I









< 0, a ∈ {α,α} (27)

where F j := I − Fj, then the resulting closed-loop system

(13) is asymptotically stable and satisfies H∞-norm bound

constraints (16) and (17) not only when all control compo-

nents are operational, but also in the case of some actuator

failures by (12). In this case, the gain of the controller (2)

is given by

K := K W−1. (28)

Proof. The H∞-norm bound constraints (16) and (17) are

respectively equivalent to the followings

J∗
[

B∗
1 D∗

1

0 I

]∗

τΠ1

[

B∗
1 D∗

1

0 I

]

J < 0, ω ∈ R∪{∞}, (29)

J∗
[

B∗
2 D∗

2

0 I

]∗

δΠ2

[

B∗
2 D∗

2

0 I

]

J < 0, ω = 0 (30)

where J and Π2 are defined by (19), and Π1 is defined by

(24). Then we can get the following from (30) by using

Lemma 1
[

M∗

I

]∗

δX

[

M∗

I

]

< 0. (31)

where X is defined by (21). In view of Lemma 2, (31) is

equivalent

X < He

([

I

−M

]

W

)

. (32)

To make the problem tractable, the multiplier W is given by

W :=

[

I

0

]

WR+

[

0

I

]

V (33)

where W = W ∗ > 0, V =
[

V1 V2 V3 V4

]

. Then (32) is

equivalent to

X < He

















I 0

0 I

−A −B2

−C −D2









[

0 0 W 0

V1 V2 V3 V4

]









. (34)

By defining K := KW and F j := I −Fj, it is equivalent to








−Q −V ∗
1 P−W +V ∗

1 F jB
∗

∗ δ I −He(V2) −V3 +V ∗
2 F jB

∗

∗ ∗ He
[

AW +BF jV3 +BFjαK
]

∗ ∗ ∗

0

−V4

BF jV4 +WC∗K ∗αFjD
∗

−δγ2
2 I









< 0. (35)

We can see that (35) is convex. So if (27) hold, then (35)

holds accordingly.

Furthermore, we can get the following from (29) by using

Lemma 3
[

A I

C 0

][

0 P1

P1 0

][

A I

C 0

]∗

+

[

B1 0

D1 I

]

τΠ1

[

B1 0

D1 I

]∗

< 0,

(36)

where P1 = P∗
1 > 0. It is equivalent to

[

P1A∗ +AP1 + τB1B∗
1 P1C∗ + τB1D∗

1

CP1 + τD1B∗
1 τD1D∗

1 − τγ2
1 I

]

< 0. (37)

Using Schur complement Lemma and multiplying by

diag
[

I I τI
]

from the left side and the right side, respec-

tively, we can get




P1A∗ +AP1 P1C∗ τB1

CP1 −τγ2
1 I τD1

τB∗
1 τD∗

1 −τI



 < 0. (38)

If (38) holds, it follows that

P1A∗ +AP1 < 0, (39)

that is to say, the closed-loop system (13) is asymptotically

stable.

Let P1 := W , (37) is equivalent to
[

AW +WA∗ +BFjαKW +WK∗αFjB
∗ + τB1B∗

1

∗

WC∗ +WK∗αFjD
∗

−τγ2
1 I

]

< 0. (40)
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It is easy to see that (40) is also convex for all j = 1,2, . . . ,L.

Similarly, if (26) hold, then (40) holds accordingly. Thus, the

proof is complete.

Remark 2: As a matter of fact, Theorem 1 is the generalized

eigenvalue problem (GEVP). The GEVP is a quasi-convex

optimization problem since the constraint is convex and the

objective is quasi-convex. It can be solved by using Toolbox

of MATLAB.

Then, based on Theorem 1, the following algorithm is

presented for the design of a reliable H∞ state feedback

controller:

Algorithm 1:

Step 1. Let γ2 > 0 be given. Then conditions (27) are changed

to be convex.

Step 2. Define a scalar ξ > 0. Replace τγ2
1 with ξ in (26).

Then minimize γ2
1 subject to the LMI constraints (26) and

(27) for all j = 1,2, . . . ,L and δ > 0, ξ > 0, Q > 0, W > 0,

τ > 0, ξ < τγ2
1 .

Step 3. The optimal value of γ1 and the corresponding

feedback gain K are obtained.

IV. ENTIRE FREQUENCY APPROACH

In this section, we give the entire frequency approach that

the inputs being locked in place are treated as the entire

frequency disturbances by using bounded real lemma in the

H∞ framework.

Lemma 4: For all j = 1,2, . . . ,L, if there exist matrices W =
W ∗ > 0 and K such that the following inequalities





He(AW +BFjaK ) WC∗ +K ∗aFjD
∗ B1

CW +DFjaK −γ1I 0

B∗
1 0 −γ1I



 < 0,

(41)





He(AW +BFjaK ) WC∗ +K ∗aFjD
∗ B(I −Fj)

CW +DFjaK −γ2I 0

(I −Fj)B
∗ 0 −γ2I



 < 0,

(42)

hold with a ∈ {α,α}, then the resulting closed-loop system

(13) is asymptotically stable and meets H∞-norm bound

constraints
∥

∥G1

∥

∥

∞
< γ1 and

∥

∥G2

∥

∥

∞
< γ2 not only when all

control components are operational, but also in the case

of some actuator failures by (12). The parameter K of the

controller (2) can be obtained by solving (28).

Remark 3: Lemma 4 is a corollary of Theorem 1 in [2].

Here, the inputs being locked in place are modeled as the

entire frequency disturbances and dealt with in the robust H∞

framework by using bounded real lemma. The result is not

exact enough. The conditions (41) and (42) are all convex.

Lemma 4 is the eigenvalue problem (EVP). This is a convex

optimization problem.

Based on Lemma 4, we summarize:

Algorithm 2:

Step 1. Fix the value of the positive scalar γ2.

Step 2. Minimize γ1 subject to the LMI constraints (41) and

(42) for all j = 1,2, . . . ,L and W > 0.

Step 3. The values of the parameters γ1 and K are found.

V. EXAMPLE

In this section, the proposed design method, of a reliable

H∞ state feedback controller, that control input signals of the

actuators being locked in place are treated as zero-frequency

disturbances, and the advantage of the proposed method in

comparison with the existing one by using bounded real

lemma in the H∞ framework are illustrated via a numerical

example of flight tracking control of an F-16 aircraft in [5].

We consider actuator lock-in-place failures only.

The trimmed values of the F-16 aircraft equations and the

aircraft model are given by [5].

Our objective is to design a state feedback controller such

that

• During normal operation, the closed-loop system is

stable, and the output Sy(t) tracks the reference signal

r(t) without steady-state error, that is

lim
t→∞

e(t) = 0, e(t) = r(t)−Sy(t)

and with good closed-loop disturbance attenuation per-

formance, where S is a known constant matrix used to

form the output required to track the reference signals.

• In the event of actuator lock-in-place failures, the

closed-loop system is still stable, and the output Sy(t)
tracks the reference signal r(t) without steady-state error

and with an acceptable level of performance.

Then we have the following augmented system in the event

of the actuator lock-in-place failures

ξ̇ (t) = Aaξ (t)+BaFju(t)+Gaωa(t)+Ba(I −Fj)β j,

za(t) = Caξ (t)+DaFju(t)

where ξ (t) = [(
∫ t

0 e(τ)dτ)∗,xT (t)]∗, ωa(t) = [r∗(t),ω∗(t)]∗,

and

Aa =

[

0 −SC

0 A

]

, Ba =

[

0

B

]

, Ga =

[

I 0

0 G

]

,

Ca =

[

Q
1
2

0

]

, Da =

[

0

R
1
2

]

with Q = Q∗ ≥ 0 and R = R∗ > 0. Actually, the design

problem can be reduced to the following: find a state feed-

back controller u(t) = Kξ (t) such that the resulting closed-

loop system is asymptotically stable and the H∞-norm bound

constraints (16) and (17) hold not only when all control

components are operational, but also in the case of some

actuators being locked in place, where

G1( jω) := (Ca +DaFjK)( jωI −Aa −BaFjK)−1Ga,

G2( jω) := (Ca +DaFjK)( jωI −Aa −BaFjK)−1Ba(I −Fj).

We set the parameter value

γ2 = 1,

and S, Q and R are also given by [5]. Subsequently, minimize

γ1 subject to the above constraints.

In this example, the following possible actuator failures are

considered:
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(1) F1 = diag
{

0,1,1,1,1
}

-Right elevator actuator is locked

in place;

(2) F2 = diag
{

1,0,1,1,1
}

-Left elevator actuator is locked in

place;

(3) F3 = diag
{

1,1,0,1,1
}

-Right aileron actuator is locked

in place;

(4) F4 = diag
{

1,1,1,0,1
}

-Left aileron actuator is locked in

place.

i) Then minimizing γ1 by using Theorem 1, the optimal value

of γ1 and the corresponding feedback gain K are found to

be:

γ1min = 2.9110,













−21.5845 −37.8539 4.3525 3.5453 13.4723

21.5579 −37.8419 −4.8298 3.5469 13.4874

−18.4254 −15.6318 23.6533 −18.1407 3.7668

18.4555 −15.5528 −24.2170 −18.3710 3.7574

7.6028 −0.2723 76.2222 0.3875 0.0908

186.4367 −1.6488 118.1748 44.1512

186.3557 1.9534 −118.1374 −45.2656

57.4487 −9.1727 98.2422 151.6987

58.2752 9.3023 −98.4415 −152.3296

−0.7919 −27.9242 −50.9081 374.5282













.

ii) And then minimize γ1 by using Lemma 4. As a result,

we obtain:

γ1min = 8.0696,













−63.6357 −55.4925 72.2317 34.7712 55.6320

63.9780 −56.0264 −72.6867 36.0239 56.2004

−82.2185 −28.9185 79.7869 −63.1665 25.1098

82.4320 −29.3711 −80.3975 −61.9038 25.5939

79.8268 −0.1380 76.5266 −0.2387 0.1151

425.3992 −74.6129 226.8712 370.3879

432.8249 75.4229 −228.4671 −372.0664

117.5343 −82.8557 277.4170 360.3813

124.6874 83.1263 −278.1580 −360.9192

0.5645 −76.5288 −198.7086 575.2798













.

The actual achieved γ1 for the normal case are respectively

2.8542 by the proposed method and 3.8306 by the entire

frequency approach, and the actual achieved values of γ1

and γ2 for some failure modes are as follows:

Fi diag{1,1,0,1,1} diag{1,1,1,0,1}
Actual values γ1 γ2 γ1 γ2

Our design 2.8920 0.3673 2.8701 0.3674

BRL 3.8384 0.3669 3.8287 0.3670

Comparisons of simulation results are given in Fig.1-Fig.8.
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Fig. 1. Stability axis roll rate for normal case (solid) and faulty cases
1-4 (dashed) by using the proposed method (left) and the entire frequency
method (right)
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by using the proposed method (left) and the entire frequency method (right)
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Fig. 3. Angle of sideslip for normal case (solid) and faulty cases 1-
4 (dashed) by using the proposed method (left) and the entire frequency
method (right)
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Fig. 4. Right elevator deflection for normal case (solid) and faulty cases
1-4 (dashed) by using the proposed method (left) and the entire frequency
method (right)
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Fig. 5. Left elevator deflection for normal case (solid) and faulty cases
1-4 (dashed) by using the proposed method (left) and the entire frequency
method (right)

1804



0 2 4 6 8 10
−25

−20

−15

−10

−5

0

5

10

0 2 4 6 8 10
−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

Fig. 6. Right aileron deflection for normal case (solid) and faulty cases
1-4 (dashed) by using the proposed method (left) and the entire frequency
method (right)
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Fig. 7. Left aileron deflection for normal case (solid) and faulty cases
1-4 (dashed) by using the proposed method (left) and the entire frequency
method (right)

Based on the output responses and the actual achieved values

of γ1 and γ2, it is easy to see that the new proposed method

is less conservative than the method given by bounded

real lemma in most conditions for the example, and the

obtained H∞ performance (tracking performance) by using

our design procedure is better than that by using bounded

real lemma. So, compared with the existing method given

by bounded real lemma, the new proposed method can be

a good alternative for designing reliable H∞ state feedback

controllers with actuators being locked in place.

VI. CONCLUSION

In this paper, the design problem of reliable H∞ state

feedback controllers for linear continuous-time systems has

been addressed. A new method is developed to guarantee

the H∞-norm bound constraints in addition to closed-loop

asymptotic stability not only when the system is operating

properly, but also in the event of some actuator failures.

Sufficient conditions for existence of feasible controllers

are given in terms of solutions to a set of linear matrix

inequalities (LMIs). A numerical example of flight tracking

control of an F-16 aircraft is given to illustrate the proposed

design method and demonstrate its effectiveness.
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Fig. 8. Rudder deflection for normal case (solid) and faulty cases 1-
4 (dashed) by using the proposed method (left) and the entire frequency
method (right)

REFERENCES

[1] R. J. Veillette, J. V. Medanic and W. R. Perkins, “Design of reliable
control systems,” IEEE Trans. Automat. Contr., vol. 37, no. 3, pp.
290-304, 1992.

[2] C. J. Seo and B. K. Kim, “Robust and reliable H∞ control for linear
systems with parameter uncertainty and actuator failure,” Automatica,
vol. 32, no. 3, pp. 465-467, 1996.

[3] G. H. Yang, J. L. Wang and Y. C. Soh, “Reliable H∞ controller design
for linear systems with sensor failures,” in Proc. 37th IEEE Conf.

Decision Control, Tampa, Florida, pp. 2822-2827, 1998.
[4] G. H. Yang, J. L. Wang and Y. C. Soh, “Reliable H∞ controller design

for linear systems,” Automatica, vol. 37, pp. 717-725, 2001.
[5] F. Liao, J. L. Wang and G. H. Yang, “Reliable robust flight tracking

control: an LMI approach,” IEEE Trans. on Control Systems Technol-

ogy, vol. 10, no. 1, pp. 76-89, 2002.
[6] Y. W. Liang and S. D. Xu, “Reliable control of nonlinear systems via

variable structure scheme,” IEEE Trans. Automat. Contr., vol. 51, no.
10, pp. 1721-1726, 2006.

[7] G. H. Yang and K. Y. Lum, “Fault-tolerant flight tracking control
with stuck faults,” in Proc. American Contol Confenrence, Denver,
Colorado, pp. 521-526, 2003.

[8] J. Liu, J. L. Wang and G. H. Yang, “Reliable guaranteed variance
filtering against sensor failures,” IEEE Trans. Automat. Contr., vol.
51, no. 5, pp. 1403-1411, 2003.

[9] C. Cheng and Q. Zhao, “Reliable control of uncertain delayed systems
with integral quadratic constraints,” IEE Proc.-Control Theory Appl.,
vol. 151, no. 6, pp. 790-796, 2004.

[10] C. S. Hsieh, “A feasible two-stage LQ reliable control via partial
actuator failures estimation,” in Proc. American Contol Confenrence,
Boston, Massachusetts, pp. 5220-5225, 2004.

[11] C. S. Hsieh, “Fault tolerant control design via the adaptive two-stage
LQ reliable control,” in Proc. American Contol Confenrence, Portland,
OR, USA, pp. 2239-2244, 2005.

[12] M. Staroswiecki, “Robust fault tolerant linear quadratic control based
on admissible model matching,” in Proc. 45th IEEE Conf. Decision

Control, San Diego, CA, USA, pp. 3506-3511, 2006.
[13] J. D. Boskovic, S. M. Li and R. K. Mehra, “Robust supervisory fault-

tolerant flight control system,” in Proc. American Contol Confenrence,
Arlington, VA, pp. 1815-1820, 2001.

[14] Z. W. Gao and S. X. Ding, “Actuator fault robust estimation and
fault-tolerant control for a class of nonlinear descriptor systems,”
Automatica, vol.43, pp.912-920, 2007.

[15] Z. W. Gao and S. X. Ding, “Sensor fault reconstruction and sensor
compensation for a class of nonlinear state-space systems via descrip-
tor system approach,” IET Proc. - Control Theory Applications, vol.1,
no.3, pp. 578-585, 2007.

[16] A. Rantzer,“On the Kalman-Yakubovich-Popov lemma,” Sys. Contr.

Lett., vol. 28, no. 1, pp. 7C10, 1996.
[17] T. Iwasaki and S. Hara,“Robust control synthesis with general fre-

quency domain specifications: static gain feedback case,” in Proc.

American Contol Confenrence, Boston, Massachusetts, pp. 4613-4618,
2004.

[18] T. Iwasaki, S. Hara and H. Yamauchi, “Dynamical system design from
a control perspective: finite frequency,” IEEE Trans. Automat. Contr.,
vol. 48, no. 8, pp. 1337-1354, 2003.

[19] T. Iwasaki and S. Hara, “Generalized KYP lemma: unified frequency
domain inequalities with design applications,” IEEE Trans. Automat.

Contr., vol. 50, no. 1, pp. 41-59, 2005.
[20] C. Scherer, P. Gahinet and M. Chilali, “Multiobjective output-feedback

control via LMI optimization,” IEEE Trans. Automat. Contr., vol. 42,
no. 7, pp. 896-911, 1997.

[21] P. P. Khargonekar and M. A. Rotea, “Mixed H2/H∞ control: a convex
optimization approach,” IEEE Trans. Automat. Contr., vol. 39, pp. 824-
837, 1991.

[22] J. C. Doyle, K. Zhou, K. Glover and B. Bodenheimer, “Mixed H2 and
H∞ performances objective II: optiaml control,” IEEE Trans. Automat.

Contr., vol. 39, pp. 1575-1587, 1994.
[23] P. Gahinet and P. Apkarian, “A linear matrix inequality approach to

H∞ control,” Int. J. Robust and Nonlinear Contr., vol. 4, pp. 421-448,
1994.

[24] M. Chilali and P. Gahinet, “H∞ design with pole placement constraints:
an LMI approach,” IEEE Trans. Automat. Contr., vol. 41, pp. 358-367,
1996.

1805


